Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39396924

RESUMEN

Dichromatic color vision is mediated by two cone visual pigments in many eutherian mammals. After re-entry into the sea, early cetaceans lost their violet-sensitive visual pigment (SWS1) independently in the baleen and toothed whale ancestors, and thus obtained only monochromatic cone vision. Subsequently, losses of the middle/long wavelength-sensitive (M/LWS) pigment have also been reported in multiple whale lineages, leading to rhodopsin (RH1)-mediated rod monochromatic vision. To further elucidate the phenotypic evolution of whale visual pigments, we assessed the spectral tuning of both M/LWS and RH1 from representative cetacean taxa. Interestingly, although the coding sequences for M/LWS are intact in both the pygmy right whale and the Baird's beaked whale, no spectral sensitivity was detected in vitro. Pseudogenization of other cone vision-related genes is observed in the pygmy right whale, suggesting a loss of cone-mediated vision. After ancestral sequence reconstructions, ancient M/LWS pigments from cetacean ancestors were resurrected and functionally measured. Spectral tuning of M/LWS from the baleen whale ancestor shows that it is green-sensitive, with a 40 nm shift in sensitivity to a shorter wavelength. For the ancestor of sperm whales, although no spectral sensitivity could be recorded for its M/LWS pigment, a substantial sensitivity shift (20-30 nm) to a shorter wavelength may have also occurred before its functional inactivation. The parallel phenotypic evolution of M/LWS to shorter wavelength-sensitivity might be visual adaptations in whales allowing more frequent deep-sea activities, although additional ecological differentiations may have led to their subsequent losses.

2.
Ecol Evol ; 14(4): e11186, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628922

RESUMEN

Damselfishes (Pomacentridae) are one of the most behaviourally diverse, colourful and species-rich reef fish families. One remarkable characteristic of damselfishes is their communication in ultraviolet (UV) light. Not only are they sensitive to UV, they are also prone to have UV-reflective colours and patterns enabling social signalling. Using more than 50 species, we aimed to uncover the evolutionary history of UV colour and UV vision in damselfishes. All damselfishes had UV-transmitting lenses, expressed the UV-sensitive SWS1 opsin gene, and most displayed UV-reflective patterns and colours. We find evidence for several tuning events across the radiation, and while SWS1 gene duplications are generally very rare among teleosts, our phylogenetic reconstructions uncovered two independent duplication events: one close to the base of the most species-rich clade in the subfamily Pomacentrinae, and one in a single Chromis species. Using amino acid comparisons, we found that known spectral tuning sites were altered several times in parallel across the damselfish radiation (through sequence change and duplication followed by sequence change), causing repeated shifts in peak spectral absorbance of around 10 nm. Pomacentrinae damselfishes expressed either one or both copies of SWS1, likely to further finetune UV-signal detection and differentiation. This highly advanced and modified UV vision among damselfishes, in particular the duplication of SWS1 among Pomacentrinae, might be seen as a key evolutionary innovation that facilitated the evolution of the exuberant variety of UV-reflectance traits and the diversification of this coral reef fish lineage.

3.
Protein Sci ; 33(1): e4851, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38038877

RESUMEN

Flavins such as flavin mononucleotide or flavin adenine dinucleotide are bound by diverse proteins, yet have very similar spectra when in the oxidized state. Recently, we developed new variants of flavin-binding protein CagFbFP exhibiting notable blue (Q148V) or red (I52V A85Q) shifts of fluorescence emission maxima. Here, we use time-resolved and low-temperature spectroscopy to show that whereas the chromophore environment is static in Q148V, an additional protein-flavin hydrogen bond is formed upon photoexcitation in the I52V A85Q variant. Consequently, in Q148V, excitation, emission, and phosphorescence spectra are shifted, whereas in I52V A85Q, excitation and low-temperature phosphorescence spectra are relatively unchanged, while emission spectrum is altered. We also determine the x-ray structures of the two variants to reveal the flavin environment and complement the spectroscopy data. Our findings illustrate two distinct color-tuning mechanisms of flavin-binding proteins and could be helpful for the engineering of new variants with improved optical properties.


