Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels Bioprod ; 16(1): 177, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978558

RESUMEN

Keratin is a recalcitrant protein and can be decomposed in nature. However, the mechanism of keratin degradation is still not well understood. In this study, Bacillus sp. 8A6 can completely degrade the feather in 20 h, which is an efficient keratin degrader reported so far. Comprehensive transcriptome analysis continuously tracks the metabolism of Bacillus sp. 8A6 throughout its growth in feather medium. It reveals for the first time how the strain can acquire nutrients and energy in an oligotrophic feather medium for proliferation in the early stage. Then, the degradation of the outer lipid layer of feather can expose the internal keratin structure for disulfide bonds reduction by sulfite from the newly identified sulfite metabolic pathway, disulfide reductases and iron uptake. The resulting weakened keratin has been further proposedly de-assembled by the S9 protease and hydrolyzed by synergistic effects of the endo, exo and oligo-proteases from S1, S8, M3, M14, M20, M24, M42, M84 and T3 families. Finally, bioaccessible peptides and amino acids are generated and transported for strain growth. The keratinase has been applied for soybean hydrolysis, which generates 2234 peptides and 559.93 mg/L17 amino acids. Therefore, the keratinases, inducing from the poultry waste, have great potential to be further applied for producing bioaccessible peptides and amino acids for feed industry.

2.
J Alzheimers Dis ; 88(4): 1469-1485, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811529

RESUMEN

BACKGROUND: Interleukin-10 (IL-10) is a classic anti-inflammatory cytokine that exerts its effects via the receptor complexes IL-10RA and IL-10RB. Loss of IL-10RB results in many diseases. Moreover, IL-10RB is closely associated with neuronal survival and synaptic formation. However, the regulation of IL-10RB gene expression remains elusive. OBJECTIVE: To investigate whether the expression of IL-10RB gene is increased in brain of Alzheimer's disease (AD) and its transcriptional regulation. METHODS: We examined the gene expression of AD patient brain from public database and detected the protein expression of AD model mouse brain by western blot. We constructed a variety of reporter gene plasmids with different lengths or mutation sites, tested the promoter activity and defined the functional region of the promoter with the luciferase reporter assay. The protein-DNA binding between transcription factors and the promoter was analyzed using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). RESULTS: We found that the IL-10RB is elevated in the brain of AD patient and AD model mice. The minimal promoter of the IL-10RB gene is located in the -90 to +51 bp region (relative to the transcriptional start site) and is sufficient for high-level expression of the IL-10RB gene. Transcription factors Sp8 and Sp9 bind to the IL-10RB promoter in vitro. The overexpression or knockdown of Sp8 and Sp9 affected the IL-10RB promoter activity and its gene expression. CONCLUSION: Our study functionally characterized the promoter of the IL-10RB gene and demonstrated that Sp8 and Sp9 regulated its expression.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Animales , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Expresión Génica , Humanos , Ratones , Regiones Promotoras Genéticas , Factores de Transcripción/genética
3.
J Histochem Cytochem ; 70(3): 211-223, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34994225

RESUMEN

Multiplex immunofluorescence (mIF) is an effective technique for the maximal visualization of multiple target proteins in situ. This powerful tool is mainly limited by the spectral overlap of the currently available synthetic fluorescent dyes. The fluorescence excitation wavelengths ranging between 405 and 488 nm are rarely used in mIF imaging and serve as a logical additional slot for a fluorescent probe. In the present study, we demonstrate that the addition of 2,3,4,5,6-pentafluoroaniline to Atto 465 NHS ester, creating Atto 465-pentafluoroaniline (Atto 465-p), generates a bright nuclear stain in the violet-blue region of the visible spectrum. This allows the 405 nm excitation and emission, classically used for nuclear counterstains, to be used for the detection of another target protein. This increases the flexibility of the mIF panel and, with appropriate staining and microscopy, enables the quantitative analysis of at least six targets in one tissue section. (J Histochem Cytochem XX: XXX-XXX, XXXX).


