Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39227521

RESUMEN

OBJECTIVE: During total arch replacement (TAR) using frozen elephant trunk (FET) technique with Frozenix for true thoracic aortic aneurysm (tTAA), oversized FET tends to be chosen similar to the endovascular devise selection. However, the oversized FET is considered a risk factor for intimal injury. The appropriate size selection of FET remains insufficiently understood. METHODS: Between October 2014 and March 2022, a total of 49 patients underwent TAR using Frozenix for tTAA. Out of 49 patients, four patients planned to staged surgery were excluded, 19 patients were operated on with an undersized Frozenix compared with the descending aorta (undersized FET group) and in 26 patients an equal or oversized Frozenix was used (oversized FET group). Clinical outcomes and postoperative diameter changes were investigated. RESULTS: In-hospital mortality was 0%. The mean diameter of Frozenix and the descending aorta was 30.7 mm and 28.8 mm, respectively, in the oversized FET group, and 26.7 mm and 30.1 mm in the undersized FET group. Postoperative computed tomography (CT) demonstrated no endoleaks not only in the oversized FET group but also in the undersized FET group. CT also revealed that undersized FET had expanded more than the original diameter in all cases except for two, with an average of 2.47 ± 1.53 mm. Additionally, the descending aorta covered with Frozenix shrank in 10 patients (53%). Postoperative adverse aortic events were not observed. CONCLUSIONS: Undersized Frozenix tightly fit the descending aorta and resulted in complete sealing without endoleaks. Oversized FET is not strictly necessary considering the size-related adverse complications.

2.
Heliyon ; 10(15): e35006, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157413

RESUMEN

Pakistan has limited natural gas reserves, and most are found onshore. This article reports on the problems of an onshore gas gathering network (GGN) analysed through steady-state simulation modelling using PIPESIM software. The research methodology incorporates a comprehensive steady-state hydraulic analysis considering fluid flowing velocity limitations, liquid holdup and slugging along with other issues faced by gas gathering networks. The steady-state hydraulic analysis has led us to pinpoint specific GGN pipelines facing critically low gas velocities and consequent liquid holdup. Addressing these issues involved application of PIPESIM software for modelling, considering various operating schemes of gas-producing wells and their associated pipelines. To select an optimal operating scheme, the study utilized the Analytic Hierarchy Process (AHP) for operational optimization, to identify the most effective solution for reduced liquid holdup, improving production, and ensuring the safe operation among available alternatives. Findings from our hydraulic analysis highlight the importance of reducing GGN outlet pressure to mitigate challenges associated with liquid holdup which causes slugging and back pressure effect at source leading to low production and poor performance of the GGN. Study of three alternative cases reveals that decreasing outlet pressure lowers the liquid holdup, improve gas flowing velocities, and enhanced overall production. These findings validate our hypothesis that reducing GGN outlet pressure is a viable strategy to lower the liquid holdup in pipelines. This research offers significant value by providing a comprehensive solution to GGN liquid holdup, low flowing velocities, back pressure and low production challenges. The integration of steady-state hydraulic analysis, simulation modelling with PIPESIM, and the application of AHP for optimization contributes novel insights into the optimization of operation of gas gathering networks. Emphasizing the reduction of liquid holdup and enhancing production through outlet pressure adjustments offers a practical framework for optimizing the functionality of gas gathering networks.

3.
Polymers (Basel) ; 16(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125189

RESUMEN

This research aims to explore how functionally active structures affect the physical, mechanical, thermal, and fire-resistant properties of elastomeric compositions using ethylene-propylene-diene rubber as a base. The inclusion of aluminosilicate microspheres, microfibers, and a phosphorus-boron-nitrogen-organic modifier in these structures creates a synergistic effect, enhancing the material's heat-insulating properties by strengthening coke and carbonization processes. This results in a 12-19% increase in heating time for unheated sample surfaces and a 6-17% increase in residual coke compared to existing analogs. Microspheres help counteract the negative impact of microfibers on composition density and thermal conductivity, while the phosphorus-boron-containing modifier allows for controlling the formation of the coke layer.