Asunto(s)
Flavina-Adenina Dinucleótido , Flavoproteínas , Flavoproteínas/genética , Flavoproteínas/química , Temperatura , Análisis Espectral , Flavina-Adenina Dinucleótido/química , Mononucleótido de Flavina/química
4.
J Mol Evol ; 91(6): 806-818, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37940679

RESUMEN

Investigations of the molecular mechanisms behind detection of short, and particularly ultraviolet, wavelengths in arthropods have relied heavily on studies from insects due to the relative ease of heterologous expression of modified opsin proteins in model organisms like Drosophila. However, species outside of the Insecta can provide information on mechanisms for spectral tuning as well as the evolutionary history of pancrustacean visual pigments. Here we investigate the basis of spectral tuning in malacostracan short wavelength sensitive (SWS) opsins using phylogenetic comparative methods. Tuning sites that may be responsible for the difference between ultraviolet (UV) and violet visual pigment absorbance in the Malacostraca are identified, and the idea that an amino acid polymorphism at a single site is responsible for this shift is shown to be unlikely. Instead, we suggest that this change in absorbance is accomplished through multiple amino acid substitutions. On the basis of our findings, we conducted further surveys to identify spectral tuning mechanisms in the order Stomatopoda where duplication of UV opsins has occurred. Ancestral state reconstructions of stomatopod opsins from two main clades provide insight into the amino acid changes that lead to differing absorption by the visual pigments they form, and likely contribute the basis for the wide array of UV spectral sensitivities found in this order.


Asunto(s)
Evolución Molecular , Opsinas , Animales , Filogenia , Opsinas/genética , Opsinas/metabolismo , Pigmentos Retinianos , Insectos , Aminoácidos/genética
5.
Mol Biol Evol ; 40(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37791477

RESUMEN

Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.


Asunto(s)
Opsinas , Venenos , Animales , Opsinas/genética , Filogenia , Opsinas de Bastones/genética
6.
FEBS J ; 290(20): 4999-5015, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37488966

RESUMEN

Cyanobacteriochrome (CBCR) photoreceptors are distantly related to the canonical red/far-red reversible phytochrome photoreceptors. In the case of the CBCRs, only the GAF domain is required for chromophore incorporation and photoconversion. The GAF domains of CBCR are highly diversified into many lineages to sense various colors of light. These CBCR GAF domains are divided into two types: those possessing only the canonical Cys residue and those with both canonical and second Cys residues. The canonical Cys residue stably ligates to the chromophore in both cases. The second Cys residue mostly shows reversible adduct formation with the chromophore during photoconversion for spectral tuning. In this study, we focused on the CBCR GAF domain AnPixJg2_BV4, which possesses only the canonical Cys residue. AnPixJg2_BV4 covalently ligates to the biliverdin (BV) chromophore and shows far-red/orange reversible photoconversion. Because BV is a mammalian intrinsic chromophore, BV-binding molecules are advantageous for in vivo optogenetic and bioimaging tool development. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis and serendipitously obtained a unique variant molecule that showed far-red/blue reversible photoconversion, in which the Cys residue was introduced near the chromophore. This introduced Cys residue functioned as the second Cys residue that reversibly ligated with the chromophore. Because the position of the introduced Cys residue is distinct from the known second Cys residues, the variant molecule obtained in this study would expand our knowledge about the spectral tuning mechanism of CBCRs and contribute to tool development.


Asunto(s)
Cianobacterias , Fotorreceptores Microbianos , Fitocromo , Biliverdina/metabolismo , Cianobacterias/metabolismo , Cisteína/metabolismo , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Fitocromo/química , Proteínas Bacterianas/metabolismo
7.
Nano Lett ; 23(15): 7100-7106, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37471584