Asunto(s)
Núcleo Celular/química , Proflavina/análogos & derivados , Compuestos de Anilina/química , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes/química , Fluorobencenos/química , Fluorocarburos/química , Histocitoquímica , Ratones , Ratones Endogámicos BALB C , Proflavina/análisis
4.
Zoolog Sci ; 38(1): 26-35, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33639715

RESUMEN

The spatiotemporal expression of zygotic genes is regulated by transcription factors, which mediate cell fate decision and morphogenesis. Investigation of the expression patterns and their transcriptional regulatory relationships is crucial to understand embryonic development. Staged RNA-seq of the ascidian Halocynthia roretzi has previously shown that nine genes encoding transcription factors are transiently expressed at the blastula stage, which is the stage at which cell fates are specified and differentiation starts. Six of these transcription factors have already been found to play important roles during early development. However, the functions of the other transcription factors (FoxJ-r, SoxF, and SP8/9) remain unknown. The study of the spatial and temporal expression patterns showed that all three genes were expressed in the animal hemisphere as early as the 16-cell stage. This is likely due to transcription factor genes that are expressed in the vegetal hemisphere, which have been extensively and comprehensively analyzed in previous studies of ascidians. Functional analyses using FoxJ-r morphants showed that they resulted in the disruption of laterality and the absence of epidermal mono-cilia, suggesting FoxJ-r functions in cilia formation and, consequently, in the generation of left-right asymmetry, as observed in vertebrates. SoxF knockdown resulted in incomplete epiboly by the ectoderm during gastrulation, while SP8/9 knockdown showed no phenotype until the tailbud stage in the present study, although it was expressed during blastula stages. Our results indicate that transcription factor genes expressed at the cleavage stages play roles in diverse functions, and are not limited to cell fate specification.


Asunto(s)
Factores de Transcripción/genética , Urocordados/embriología , Urocordados/genética , Animales , Tipificación del Cuerpo/genética , Embrión no Mamífero/embriología , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factores de Transcripción/metabolismo , Urocordados/metabolismo
5.
Front Microbiol ; 11: 604618, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193286

RESUMEN

To counteract host-encoded restriction systems, bacteriophages (phages) incorporate modified bases in their genomes. For example, phages carry in their genomes modified pyrimidines such as 5-hydroxymethyl-cytosine (5hmC) in T4gt deficient in α- and ß-glycosyltransferases, glucosylated-5-hydroxymethylcytosine (5gmC) in T4, 5-methylcytosine (5mC) in Xp12, and 5-hydroxymethyldeoxyuridine (5hmdU) in SP8. In this work we sequenced phage Xp12 and SP8 genomes and examined Type II restriction of T4gt, T4, Xp12, and SP8 phage DNAs. T4gt, T4, and Xp12 genomes showed resistance to 81.9% (186 out of 227 enzymes tested), 94.3% (214 out of 227 enzymes tested), and 89.9% (196 out of 218 enzymes tested), respectively, commercially available Type II restriction endonucleases (REases). The SP8 genome, however, was resistant to only ∼8.3% of these enzymes (17 out of 204 enzymes tested). SP8 DNA could be further modified by adenine DNA methyltransferases (MTases) such as M.Dam and M.EcoGII as well as a number of cytosine DNA MTases, such as CpG methylase. The 5hmdU base in SP8 DNA was phosphorylated by treatment with a 5hmdU DNA kinase to achieve ∼20% phosphorylated 5hmdU, resulting resistance or partially resistant to more Type II restriction. This work provides a convenient reference for molecular biologists working with modified pyrimidines and using REases. The genomic sequences of phage Xp12 and SP8 lay the foundation for further studies on genetic pathways for 5mC and 5hmdU DNA base modifications and for comparative phage genomics.

