Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Mycol ; 60(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36240494

RESUMEN

The yeast SKI (superkiller) complex was originally identified from cells that were infected by the M 'killer' virus. Ski2, as the core of the SKI complex, is a cytoplasmic cofactor and regulator of RNA-degrading exosome. The putative RNA helicase Ski2 was highly conserved from yeast to animals and has been demonstrated to play a key role in the regulation of RNA surveillance, temperature sensitivity, and growth in several yeasts but not yet in Cryptococcus neoformans (C. neoformans). Here, we report the identification of a gene encoding an equivalent Ski2 protein, named SKI2, in the fungal pathogen C. neoformans. To obtain insights into the function of Ski2, we created a mutant strain, ski2Δ, with the CRISPR-Cas9 editing tool. Disruption of SKI2 impaired cell wall integrity. Further investigations revealed the defects of the ski2Δ mutant in resistance to osmotic stresses and extreme growth temperatures. However, significantly, the ability to undergo invasive growth under nutrient-depleted conditions was increased in the ski2Δ mutant. More importantly, our results showed that the ski2Δ mutant exhibited slightly lower virulence and severe susceptibility to anti-ribosomal drugs by comparison to the wild type, but it developed multidrug resistance to azoles and flucytosine. By constructing the double deletion strain ski2Δafr1Δ, we verified that increased Afr1 in ski2Δ contributed to the azole resistance, which might be influenced by nonclassical small interfering RNA. Our work suggests that Ski2 plays critical roles in drug resistance and regulation of gene transcription in the yeast pathogen C. neoformans.


Asunto(s)
Cryptococcus neoformans , Farmacorresistencia Fúngica , Proteínas Fúngicas , Azoles/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , ARN Helicasas/metabolismo , Farmacorresistencia Fúngica/genética , Estrés Fisiológico
2.
Biol Chem ; 402(5): 605-616, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33857361

RESUMEN

Mtr4 is a Ski2-like RNA helicase that plays a central role in RNA surveillance and degradation pathways as an activator of the RNA exosome. Multiple crystallographic and cryo-EM studies over the past 10 years have revealed important insight into the Mtr4 structure and interactions with protein and nucleic acid binding partners. These structures place Mtr4 at the center of a dynamic process that recruits RNA substrates and presents them to the exosome. In this review, we summarize the available Mtr4 structures and highlight gaps in our current understanding.


Asunto(s)
ARN Helicasas , Humanos , Modelos Moleculares , Conformación Proteica , ARN Helicasas/química , ARN Helicasas/metabolismo
3.
Methods Mol Biol ; 2209: 193-215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33201471

RESUMEN

Functional aspects of nucleic acid helicases can be interrogated by various in vitro methods, using purified components, including nucleic acid binding and unwinding assays. Here we describe detailed protocols for the production and purification of the spliceosomal Ski2-like RNA helicase, Brr2, and one of its regulatory factors, the Jab1 domain of the Prp8 protein from yeast. Furthermore, we include a production protocol for radioactively labeled yeast U4/U6 di-snRNA substrate. We describe polyacrylamide gel-based assays to investigate Brr2's RNA binding and unwinding activities. The purification protocols and activity assays can be easily adapted for the purification and functional interrogation of other helicases, cofactors, and RNA substrates.


Asunto(s)
ARN Helicasas/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Unión Proteica , Empalme del ARN , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo
4.
Mol Cell ; 77(6): 1340-1349.e6, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32006463