4.
ACS Sens ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172692

RESUMEN

An amino functionalized paper-based material that utilized amino functionalized polymer particles as sensing probes and adsorption sites was fabricated via internal sizing technology for application in formaldehyde detection and adsorption. A large specific surface area and the porous structure of the paper fibers enable the application of the composite paper-based material as a sensor at low concentrations of primary amine groups. The material reacts with low levels of formaldehyde, resulting in a concentration-based change in the pH, which is rapidly expressed as a color change. After exposure to formaldehyde (0.02 mg/m3) for 10 min, the color of the composite paper-based material changed from pink to brown, demonstrating the high sensitivity of the material, and this transition could be clearly observed using the naked eye. Additionally, the composite paper-based material acts as an adsorbent at a high content of amino groups, owing to a rapid addition reaction with formaldehyde, exhibiting a high adsorption capacity. Considering the high sensitivity, adsorption capacity, and adsorption speed for formaldehyde, the as-developed composite paper-based material exhibits promising application potential in the field of formaldehyde detection and adsorption.

5.
Sci Rep ; 14(1): 20127, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209909

RESUMEN

The off-grid Hybrid Renewable Energy Systems (HRES) demonstrate great potential to be sustainable and economically feasible options to meet the growing energy needs and counter the depletion of conventional energy sources. Therefore, it is crucial to optimize the size of HRES components to assess system cost and dependability. This paper presents the optimal sizing of HRES to provide a very cost-effective and efficient solution for supplying power to a rural region. This study develops a PV-Wind-Battery-DG system with an objective of 3E analysis which includes Energy, Economic, and Environmental CO2 emissions. Indispensable parameters like technical parameters (Loss of Power Supply Probability, Renewable factor, PV fraction, and Wind fraction) and social factor (Human Developing Index) are evaluated to show the proposed modified Harris Hawks Optimization (mHHO) algorithm's merits over the existing algorithms. To achieve the objectives, the proposed mHHO algorithm uses nine distinct operators to obtain simultaneous optimization. Furthermore, the performance of mHHO is evaluated by using the CEC 2019 test suite and the most optimal mHHO is chosen for sizing and 3E analysis of HRES. The findings demonstrate that the mHHO has achieved optimized values for Cost of Energy (COE), Net Present Cost (NPC), and Annualized System Cost (ASC) with the lowest values being 0.14130 $/kWh, 1,649,900$, and 1,16,090$/year respectively. The reduction in COE value using the proposed mHHO approach is 0.49% in comparison with most of the other MH-algorithms. Additionally, the system primarily relies on renewable sources, with diesel usage accounting for only 0.03% of power generation. Overall, this study effectively addresses the challenge of performing a 3E analysis with mHHO algorithm which exhibits excellent convergence and is capable of producing high-quality outcomes in the design of HRES. The mHHO algorithm attains optimal economic efficiency while simultaneously minimizing the impact on the environment and maintaining a high human development index.

6.
Macromol Rapid Commun ; : e2400414, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038120

RESUMEN

Carbon fiber (CF)-reinforced epoxy resin (EP) composites are lightweight materials with excellent comprehensive performance. However, the flammability of EP and the poor interfacial bonding between CF and EP are two key disadvantages that limit their further applications. Here, a kind of water-soluble lignin-based CF sizing agent (ELBEDK) is prepared through hydrophilic modification of enzymatic lignin, which can significantly enhance the interfacial interaction between CF and EP. Additionally, a highly efficient intumescent flame retardant (LMA) is prepared. The EP, enzymatic lignin, LMA and CF sized ELBEDK are compounded to obtain the fire-safety CF reinforced composites (SCF/FEP/L). The flame retardancy of SCF/FEP/L with 7% LMA (SCF/FEP7) reached V-0 rating. Moreover, SCF/FEP/L with 7% LMA and 15% lignin (SCF/FEP7/L15) present an limiting oxygen index (LOI)of 30.2% and V-0 of UL-94. Specifically, the total smoke production and the heat release rate are 47.8% and 46.81% lower than that of SCF/EP, respectively, indicating the improved smoke suppression and flame retardancy. The IFSS and flexural strength of SCF/FEP7/L15 are improved to be 59.4 MPa and 511.1 MPa, respectively. This study presents a simple approach to fabricate low-cost high performance lignin-based flame retardant CF/EP biocomposites with wide application potential.