6.
Cancers (Basel) ; 12(8)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824198

RESUMEN

Hepatoblastoma (HB) is the most common malignant liver tumor in childhood and it generally has a good prognosis. However, if associated with aggressive metastatic disease, outcome is still poor. The molecular mechanisms leading to metastatic spread in HB patients are still unknown. By combining RNA-sequencing and a genome-wide methylome analysis, we identified the transcription factor SP8 and the growth factor FGF8 among the most strongly upregulated genes in metastatic HB cases, with a concomitant robust demethylation of the respective promoter regions. Of note, high expression of both candidates was associated with the aggressive C2 subtype of the 16-gene signature and poor survival. Chromatin immunoprecipitation revealed a direct transcriptional regulation of FGF8 through binding of SP8 to the FGF8 promoter. Gain- and loss-of-function experiments proved promoting effects of SP8 on motility, self-renewal, migration, and the invasive potential of HB cells. Moreover, stable overexpression of SP8 in Hep3B cells resulted in the acquisition of a mesenchymal phenotype and a strong upregulation of epithelial-mesenchymal transition-associated genes. Using KRAB-mediated CRISPR-dCas9 interference directed against FGF8, we could show that FGF8 is essential for the SP8-mediated aggressive tumor behavior. Treatment of HB cell lines with the pan SP family inhibitor mithramycin A resulted in a significant inhibition of their clonogenic growth. In summary, we identified SP8 and FGF8 as key players in aggressive traits of HB and propose SP8 inhibiting drugs as a new effective treatment strategy especially for metastatic tumors.

7.
BMC Biol ; 18(1): 41, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312271

RESUMEN

BACKGROUND: How novel traits integrate within ancient trait complexes without compromising ancestral functions is a foundational challenge in evo-devo. The insect head represents an ancient body region patterned by a deeply conserved developmental genetic network, yet at the same time constitutes a hot spot for morphological innovation. However, the mechanisms that facilitate the repeated emergence, integration, and diversification of morphological novelties within this body region are virtually unknown. Using horned Onthophagus beetles, we investigated the mechanisms that instruct the development of the dorsal adult head and the formation and integration of head horns, one of the most elaborate classes of secondary sexual weapons in the animal kingdom. RESULTS: Using region-specific RNAseq and gene knockdowns, we (i) show that the head is compartmentalized along multiple axes, (ii) identify striking parallels between morphological and transcriptional complexity across regions, yet (iii) fail to identify a horn-forming gene module. Instead, (iv) our results support that sex-biased regulation of a shared transcriptional repertoire underpins the formation of horned and hornless heads. Furthermore, (v) we show that embryonic head patterning genes frequently maintain expression within the dorsal head well into late post-embryonic development, thereby possibly facilitating the repurposing of such genes within novel developmental contexts. Lastly, (vi) we identify novel functions for several genes including three embryonic head patterning genes in the integration of both posterior and anterior head horns. CONCLUSIONS: Our results illuminate how the adult insect head is patterned and suggest mechanisms capable of integrating novel traits within ancient trait complexes in a sex- and species-specific manner. More generally, our work underscores how significant morphological innovation in developmental evolution need not require the recruitment of new genes, pathways, or gene networks but instead may be scaffolded by pre-existing developmental machinery.


Asunto(s)
Evolución Biológica , Escarabajos/anatomía & histología , Genes de Insecto , Animales , Tipificación del Cuerpo/genética , Escarabajos/embriología , Escarabajos/genética , Embrión no Mamífero/embriología , Femenino , Cabeza/anatomía & histología , Larva/genética , Masculino , Especificidad de la Especie
8.
Am J Med Genet A ; 179(11): 2170-2177, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31353810