RESUMEN

Photon avalanching nanoparticles (ANPs) exhibit extremely nonlinear upconverted emission valuable for subdiffraction imaging, nanoscale sensing, and optical computing. Avalanching has been demonstrated with Tm3+-, Pr3+-, or Nd3+-doped nanocrystals, but their emission is limited to a few wavelengths and materials. Here, we utilize Gd3+-assisted energy migration to tune the emission wavelengths of Tm3+-sensitized ANPs and generate highly nonlinear emission from Eu3+, Tb3+, Ho3+, and Er3+ ions. The upconversion intensities of these spectrally discrete ANPs scale with nonlinearity factor s = 10-17 under 1064 nm excitation at power densities as low as 7 kW cm-2. This strategy for imprinting avalanche behavior on remote emitters can be extended to fluorophores adjacent to ANPs, as we demonstrate with CdS/CdSe/CdS core/shell/shell quantum dots. ANPs with rationally designed energy transfer networks provide the means to transform conventional linear emitters into a highly nonlinear ones, expanding the use of photon avalanching in biological, chemical, and photonic applications.

8.
Proc Natl Acad Sci U S A ; 120(13): e2220728120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943890

RESUMEN

Spectral tuning of visual pigments often facilitates adaptation to new environments, and it is intriguing to study the visual ecology of pelagic sharks with secondarily expanded habitats. The whale shark, which dives into the deep sea of nearly 2,000 meters besides near-surface filter feeding, was previously shown to possess the 'blue-shifted' rhodopsin (RHO), which is a signature of deep-sea adaptation. In this study, our spectroscopy of recombinant whale shark RHO mutants revealed that this blue shift is caused dominantly by an unprecedented spectral tuning site 94. In humans, the mutation at the site causes congenital stationary night blindness (CSNB) by reducing the thermal stability of RHO. Similarly, the RHO of deep-diving whale shark has reduced thermal stability, which was experimentally shown to be achieved by site 178 and 94. RHOs having the natural substitution at site 94 are also found in some Antarctic fishes, suggesting that the blue shift by the substitution at the CSNB site associated with the reduction in thermal stability might be allowed in cold-water deep-sea habitats.


Asunto(s)
Rodopsina , Tiburones , Humanos , Animales , Rodopsina/genética , Mutación , Tiburones/genética , Regiones Antárticas
9.
Mol Biol Evol ; 40(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36721951

RESUMEN

The evolutionary history of visual genes in Coleoptera differs from other well-studied insect orders, such as Lepidoptera and Diptera, as beetles have lost the widely conserved short-wavelength (SW) insect opsin gene that typically underpins sensitivity to blue light (∼440 nm). Duplications of the ancestral ultraviolet (UV) and long-wavelength (LW) opsins have occurred in many beetle lineages and have been proposed as an evolutionary route for expanded spectral sensitivity. The jewel beetles (Buprestidae) are a highly ecologically diverse and colorful family of beetles that use color cues for mate and host detection. In addition, there is evidence that buprestids have complex spectral sensitivity with up to five photoreceptor classes. Previous work suggested that opsin duplication and subfunctionalization of the two ancestral buprestid opsins, UV and LW, has expanded sensitivity to different regions of the light spectrum, but this has not yet been tested. We show that both duplications are likely unique to Buprestidae or the wider superfamily of Buprestoidea. To directly test photopigment sensitivity, we expressed buprestid opsins from two Chrysochroa species in Drosophila melanogaster and functionally characterized each photopigment type as UV- (356-357 nm), blue- (431-442 nm), green- (507-509 nm), and orange-sensitive (572-584 nm). As these novel opsin duplicates result in significantly shifted spectral sensitivities from the ancestral copies, we explored spectral tuning at four candidate sites using site-directed mutagenesis. This is the first study to directly test opsin spectral tuning mechanisms in the diverse and specious beetles.