7.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931775

RESUMEN

Operational amplifiers (Op-Amps) are critical to sensor systems because they enable precise, reliable, and flexible signal processing. Current automated Op-Amp generation methods suffer from extremely low efficiency because the time-consuming SPICE-in-the-loop sizing is normally involved as its inner loop. In this paper, we propose an efficiently automated Op-Amp generation tool using a hybrid sizing method, which combines the merits together from a deterministic optimization algorithm and differential evolution algorithm. Thus, it can not only quickly find a decent local optimum, but also eventually converge to a global optimum. This feature is well fit to be serving as an acute filter in the circuit structure evaluation flow to efficiently eliminate any undesirable circuit structures in advance of detailed sizing. Our experimental results demonstrate its superiority over traditional sizing approaches and show its efficacy in highly boosting the efficiency of automated Op-Amp structure generation.

8.
ACS Appl Mater Interfaces ; 16(25): 31877-31894, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38868858

RESUMEN

Interfacial failure in carbon fiber-reinforced epoxy (CFRE) laminates is a prominent mode of failure, attracting significant research attention. The large surface-energy mismatch between carbon fiber (CF) and epoxy results in a weaker interface. This study presents a facile yet effective method for enhancing the interfacial adhesion between CF and epoxy with self-healable interfaces. Two variants of a designer sizing agent, poly(ether imide) (PEI), were synthesized, one without a self-healing property termed BO, and the second one by incorporating disulfide metathesis in one of its monomers that renders self-healing properties at the interface-mediated by network reconfiguration, termed BA. 0.25 wt % of CF was found to be the optimum amount of BO and BA sizing agents. The surface free energy of CF drastically increased and became quite close to the surface energy of epoxy after the deposition of both sizing agents and the higher surface roughness. The improved surface wettability, presence of functional groups, and mechanical interlocking worked in tandem to strengthen the interface. The interlaminar shear strength (ILSS) and flexural strength (FS) of CFRE laminate sized with BO consequently increased by 35% and 22% and of CFRE laminate sized with BA increased by 26% and 19%, respectively. Fractography analysis revealed outstanding bonding between epoxy and PEI-CF, indicating that matrix fracture is the predominant mode of failure. The self-healable interfaces due to the preinstalled disulfide metathesis in the sizing agent resulted in 51% self-healing efficiency in ILSS for BA-sized CFRE laminate. Interestingly, the functional properties, deicing, and EMI shielding effectiveness were not compromised by modification of the interface with this designer sizing agent. This study opens new avenues for interfacial modification to improve the mechanical properties while retaining the key functional properties of the laminates.

9.
Environ Pollut ; 356: 124354, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38862097

RESUMEN

Recent advancements in particulate matter (PM) optical measurement technology have enhanced the characterization of particle size distributions (PSDs) across various temporal and spatial scales, offering a more detailed analysis than traditional PM mass concentration monitoring. This study employs field experiments, laboratory tests, and model simulations to evaluate the influence of physicochemical characteristics of particulate matter (PM) on the performance of a compact, multi-channel PM sizing sensor. The sensor is integrated within a mini air station (MAS) designed to detect particles across 52 channels. The field experiments highlighted the sensor's ability to track hygroscopicity parameter κ-values across particle sizes, noting an increasing trend with particle size. The sensor's capability in identifying the size and mass concentration of different PM types, including ammonium nitrate, sodium chloride, smoke, incense, and silica dust particles, was assessed through laboratory tests. Laboratory comparisons with the Aerodynamic Particle Sizer (APS) showed high consistency (R2 > 0.96) for various PM sources, supported by Kolmogorov-Smirnov tests confirming the sensor's capability to match APSsize distributions. Model simulations further elucidated the influence of particle refractive index and size distributions on sensor performance, leading to optimized calibrant selection and application-specific recommendations. These comprehensive evaluations underscore the critical interplay between the chemical composition and physical properties of PM, significantly advancing the application and reliability of optical PM sensors in environmental monitoring.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado , Material Particulado/análisis , Material Particulado/química , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Modelos Teóricos
10.
Heliyon ; 10(11): e31843, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38873666