RESUMEN

Here we report on a Brazilian child who presented semilobar holoprosencephaly, frontonasal encephaloceles and bilateral cleft lip and palate. Malformations also included agenesis of the corpus callosum, abnormal cortical gyres, dilation of the aqueduct, bilateral endolymphatic sac, bilateral cystic cocci-vestibular malformation, and a cribriform defect. The 3D TC craniofacial images showed abnormal frontonasal transition region, with a bone bifurcation, and partial agenesis of nasal bone. The trunk and upper and lower limbs were normal. To our knowledge, this rare association of holoprocensephaly with frontonaso-orbital encephaloceles without limb anomalies has never been reported before. Karyotype was normal. SNP-array showed no copy-number alterations but revealed 25% of regions of homozygosity (ROH) with normal copy number, indicating a high coefficient of inbreeding, which significantly increases the risk for an autosomal recessive disorder. Whole exome sequencing analysis did not reveal any pathogenic or likely pathogenic variants. We discuss the possible influence of two variants of uncertain significance found within the patient's ROHs. First, a missense p.(Gly394Ser) in PCSK9, a gene involved in the regulation of plasma low-density lipoprotein cholesterol. Second, an inframe duplication p.(Ala75_Ala81dup) in SP8, a zinc-finger transcription factor that regulates signaling centers during craniofacial development. Further studies and/or the identification of other patients with a similar phenotype will help elucidate the genetic etiology of this complex case.


Asunto(s)
Labio Leporino/diagnóstico , Labio Leporino/genética , Fisura del Paladar/diagnóstico , Fisura del Paladar/genética , Encefalocele/diagnóstico , Encefalocele/genética , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Mapeo Cromosómico , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Síndrome , Tomografía Computarizada por Rayos X , Secuenciación del Exoma
9.
Front Mol Neurosci ; 12: 75, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001083

RESUMEN

Cortical interneurons are derived from the subpallium and reach the developing cortex through long tangential migration. Mature cortical interneurons are characterized by remarkable morphological, molecular, and functional diversity. The calcium-binding protein parvalbumin (PV) and neuropeptide somatostatin (SST) identify most medial ganglionic eminence (MGE)-derived cortical interneurons. Previously, we demonstrated that Sp9 plays a curial transcriptional role in regulating MGE-derived cortical interneuron development. Here, we show that SP8 protein is weekly expressed in the MGE mantle zone of wild type mice but upregulated in Sp9 null mutants. PV+ cortical interneurons were severely lost in Sp8/Sp9 double conditional knockouts due to defects in tangential migration compared with Sp9 single mutants, suggesting that Sp8/9 coordinately regulate PV+ cortical interneuron development. We provide evidence that Sp8/Sp9 activity is required for normal MGE-derived cortical interneuron migration, at least in part, through regulating the expression of EphA3, Ppp2r2c, and Rasgef1b.

10.
Cereb Cortex ; 29(11): 4831-4849, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30796806

RESUMEN

Generation of olfactory bulb (OB) interneurons requires neural stem/progenitor cell specification, proliferation, differentiation, and young interneuron migration and maturation. Here, we show that the homeobox transcription factors Dlx1/2 are central and essential components in the transcriptional code for generating OB interneurons. In Dlx1/2 constitutive null mutants, the differentiation of GSX2+ and ASCL1+ neural stem/progenitor cells in the dorsal lateral ganglionic eminence is blocked, resulting in a failure of OB interneuron generation. In Dlx1/2 conditional mutants (hGFAP-Cre; Dlx1/2F/- mice), GSX2+ and ASCL1+ neural stem/progenitor cells in the postnatal subventricular zone also fail to differentiate into OB interneurons. In contrast, overexpression of Dlx1&2 in embryonic mouse cortex led to ectopic production of OB-like interneurons that expressed Gad1, Sp8, Sp9, Arx, Pbx3, Etv1, Tshz1, and Prokr2. Pax6 mutants generate cortical ectopia with OB-like interneurons, but do not do so in compound Pax6; Dlx1/2 mutants. We propose that DLX1/2 promote OB interneuron development mainly through activating the expression of Sp8/9, which further promote Tshz1 and Prokr2 expression. Based on this study, in combination with earlier ones, we propose a transcriptional network for the process of OB interneuron development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Interneuronas/metabolismo , Células-Madre Neurales/metabolismo , Bulbo Olfatorio/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neocórtex/embriología , Neocórtex/metabolismo , Bulbo Olfatorio/embriología
11.
Development ; 145(14)2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29967281