RESUMEN

The evolutionarily conserved Ski2-Ski3-Ski8 (Ski) complex containing the 3'→5' RNA helicase Ski2 binds to 80S ribosomes near the mRNA entrance and facilitates 3'→5' exosomal degradation of mRNA during ribosome-associated mRNA surveillance pathways. Here, we assayed Ski's activity using an in vitro reconstituted translation system and report that this complex efficiently extracts mRNA from 80S ribosomes in the 3'→5' direction in a nucleotide-by-nucleotide manner. The process is ATP dependent and can occur on pre- and post-translocation ribosomal complexes. The Ski complex can engage productively with mRNA and extract it from 80S complexes containing as few as 19 (but not 13) 3'-terminal mRNA nucleotides starting from the P site. The mRNA-extracting activity of the Ski complex suggests that its role in mRNA quality control pathways is not limited to acceleration of exosomal degradation and could include clearance of stalled ribosomes from mRNA, poising mRNA for degradation and rendering stalled ribosomes recyclable by Pelota/Hbs1/ABCE1.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Exosomas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/aislamiento & purificación , Ribosomas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Exosomas/genética , Proteínas de Unión al GTP/genética , Humanos , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética
5.
J Biol Chem ; 295(7): 2097-2112, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31914407

RESUMEN

The RNA helicase bad response to refrigeration 2 homolog (BRR2) is required for the activation of the spliceosome before the first catalytic step of RNA splicing. BRR2 represents a distinct subgroup of Ski2-like nucleic acid helicases whose members comprise tandem helicase cassettes. Only the N-terminal cassette of BRR2 is an active ATPase and can unwind substrate RNAs. The C-terminal cassette represents a pseudoenzyme that can stimulate RNA-related activities of the N-terminal cassette. However, the molecular mechanisms by which the C-terminal cassette modulates the activities of the N-terminal unit remain elusive. Here, we show that N- and C-terminal cassettes adopt vastly different relative orientations in a crystal structure of BRR2 in complex with an activating domain of the spliceosomal Prp8 protein at 2.4 Å resolution compared with the crystal structure of BRR2 alone. Likewise, inspection of BRR2 structures within spliceosomal complexes revealed that the cassettes occupy different relative positions and engage in different intercassette contacts during different splicing stages. Engineered disulfide bridges that locked the cassettes in two different relative orientations had opposite effects on the RNA-unwinding activity of the N-terminal cassette, with one configuration enhancing and the other configuration inhibiting RNA unwinding compared with the unconstrained protein. Moreover, we found that differences in relative positioning of the cassettes strongly influence RNA-stimulated ATP hydrolysis by the N-terminal cassette. Our results indicate that the inactive C-terminal cassette of BRR2 can both positively and negatively affect the activity of the N-terminal helicase unit from a distance.


Asunto(s)
Empalme del ARN/genética , Proteínas de Unión al ARN/ultraestructura , Ribonucleoproteínas Nucleares Pequeñas/ultraestructura , Empalmosomas/genética , Adenosina Trifosfatasas/genética , Catálisis , Cristalografía por Rayos X , Humanos , Conformación Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/genética , Empalmosomas/ultraestructura , Especificidad por Sustrato
6.
Methods Mol Biol ; 2062: 491-513, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31768992

RESUMEN

The RNA exosome is a macromolecular machine that degrades a large variety of RNAs from their 3'-end. It comprises the major 3'-to-5' exonuclease in the cell, completely degrades erroneous and overly abundant RNAs, and is also involved in the precise processing of RNAs. To degrade transcripts both specifically and efficiently the exosome functions together with compartment-specific cofactors. In the yeast S. cerevisiae, the exosome associates with the Ski complex in the cytoplasm and with Mtr4 alone or with Mtr4 as part of the TRAMP complex in the nucleus. Here we describe how to produce, purify, and assemble the Ski and TRAMP complexes from S. cerevisiae.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Exosomas/metabolismo , ARN/metabolismo , ARN de Hongos/metabolismo , Células Sf9
7.
Cells ; 8(9)2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480283