RESUMEN

This paper presents the placement and sizing of energy hubs (EHs) in electricity, gas, and heating networks. EH is a coordinator framework for various power sources, storage devices, and responsive loads. For simultaneous modeling of economic, operation, reliability, and flexibility indices, the proposed scheme is expressed as a three-objective optimization in the form of Pareto optimization based on the sum of weighted functions. The objective functions of this problem respectively minimize the planning cost of EHs (equal to the total cost of construction of hubs and their expected operating cost), the expected energy loss of the mentioned networks, and the expected energy not-supplied (EENS) of these networks in the case of an N - 1 event. The problem is constrained by power flow equations and operation and reliability constraints of these network together with the EH planning and operation model, and flexibility constraints of the EHs. Then, to achieve unique optimal solution in the shortest possible time, a linear approximation model is extracted for the proposed scheme. Moreover, scenario-based stochastic programming (SBSP) is employed to model uncertainties of load, energy cost, renewable power, and accessibility of the mentioned network equipment. Finally, the obtained numerical results indicate the capability of the proposed scheme in enhancing the economic and flexibility situation of EHs and improving the reliability and operation status of energy networks along with achieving optimal planning and operation for EHs.

11.
Heliyon ; 10(11): e31208, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845973

RESUMEN

This paper aims to enhance the design and operation of a Combined Cooling, Heating, and Power (CCHP) system utilizing a gas engine as the primary energy source for a residential building in China. An Energy, Exergy, Economic, and Environment (4E) analysis is employed to assess the system's performance and impact based on energy, exergy, economic, and environmental criteria. The effectiveness of the DNGO algorithm is evaluated on a case study site and compared with Northern Goshawk Optimization (NGO) and Genetic Algorithm (GA). The findings demonstrate that the DNGO algorithm identifies the optimal gas engine size of 130 kW. The algorithm's search capabilities are greatly enhanced by this unique blend, surpassing what traditional methods can offer. The DNGO algorithm brings several advantages, including unparalleled energy efficiency, reduced exergy destruction, and a substantial decrease in C O 2 emissions. This not only supports environmental sustainability but also aligns with global standards. Economically, the algorithm enhances the performance of the CCHP system, evident through a reduced payback period and increased annual profit. Additionally, the algorithm's rapid convergence rate allows it to reach the optimal solution faster than its counterparts, making it advantageous for time-sensitive applications. Incorporating innovative methods like chaos theory, the DNGO algorithm effectively avoids local optima, enabling a broader search for the best solution. The utilization of Lévy flight further enhances the algorithm's ability to escape local optima and navigate the search space more efficiently. Additionally, swarm intelligence is employed to simulate the collective behavior of decentralized systems, aiding in problem-solving. This research represents a significant advancement in optimization techniques for CCHP systems and offers a fresh perspective to the field of swarm-based optimization algorithms.

12.
Methods Mol Biol ; 2804: 53-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753139

RESUMEN

The µLAS technology enables in-line DNA concentration and separation in a microchannel. Here, we describe its operation to analyze the size profile of cell-free DNA (cfDNA) extracted from blood plasma. Operated on commercial systems for capillary electrophoresis, we provide the size distribution of healthy individuals or patients using an input of 10 µL.


Asunto(s)
Ácidos Nucleicos Libres de Células , Electroforesis Capilar , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/aislamiento & purificación , Ácidos Nucleicos Libres de Células/genética , Humanos , Electroforesis Capilar/métodos
13.
Int J Audiol ; : 1-10, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804563

RESUMEN

OBJECTIVE: Evaluate the ability of an extended version of the 3 MTM Eargage to estimate the earcanal size and assess the likelihood that a particular earplug can fit an individual's earcanal, ultimately serving as a tool for selecting earplugs in the field. DESIGN: Earcanal morphology, assessed through earcanal earmolds scans, is compared to earcanal size assessed with the extended eargage (EE) via box plots and Pearson linear correlations coefficients. Relations between attenuation measured on participants (for 6 different earplugs) and their earcanal size assessed with the EE are established via comparison tests. STUDY SAMPLE: 121 participants exposed to occupational noise (103 men, 18 women, mean age 47 years). RESULTS: The earcanal size assessed with the EE allows for estimating the area of the earcanal's first bend cross-section (correlation coefficient  r = 0.533, p < 0.001). Extremely large earcanals (12.7% of earcanals in our sample) lead to significantly lower earplug attenuation (potentially inadequate) than smaller earcanals. CONCLUSIONS: The EE is a simple and inexpensive tool easily deployable in the field to assist earplugs selection. When extended with sizes larger than the maximum size of the commercial tool, it allows for detecting individuals with extremely large earcanals who are most likely to be under-protected.