RESUMEN

Dopamine receptor DRD1-expressing medium spiny neurons (D1 MSNs) and dopamine receptor DRD2-expressing medium spiny neurons (D2 MSNs) are the principal projection neurons in the striatum, which is divided into dorsal striatum (caudate nucleus and putamen) and ventral striatum (nucleus accumbens and olfactory tubercle). Progenitors of these neurons arise in the lateral ganglionic eminence (LGE). Using conditional deletion, we show that mice lacking the transcription factor genes Sp8 and Sp9 lose virtually all D2 MSNs as a result of reduced neurogenesis in the LGE, whereas D1 MSNs are largely unaffected. SP8 and SP9 together drive expression of the transcription factor Six3 in a spatially restricted domain of the LGE subventricular zone. Conditional deletion of Six3 also prevents the formation of most D2 MSNs, phenocopying the Sp8/9 mutants. Finally, ChIP-Seq reveals that SP9 directly binds to the promoter and a putative enhancer of Six3 Thus, this study defines components of a transcription pathway in a regionally restricted LGE progenitor domain that selectively drives the generation of D2 MSNs.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Ojo/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Neuronas/citología , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Factores de Transcripción/genética , Proteína Homeobox SIX3
12.
Dev Genes Evol ; 228(3-4): 163-170, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29855703

RESUMEN

RNA interference (RNAi)-mediated knockdown serves as an effective technique for the functional analysis of developmental genes that is well established in many organisms. In the beetle Tribolium castaneum, double-stranded RNA is applied by simple injection and distributes systemically within the tissue. Thus, systematic testing for RNAi specificity and efficiency is easily possible in this organism. Generally, the use of non-overlapping dsRNA fragments yielding qualitatively identical phenotypes is the method of choice to verify target-specific knockdown effects. Here, we show that UTR-specific RNAi results in different effects regarding quality, severity and penetrance when compared to RNAi fragments directed at the coding region. Furthermore, when using 3'UTR-specific dsRNA, we first describe the Distal-lessRNAi antenna-to-leg transformation phenotype in the Tribolium larva, which has only been observed in the adult beetle and Drosophila so far. In addition, we unexpectedly observed sterility effects caused by 3'UTR-specific knockdown of the Tribolium-Sp8 orthologue that is not seen when dsRNA targeted a sequence within the coding-region or the 5'UTR that itself led to early embryonic lethality. We conclude that targeting UTR sequences by region-specific RNAi can reveal unexpected new aspects of gene function applicable in basic research and crop protection.


Asunto(s)
Regiones no Traducidas 3' , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Insectos/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Tribolium/genética , Animales , Proteínas de Homeodominio/genética , Proteínas de Insectos/genética , Fenotipo , Interferencia de ARN , ARN Bicatenario , Factores de Transcripción/genética , Tribolium/fisiología
13.
Front Neurosci ; 12: 119, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29599703

RESUMEN

Multiple signals control the balance between proliferation and differentiation of neural progenitor cells during corticogenesis. A key point of this regulation is the control of G1 phase length, which is regulated by the Cyclin/Cdks complexes. Using genome-wide chromatin immunoprecipitation assay and mouse genetics, we have explored the transcriptional regulation of Cyclin D1 (Ccnd1) during the early developmental stages of the mouse cerebral cortex. We found evidence that SP8 binds to the Ccnd1 locus on exon regions. In vitro experiments show SP8 binding activity on Ccnd1 gene 3'-end, and point to a putative role for SP8 in modulating PAX6-mediated repression of Ccnd1 along the dorso-ventral axis of the developing pallium, creating a medialLow-lateralHigh gradient of neuronal differentiation. Activation of Ccnd1 through the promoter/5'-end of the gene does not depend on SP8, but on ßcatenin (CTNNB1). Importantly, alteration of the Sp8 level of expression in vivo affects Ccnd1 expression during early corticogenesis. Our results indicate that Ccnd1 regulation is the result of multiple signals and that SP8 is a player in this regulation, revealing an unexpected and potentially novel mechanism of transcriptional activation.