Asunto(s)
Escarabajos , Opsinas , Animales , Opsinas/genética , Escarabajos/genética , Drosophila melanogaster/genética , Opsinas de Bastones/genética , Insectos , Filogenia
10.
Dev Biol ; 493: 40-66, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370769

RESUMEN

Many animals depend on the sense of vision for survival. In eumetazoans, vision requires specialized, light-sensitive cells called photoreceptors. Light reaches the photoreceptors and triggers the excitation of light-detecting proteins called opsins. Here, we describe the story of visual opsin evolution from the ancestral bilaterian to the extant vertebrate lineages. We explain the mechanisms determining color vision of extant vertebrates, focusing on opsin gene losses, duplications, and the expression regulation of vertebrate opsins. We describe the sequence variation both within and between species that has tweaked the sensitivities of opsin proteins towards different wavelengths of light. We provide an extensive resource of wavelength sensitivities and mutations that have diverged light sensitivity in many vertebrate species and predict how these mutations were accumulated in each lineage based on parsimony. We suggest possible natural and sexual selection mechanisms underlying these spectral differences. Understanding how molecular changes allow for functional adaptation of animals to different environments is a major goal in the field, and therefore identifying mutations affecting vision and their relationship to photic selection pressures is imperative. The goal of this review is to provide a comprehensive overview of our current understanding of opsin evolution in vertebrates.


Asunto(s)
Evolución Molecular , Opsinas , Animales , Opsinas/genética , Opsinas/metabolismo , Filogenia , Vertebrados/genética , Vertebrados/metabolismo , Opsinas de Bastones/genética
11.
Sci Total Environ ; 857(Pt 3): 159451, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36252663

RESUMEN

Artificial light at night, often referred to as 'light pollution', is a global environmental problem that threatens many nocturnal organisms. One such species is the European common glow-worm (Lampyris noctiluca), in which reproduction relies on the ability of sedentary bioluminescent females to attract flying males to mate. Previous studies show that broad-spectrum white artificial light interferes with mate attraction in this beetle. However, much less is known about wavelength-specific effects. In this study, we experimentally investigate how the peak wavelength (color) of artificial light affects glow-worm mate attraction success in the field by using dummy females that trap males landing to mate. Each dummy was illuminated from above by either a blue (peak wavelength: 452 nm), white (449 nm), yellow (575 nm), or red (625 nm) LED lighting, or light switched off in the control. We estimated mate attraction success as both the probability of attracting at least one male and the number of males attracted. In both cases, mate attraction success depended on the peak wavelength of the artificial light, with short wavelengths (blue and white) decreasing it more than long wavelengths (yellow and red). Hence, adjusting the spectrum of artificial light can be an effective measure for mitigating the negative effects of light pollution on glow-worm reproduction.


Asunto(s)
Escarabajos , Luciérnagas , Animales , Femenino , Masculino , Reproducción , Color
12.
Proc Natl Acad Sci U S A ; 119(27): e2118145119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759662

RESUMEN

Cetaceans are fully aquatic mammals that descended from terrestrial ancestors, an iconic evolutionary transition characterized by adaptations for underwater foraging via breath-hold diving. Although the evolutionary history of this specialized behavior is challenging to reconstruct, coevolving sensory systems may offer valuable clues. The dim-light visual pigment, rhodopsin, which initiates phototransduction in the rod photoreceptors of the eye, has provided insight into the visual ecology of depth in several aquatic vertebrate lineages. Here, we use ancestral sequence reconstruction and protein resurrection experiments to quantify light-activation metrics in rhodopsin pigments from ancestors bracketing the cetacean terrestrial-to-aquatic transition. By comparing multiple reconstruction methods on a broadly sampled cetartiodactyl species tree, we generated highly robust ancestral sequence estimates. Our experimental results provide direct support for a blue-shift in spectral sensitivity along the branch separating cetaceans from terrestrial relatives. This blue-shift was 14 nm, resulting in a deep-sea signature (λmax = 486 nm) similar to many mesopelagic-dwelling fish. We also discovered that the decay rates of light-activated rhodopsin increased in ancestral cetaceans, which may indicate an accelerated dark adaptation response typical of deeper-diving mammals. Because slow decay rates are thought to help sequester cytotoxic photoproducts, this surprising result could reflect an ecological trade-off between rod photoprotection and dark adaptation. Taken together, these ancestral shifts in rhodopsin function suggest that some of the first fully aquatic cetaceans could dive into the mesopelagic zone (>200 m). Moreover, our reconstructions indicate that this behavior arose before the divergence of toothed and baleen whales.