14.
J Funct Biomater ; 15(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786637

RESUMEN

Treating severe dermal disruptions often presents significant challenges. Recent advancements have explored biological cell sprays as a promising treatment, but their success hinges on efficient cell delivery and complete wound coverage. This requires a good spray distribution with a small droplet size, high particle number, and ample surface coverage. The type of nozzle used with the spray device can impact these parameters. To evaluate the influence of different nozzles on spray characteristics, we compared air-assisted and unassisted nozzles. The unassisted nozzle displayed small particle size, high particle number, good overall coverage, high cell viability, preserved cell metabolic activity, and low cytotoxicity. Air-assisted nozzles did not perform well regarding cell viability and metabolic activity. Flow visualization analysis comparing two different unassisted nozzles using high-speed imaging (100 kHz frame rate) revealed a tulip-shaped spray pattern, indicating optimal spray distribution. High-speed imaging showed differences between the unassisted nozzles. One unassisted nozzle displayed a bi-modal distribution of the droplet diameter while the other unassisted nozzle displayed a mono-modal distribution. These findings demonstrate the critical role of nozzle selection in successful cell delivery. A high-quality, certified nozzle manufactured for human application omits the need for an air-assisted nozzle and provides a simple system to use with similar or better performance characteristics than those of an air-assisted system.

15.
Int J Biol Macromol ; 271(Pt 2): 132716, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38815941

RESUMEN

Nanoparticle-containing sizing agents are essential for the overall performance of high-quality carbon fiber (CF) composites. However, the uneven dispersion of nanoparticles often leads to agglomeration on the surface of CF after sizing, consequently diminishing the material properties. In this study, the properties of cellulose nanofibers (CNFs) that can respond to magnetic and electric fields were utilized to achieve three-dimensional to one-dimensional orientations in CFs containing sizing agents. Cobalt ferrite (CoFe2O4) was utilized to enhance the response of CNFs to a magnetic field, and subsequently, it was combined with an electric field to attain a higher degree of orientation. The occurrence of nanoparticle agglomeration is diminished on CF surface, while establishing a structured network. The flexural strength and thermal conductivity of CF composites treated with CoFe2O4 self-assembled CNF sizing agent exhibit an increase of 54.23 % and 57.5 %, respectively, compared to those of desized CF composites, when subjected to magnetic and electric fields. Consequently, the approach can depolymerize the nano-fillers within the sizing agent and orient it into the carbon fiber under the influence of magnetic and electric fields, effectively improving the mechanical properties and thermal conductivity of the composite material.


Asunto(s)
Fibra de Carbono , Celulosa , Campos Magnéticos , Nanofibras , Nanofibras/química , Celulosa/química , Fibra de Carbono/química , Compuestos Férricos/química , Cobalto/química , Electricidad , Conductividad Térmica , Nanocompuestos/química
17.
Materials (Basel) ; 17(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612072

RESUMEN

Semi-aromatic poly (hexamethylene terephthalamide) (PA6T) oligomer (prePA6T) ultrafine powder, with a diameter of <5 µm, was prepared as an emulsion sizing agent to improve the impregnation performance of CF/PA6T composites. The prePA6T hyperfine powder was acquired via the dissolution and precipitation "phase conversion" method, and the prePA6T emulsion sizing agent was acquired to continuously coat the CF bundle. The sized CF unidirectional tape was knitted into a fabric using the plain weave method, while the CF/PA6T laminated composites were obtained by laminating the plain weave fabrics with PA6T films. The interfacial shear strength (IFSS), tensile strength (TS), and interlaminar shear strength (ILSS) of prePA6T-modified CF/PA6T composites improved by 54.9%, 125.3%, and 120.9%, respectively. Compared with the commercial polyamide sizing agent product PA845H, the prePA6T sizing agent showed better interfacial properties at elevated temperatures, especially no TS loss at 75 °C. The SEM observations also indicated that the prePA6T emulsion has an excellent impregnation effect on CF, and the fracture mechanism shifted from adhesive failure mode to cohesive failure mode. In summary, a facile, heat-resistant, undamaged-to-fiber environmental coating process is proposed to continuously manufacture high-performance thermoplastic composites, which is quite promising in mass production.