14.
Development ; 144(19): 3521-3532, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28974641

RESUMEN

Placodes are discrete thickenings of the vertebrate cranial ectoderm that generate morpho-functionally distinct structures, such as the adenohypophysis, olfactory epithelium and lens. All placodes arise from a horseshoe-shaped preplacodal ectoderm in which the precursors of individual placodes are intermingled. However, fate-map studies indicated that cells positioned at the preplacodal midline give rise to only the adenohypophyseal placode, suggesting a unique organization of these precursors within the preplacode. To test this possibility, we combined embryological and molecular approaches in chick embryos to show that, at gastrula stage, adenohypophyseal precursors are clustered in the median preplacodal ectoderm, largely segregated from those of the adjacent olfactory placode. Median precursors are elongated, densely packed and, at neurula stage, express a molecular signature that distinguishes them from the remaining preplacodal cells. Olfactory placode precursors and midline neural cells can replace ablated adenohypophyseal precursors up to head-fold stage, although with a more plastic organization. We thus propose that adenohypophyseal placode precursors are unique within the preplacodal ectoderm possibly because they originate the only single placode and the only one with an endocrine character.


Asunto(s)
Ectodermo/embriología , Adenohipófisis/citología , Adenohipófisis/embriología , Células Madre/citología , Animales , Tipificación del Cuerpo , Forma de la Célula , Embrión de Pollo , Ectodermo/citología , Cristalino/citología , Cristalino/embriología , Mucosa Olfatoria/citología , Mucosa Olfatoria/embriología
15.
Cereb Cortex ; 27(10): 4971-4987, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922831

RESUMEN

In human telencephalon at 8-12 postconceptional weeks, ribonucleic acid quantitative sequencing and immunohistochemistry revealed cortical chicken ovalbumin upstream promotor-transcription factor 1 (COUP-TFI) expression in a high ventro-posterior to low anterior gradient except for raised immunoreactivity in the anterior ventral pallium. Unlike in mouse, COUP-TFI and SP8 were extensively co-expressed in dorsal sensory neocortex and dorsal hippocampus whereas COUPTFI/COUPTFII co-expression defined ventral temporal cortex and ventral hippocampus. In the ganglionic eminences (GEs) COUP-TFI immunoreactivity demarcated the proliferative zones of caudal GE (CGE), dorsal medial GE (MGE), MGE/lateral GE (LGE) boundary, and ventral LGE whereas COUP-TFII was limited to ventral CGE and the MGE/LGE boundary. Co-labeling with gamma amino butyric acidergic interneuron markers revealed that COUP-TFI was expressed in subpopulations of either MGE-derived (SOX6+) or CGE-derived (calretinin+/SP8+) interneurons. COUP-TFII was mainly confined to CGE-derived interneurons. Twice as many GAD67+ cortical cells co-labeled for COUP-TFI than for COUP-TFII. A fifth of COUP-TFI cells also co-expressed COUP-TFII, and cells expressing either transcription factor followed posterior or anterio-lateral pathways into the cortex, therefore, a segregation of migration pathways according to COUP-TF expression as proposed in mouse was not observed. In cultures differentiated from isolated human cortical progenitors, many cells expressed either COUP-TF and 30% also co-expressed GABA, however no cells expressed NKX2.1. This suggests interneurons could be generated intracortically from progenitors expressing either COUP-TF.