Asunto(s)
Buceo , Visión Nocturna , Rodopsina , Ballenas , Animales , Evolución Biológica , Fósiles , Rodopsina/metabolismo , Ballenas/genética , Ballenas/fisiología
13.
Oecologia ; 199(2): 487-497, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35650413

RESUMEN

The expansion of human activity into natural habitats often results in the introduction of artificial light at night, which can disrupt local ecosystems. Recent advances in LED technology have enabled spectral tuning of artificial light sources, which could in theory limit their impact on vulnerable taxa. To date, however, experimental comparisons of ecologically friendly candidate colors have often considered only one type of behavioral impact, sometimes on only single species. Resulting recommendations cannot be broadly implemented if their consequences for other local taxa are unknown. Working at a popular firefly ecotourism site, we exposed the insect community to artificial illumination of three colors (blue, broad-spectrum amber, red) and measured flight-to-light behavior as well as the courtship flash behavior of male Photinus carolinus fireflies. Firefly courtship activity was greatest under blue and red lights, while the most flying insects were attracted to blue and broad-spectrum amber lights. Thus, while impacts of spectrally tuned artificial light varied across taxa, our results suggest that red light, rather than amber light, is least disruptive to insects overall, and therefore more generally insect friendly.


Asunto(s)
Ámbar , Ecosistema , Animales , Análisis Costo-Beneficio , Luciérnagas , Humanos , Insectos , Luz , Masculino
14.
Vision Res ; 196: 108046, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35381423

RESUMEN

If the primary function of avian-dispersed fruit coloration were the maximization of detectability, then the commonest avian-dispersed fruit colors should be the ones most detectable to birds. We tested this prediction by photographing 63 fruit species primarily dispersed by birds, in situ in Sweden and Australia, with a multispectral camera closely mimicking the predominant spectral sensitivities of birds, including both UVS and VS (peak ultraviolet sensitivity ∼370 and 409 nm respectively) visual systems. Fruits were classified into nine distinct color categories based on different patterns of cone excitations, and were named by combining human color names with fruits' UV reflective properties. For example, a bluish-UV fruit would be a fruit that excited the avian UV cone the most, but that also strongly excited the blue cone. Color and achromatic contrasts were calculated between each fruit color and common background objects, and compared to the relative abundance of the different fruit colors. Although red was highly detectable and the commonest color, the second and third commonest colors, purplish-UV and bluish-UV (often termed "black" by humans), were the least detectable. Although these latter two colors were more detectable to UVS than to VS birds, they were the least detectable to both visual systems. Rare fruit colors, such as UVish-purple, pink, and orange, were highly detectable to both visual systems. The lack of correlation between fruit color abundance and detectability suggests that the maximization of detectability has not been the primary driving force behind the evolution of fruit color.


Asunto(s)
Aves , Frutas , Animales , Color , Humanos , Células Fotorreceptoras Retinianas Conos
15.
Chemistry ; 28(28): e202200139, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35307890

RESUMEN

Proteorhodopsin (PR) is a photoactive proton pump found in marine bacteria. There are two phenotypes of PR exhibiting an environmental adaptation to the ocean's depth which tunes their maximum absorption: blue-absorbing proteorhodopsin (BPR) and green-absorbing proteorhodopsin (GPR). This blue/green color-shift is controlled by a glutamine to leucine substitution at position 105 which accounts for a 20 nm shift. Typically, spectral tuning in rhodopsins is rationalized by the external point charge model but the Q105L mutation is charge neutral. To study this tuning mechanism, we employed the hybrid QM/MM method with sampling from molecular dynamics. Our results reveal that the positive partial charge of glutamine near the C14 -C15 bond of retinal shortens the effective conjugation length of the chromophore compared to the leucine residue. The derived mechanism can be applied to explain the color regulation in other retinal proteins and can serve as a guideline for rational design of spectral shifts.