18.
Cureus ; 16(3): e55735, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38586638

RESUMEN

Background and objective Sizing on digital films is important for implants and planning deformity correction. CT is the most accurate digital measurement method. We use a 1-inch ball bearing (cost: $1) to size our long-leg standing films (LLSFs) when planning deformity correction. In this study, we aimed to assess the accuracy of digital measurements calibrated by this method. Methods We conducted An IRB-approved study involving 25 patients having both an LLSF with a 1-inch ball bearing taped to the inner mid-thigh and a CT scanogram. The longest distance in the axial cut of the bilateral ankle, knee, and femoral heads of the CT images were compared to the same anatomic locations on LLSFs calibrated with the ball bearing using the online digital planning software DetroitBonesetter (DBS) and measurements from our Picture Archiving Communication Software (PACS). Five observers performed each measurement. Results The average measurement differences between the gold standard CT scan and LLSFs calibrated with DBS were as follows: 0.110 ± 0.432 mm (femoral head); 2.173 ± 0.0619 mm (knee); and 3.671 ± 0.30 mm (ankle). In PACS, they were as follows: 5.470 ± 0.381 mm (femoral head); 6.248 ± 0.712 mm (knee); and 1.806 ± 0.548 mm (ankle). The intraclass correlation coefficient for 600 measurements by five observers was 0.972. Conclusions The $1 ball-bearing sizing on DBS using LLSFs provides accuracy to <1 mm for the femoral head, 2 mm at the knee, and 3.7 mm at the ankle. It was significantly better than the PACS system for both the femoral head and knee (<0.001), while PACS was better at the ankle (<0.001).

19.
Int J Pharm ; 656: 124097, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38609058

RESUMEN

The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and âˆ¼ 10 µl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.


Asunto(s)
Nanopartículas , Tamaño de la Partícula , Poliestirenos , Dióxido de Silicio , Nanopartículas/química , Nanopartículas/análisis , Poliestirenos/química , Dióxido de Silicio/química , Oro/química , Microscopía Electrónica de Transmisión , Nanoestructuras/química , Animales
20.
Pharm Res ; 41(5): 1021-1029, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649535

RESUMEN

PURPOSE: A comparative assessment was performed to evaluate the potential of particle sizing by an ensemble based conventional dynamic light scattering (DLS) technique and an emerging technology based on tunable resistive pulse sensing (TRPS) using particle by particle approach by evaluating three different types of vaccine formulations representing three case studies and showing the limitation of each technique, instrument variability, sensitivity, and the resolution in mixed population. METHODS: Three types of in-house vaccine formulations- a protein antigen, an outer membrane vesicle and viral particles were simultaneously evaluated by TRPS based Exoid and two DLS instruments-Zetatrac and Zetasizer for particle size distribution, aggregates, and resolution of polydisperse species. RESULTS: The data from first case study show the risk of possible size overestimation and size averaging in polydisperse samples in DLS measurements which can be addressed by the TRPS analysis. It also shows how TRPS may be utilized only to large size antigens due to its limited size range. The second case study highlights the difference in the sensitivities of two DLS instruments working on the same principle. The third case study show that how TRPS can better resolve the large aggregate species compare to DLS in polydisperse samples. CONCLUSION: This analysis shows that TRPS can be used as an orthogonal technique in addition to conventional DLS based methods for more precise and in-depth characterization. Both techniques are efficient in size characterization and produce comparable results, however the choice will depend on the type of formulation and size range to be evaluated.


Asunto(s)
Dispersión Dinámica de Luz , Tamaño de la Partícula , Vacunas , Dispersión Dinámica de Luz/métodos , Vacunas/química , Composición de Medicamentos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...