Asunto(s)
Factor de Transcripción COUP II/metabolismo , Factor de Transcripción COUP I/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Telencéfalo/crecimiento & desarrollo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/metabolismo , Humanos , Inmunohistoquímica/métodos , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo
16.
Development ; 143(10): 1753-65, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27034423

RESUMEN

GABAergic interneurons are highly heterogeneous and originate in the subpallium mainly from the medial (MGE) and caudal (CGE) ganglionic eminences according to a precise temporal sequence. MGE-derived cells disperse dorsally and migrate towards all regions of the cortex, but little is known about how CGE-derived cells reach their targets during development. Here, we unravel the existence of two novel CGE caudo-rostral migratory streams, one located laterally (LMS) and the other one more medially (MMS), that, together with the well-known caudal migratory stream (CMS), contribute to populate the neocortex, hippocampus and amygdala. These paths appear in a precise temporal sequence and express a distinct combination of transcription factors, such as SP8, PROX1, COUP-TFI and COUP-TFII. By inactivating COUP-TFI in developing interneurons, the lateral and medial streams are perturbed and expression of SP8 and COUP-TFII affected. As a consequence, adult mutant neocortices have laminar-specific alterations of distinct cortical interneuron subtypes. Overall, we propose that the existence of spatially and temporally regulated migratory paths in the subpallium contributes to the laminar distribution and specification of distinct interneuron subpopulations in the adult brain.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Movimiento Celular , Interneuronas/citología , Eminencia Media/citología , Envejecimiento/metabolismo , Animales , Recuento de Células , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Interneuronas/metabolismo , Ratones Transgénicos , Modelos Biológicos , Mutación/genética , Factores de Tiempo , Factores de Transcripción/metabolismo
17.
Proc Natl Acad Sci U S A ; 113(13): 3545-50, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26969725

RESUMEN

The ancient, highly conserved, Wnt signaling pathway regulates cell fate in all metazoans. We have previously shown that combined null mutations of the specificity protein (Sp) 1/Klf-like zinc-finger transcription factors Sp5 and Sp8 (i.e., Sp5/8) result in an embryonic phenotype identical to that observed when core components of the Wnt/ß-catenin pathway are mutated; however, their role in Wnt signal transduction is unknown. Here, we show in mouse embryos and differentiating embryonic stem cells that Sp5/8 are gene-specific transcriptional coactivators in the Wnt/ß-catenin pathway. Sp5/8 bind directly to GC boxes in Wnt target gene enhancers and to adjacent, or distally positioned, chromatin-bound T-cell factor (Tcf) 1/lymphoid enhancer factor (Lef) 1 to facilitate recruitment of ß-catenin to target gene enhancers. Because Sp5 is itself directly activated by Wnt signals, we propose that Sp5 is a Wnt/ß-catenin pathway-specific transcript on factor that functions in a feed-forward loop to robustly activate select Wnt target genes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Animales , Proteínas de Unión al ADN/genética , Desarrollo Embrionario/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Femenino , Factor Nuclear 1-alfa del Hepatocito/genética , Factor de Unión 1 al Potenciador Linfoide/genética , Ratones , Ratones Transgénicos , Embarazo , Factores de Transcripción/genética , Activación Transcripcional , beta Catenina/genética
18.
Zhongguo Zhen Jiu ; 36(8): 812-814, 2016 Aug 12.
Artículo en Chino | MEDLINE | ID: mdl-29231565