RESUMEN

At the central region of the mammalian major histocompatibility complex (MHC) is a complement gene cluster that codes for constituents of complement C3 convertases (C2, factor B and C4). Complement activation drives the humoral effector functions for immune response. Sandwiched between the genes for serine proteinase factor B and anchor protein C4 are four less known but critically important genes coding for essential functions related to metabolism and surveillance of RNA during the transcriptional and translational processes of gene expression. These four genes are NELF-E (RD), SKIV2L (SKI2W), DXO (DOM3Z) and STK19 (RP1 or G11) and dubbed as NSDK. NELF-E is the subunit E of negative elongation factor responsible for promoter proximal pause of transcription. SKIV2L is the RNA helicase for cytoplasmic exosomes responsible for degradation of de-polyadenylated mRNA and viral RNA. DXO is a powerful enzyme with pyro-phosphohydrolase activity towards 5' triphosphorylated RNA, decapping and exoribonuclease activities of faulty nuclear RNA molecules. STK19 is a nuclear kinase that phosphorylates RNA-binding proteins during transcription. STK19 is also involved in DNA repair during active transcription and in nuclear signal transduction. The genetic, biochemical and functional properties for NSDK in the MHC largely stay as a secret for many immunologists. Here we briefly review the roles of (a) NELF-E on transcriptional pausing; (b) SKIV2L on turnover of deadenylated or expired RNA 3'→5' through the Ski-exosome complex, and modulation of inflammatory response initiated by retinoic acid-inducible gene 1-like receptor (RLR) sensing of viral infections; (c) DXO on quality control of RNA integrity through recognition of 5' caps and destruction of faulty adducts in 5'→3' fashion; and (d) STK19 on nuclear protein phosphorylations. There is compelling evidence that a dysregulation or a deficiency of a NSDK gene would cause a malignant, immunologic or digestive disease.


Asunto(s)
ADN Helicasas , Exorribonucleasas , Complejo Mayor de Histocompatibilidad/genética , Proteínas Nucleares , Proteínas Serina-Treonina Quinasas , ARN/metabolismo , Factores de Transcripción , Animales , ADN Helicasas/genética , ADN Helicasas/fisiología , Exorribonucleasas/genética , Exorribonucleasas/fisiología , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
8.
RNA ; 24(2): 127-142, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29093021

RESUMEN

The RNA exosome is an evolutionarily conserved, ribonuclease complex that is critical for both processing and degradation of a variety of RNAs. Cofactors that associate with the RNA exosome likely dictate substrate specificity for this complex. Recently, mutations in genes encoding both structural subunits of the RNA exosome and its cofactors have been linked to human disease. Mutations in the RNA exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are similar autosomal-recessive, neurodegenerative diseases. Mutations in the RNA exosome gene EXOSC2 cause a distinct syndrome with various tissue-specific phenotypes including retinitis pigmentosa and mild intellectual disability. Mutations in genes that encode RNA exosome cofactors also cause tissue-specific diseases with complex phenotypes. How mutations in these genes give rise to distinct, tissue-specific diseases is not clear. In this review, we discuss the role of the RNA exosome complex and its cofactors in human disease, consider the amino acid changes that have been implicated in disease, and speculate on the mechanisms by which exosome gene mutations could underlie dysfunction and disease.


Asunto(s)
Enfermedad/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Mutación , Coenzimas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/química , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Humanos , Subunidades de Proteína/genética , Proteínas de Unión al ARN/genética
9.
RNA Biol ; 10(1): 33-43, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22995828

RESUMEN

Ski2-like RNA helicases are large multidomain proteins involved in a variety of RNA processing and degradation events. Recent structures of Mtr4, Ski2 and Brr2 provide our first view of these intricate helicases. Here we review these structures, which reveal a conserved ring-like architecture that extends beyond the canonical RecA domains to include a winged helix and ratchet domain. Comparison of apo- and RNA-bound Mtr4 structures suggests a role for the winged helix domain as a molecular hub that coordinates RNA interacting events throughout the helicase. Unique accessory domains provide expanded diversity and functionality to each Ski2-like family member. A common theme is the integration of Ski2-like RNA helicases into larger protein assemblies. We describe the central role of Mtr4 and Ski2 in formation of complexes that activate RNA decay by the eukaryotic exosome. The current structures provide clues into what promises to be a fascinating view of these dynamic assemblies.


Asunto(s)
ARN Helicasas/química , ADN/química , ADN/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , ARN/química , ARN/metabolismo , ARN Helicasas/metabolismo , Estabilidad del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...