RESUMEN
This research delves into the pivotal issue of road dust emissions and their profound ramifications on air quality across diverse regions of India. In pursuit of this objective, the study initiated a comprehensive field campaign to estimate silt loading (sL) values and evaluate the distribution of vehicles at 259 locations spanning 32 Indian cities. Remarkable disparities in sL values were observed across different road types and states. Notably, sites in Rajasthan, characterized by its arid Aravalli range and industrial activities, emerged as stark outliers, exhibiting significantly elevated sL values (up to 137 g/m2) compared to their counterparts. The regional analysis goes further to elucidate the relation between climatic conditions, topography, and silt loading. As a broader trend, roads in North India have higher sL values in contrast to those in South India. Further, a comprehensive particulate matter road dust emission inventory for the entire India in the year 2022 was developed using the vehicle registration data from 1352 road transport offices nationwide, in conjunction with the data from the field campaign concerning sL values and vehicle counts. Specific states such as Rajasthan, Uttar Pradesh, Maharashtra, Karnataka, and Gujarat emerged as the predominant contributors to road dust emissions. These states not only exhibit elevated sL values, but also account for a substantial proportion of the total registered vehicles in India, thereby underscoring the pressing imperative for effective mitigation measures. Weather Research and Forecasting coupled with chemistry (WRF-Chem) simulations, using this emission inventory, reveal that PM2.5 concentrations stemming from road dust exceed the World Health Organization guidelines in 55 % of the states across India. Further analysis delineates that more than 10,000 lives are annually lost due to PM2.5 pollution attributable to road dust in India, with the potential to salvage 10 % of these lives by paving all roads throughout the country.
RESUMEN
Road silt loading (sL) is an important parameter in the fugitive road dust (FRD) emissions. In this study, the improved Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER) combined with the AP-42 method was firstly developed to quickly measure and estimate the sLs of paved roads in Beijing, China. The annual average sLs in Beijing was 0.59±0.31 g/m2 in 2020, and decreased by 22.4% compared with that in 2019. The seasonal variations of sLs followed the order of spring > winter > summer > autumn in the two years. The seasonal mean road sLs on the same type road in the four seasons presented a decline trend from 2019 to 2020, especially on the Express way, decreasing 47.4%-72.7%. The road sLs on the different type roads in the same season followed the order of Major arterial â¼ Minor arterial â¼ Branch road > Express road, and Township road â¼ Country highway > Provincial highway â¼ National highway. The emission intensities of PM10 and PM2.5 from FRD in Beijing in 2020 were lower than those in 2019. The PM10 and PM2.5 emission intensities at the four planning areas in the two years all presented the order of the capital functional core area > the urban functional expansion area > the urban development new area > the ecological conservation and development area. The annual emissions of PM10 and PM2.5 from FRD in Beijing in 2020 were 74,886 ton and 18,118 ton, respectively, decreasing by â¼33.3% compared with those in 2019.