RESUMEN

OBJECTIVE: To observe the difference for type 2 diabetes between acupoint injection of human placenta tissue fluid combined with oral administration of metformin and simple metformin. METHODS: Sixty patients with type 2 diabetes were randomly assigned into a medication group and an injection group,30 cases in each one. In the oral medication group,metformin hydrochloride enteric-coated tablets was applied orally for continuous eight weeks,0.25 g a time,twice a day. In the injection group,based on the same oral administration,human placenta tissue fluid was injected into Diji(SP 8) and Yishu(EX-B 5) for two courses(four weeks as one course),once every other day and three times a week. Fast blood glucose(FBG),postprandial blood glucose(PBG),glycosylated hemoglobin(HbAlc) and clinical effect were observed in the two groups before and after treatment. RESULTS: Compared with those before treatment,FBG,PBG and HbAlc were decreased in the two groups after treatment (all P<0.05),with more apparent change in the injection group(all P<0.05). The total effective rate of the injection group was 90.0%(27/30),which was obviously better than 63.3%(19/30) of the medication group (P<0.05). CONCLUSIONS: Acupoint injection of human placenta tissue fluid combined with metformin hydrochloride enteric-coated tablets for type 2 diabetes can better lower blood glucose than simple metformin hydrochloride enteric-coated tablets.


Asunto(s)
Puntos de Acupuntura , Líquidos Corporales , Diabetes Mellitus Tipo 2/terapia , Hipoglucemiantes/administración & dosificación , Metformina/administración & dosificación , Placenta , Administración Oral , Glucemia/análisis , Terapia Combinada/métodos , Femenino , Humanos , Embarazo , Comprimidos Recubiertos
19.
Elife ; 32014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25285448

RESUMEN

Intermediate neural progenitor cells (INPs) need to avoid differentiation and cell cycle exit while maintaining restricted developmental potential, but mechanisms preventing differentiation and cell cycle exit of INPs are not well understood. In this study, we report that the Drosophila homolog of mammalian Sp8 transcription factor Buttonhead (Btd) prevents premature differentiation and cell cycle exit of INPs in Drosophila larval type II neuroblast (NB) lineages. We show that the loss of Btd leads to elimination of mature INPs due to premature differentiation of INPs into terminally dividing ganglion mother cells. We provide evidence to demonstrate that Btd prevents the premature differentiation by suppressing the expression of the homeodomain protein Prospero in immature INPs. We further show that Btd functions cooperatively with the Ets transcription factor Pointed P1 to promote the generation of INPs. Thus, our work reveals a critical mechanism that prevents premature differentiation and cell cycle exit of Drosophila INPs.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Ciclo Celular/genética , Diferenciación Celular , Linaje de la Célula/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Mutación , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética
20.
J Neurosci ; 34(33): 10906-23, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25122892

RESUMEN

In adult rodent and monkey brains, newly born neurons in the subventricular zone (SVZ) in the wall of the lateral ventricle migrate into the olfactory bulb (OB) via the rostral migratory stream (RMS). A recent study reported that interneurons are constantly generating in the adult human striatum from the SVZ. In contrast, by taking advantage of the continuous expression of Sp8 from the neuroblast stage through differentiation into mature interneurons, we found that the adult human SVZ does not generate new interneurons for the striatum. In the adult human SVZ and RMS, very few neuroblasts were observed, and most of them expressed the transcription factor Sp8. Neuroblasts in the adult rhesus monkey SVZ-RMS-OB pathway also expressed Sp8. In addition, we observed that Sp8 was expressed by most adult human and monkey OB interneurons. However, very few Sp8+ cells were in the adult human striatum. This suggests that neuroblasts in the adult human SVZ and RMS are likely destined for the OB, but not for the striatum. BrdU-labeling results also revealed few if any newly born neurons in the adult rhesus monkey striatum. Finally, on the basis of transcription factor expression, we provide strong evidence that the vast majority of interneurons in the human and monkey striatum are generated from the medial ganglionic eminence during embryonic developmental stages, as they are in rodents. We conclude that, although a small number of neuroblasts exist in the adult human SVZ, they do not migrate into the striatum and become mature striatal interneurons.


Asunto(s)
Cuerpo Estriado/citología , Interneuronas/citología , Ventrículos Laterales/citología , Eminencia Media/citología , Neurogénesis/fisiología , Animales , Linaje de la Célula/fisiología , Movimiento Celular/fisiología , Femenino , Humanos , Macaca mulatta , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...