Asunto(s)
Glutamina , Rodopsinas Microbianas , Glutamina/química , Leucina/química , Rodopsina/química , Rodopsina/genética , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Electricidad Estática
16.
Mol Ecol ; 31(10): 2882-2897, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35302684

RESUMEN

The visual sensory system is essential for animals to perceive their environment and is thus under strong selection. In aquatic environments, light intensity and spectrum differ primarily along a depth gradient. Rhodopsin (RH1) is the only opsin responsible for dim-light vision in vertebrates and has been shown to evolve in response to the respective light conditions, including along a water depth gradient in fishes. In this study, we examined the diversity and sequence evolution of RH1 in virtually the entire adaptive radiation of cichlid fishes in Lake Tanganyika, focusing on adaptations to the environmental light with respect to depth. We show that Tanganyikan cichlid genomes contain a single copy of RH1. The 76 variable amino acid sites detected in RH1 across the radiation were not uniformly distributed along the protein sequence, and 31 of these variable sites show signals of positive selection. Moreover, the amino acid substitutions at 15 positively selected sites appeared to be depth-related, including three key tuning sites that directly mediate shifts in the peak spectral sensitivity, one site involved in protein stability and 11 sites that may be functionally important on the basis of their physicochemical properties. Among the strongest candidate sites for deep-water adaptations are two known key tuning sites (positions 292 and 299) and three newly identified variable sites (37, 104 and 290). Our study, which is the first comprehensive analysis of RH1 evolution in a massive adaptive radiation of cichlid fishes, provides novel insights into the evolution of RH1 in a freshwater environment.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Evolución Molecular , Peces , Lagos , Filogenia , Rodopsina/genética , Tanzanía , Agua
17.
Ecol Evol ; 12(2): e8595, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35154658

RESUMEN

Among major vertebrate groups, anurans (frogs and toads) are understudied with regard to their visual systems, and little is known about variation among species that differ in ecology. We sampled North American anurans representing diverse evolutionary and life histories that likely possess visual systems adapted to meet different ecological needs. Using standard molecular techniques, visual opsin genes, which encode the protein component of visual pigments, were obtained from anuran retinas. Additionally, we extracted the visual opsins from publicly available genome and transcriptome assemblies, further increasing the phylogenetic and ecological diversity of our dataset to 33 species in total. We found that anurans consistently express four visual opsin genes (RH1, LWS, SWS1, and SWS2, but not RH2) even though reported photoreceptor complements vary widely among species. The proteins encoded by these genes showed considerable sequence variation among species, including at sites known to shift the spectral sensitivity of visual pigments in other vertebrates and had conserved substitutions that may be related to dim-light adaptation. Using molecular evolutionary analyses of selection (dN/dS) we found significant evidence for positive selection at a subset of sites in the dim-light rod opsin gene RH1 and the long wavelength sensitive cone opsin LWS. The function of sites inferred to be under positive selection are largely unknown, but a few are likely to affect spectral sensitivity and other visual pigment functions based on proximity to previously identified sites in other vertebrates. We also found the first evidence of visual opsin duplication in an amphibian with the duplication of the LWS gene in the African bullfrog, which had distinct LWS copies on the sex chromosomes suggesting the possibility of sex-specific visual adaptation. Taken together, our results indicate that ecological factors, such as habitat and life history, as well as behavior, may be driving changes to anuran visual systems.

18.
FEBS Lett ; 596(6): 784-795, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090057

RESUMEN

Microbial rhodopsins are light-activated proteins that contain seven transmembrane alpha-helices. Spectral tuning in microbial rhodopsins is a useful optogenetic tool. In this study, we report a new site that controls spectral tuning. In the proteorhodopsins ISR34 and ISR36, a single amino-acid substitution at Cys189 caused an absorption maximum shift of 44 nm, indicating spectral tuning at a specific site. Comparison of single amino acid substitutions was conducted using photochemical and photobiological approaches. The maximum absorption for red-shift was measured for mutations at positions 189 and 105 in ISR34, both residues being equally important. Structural changes resulting from amino acid substitutions are related to pKa values, pumping activity and spectral tuning.


Asunto(s)
Aminoácidos , Rodopsinas Microbianas , Secuencia de Aminoácidos , Aminoácidos/genética , Color , Rodopsina/química , Rodopsinas Microbianas/metabolismo
19.
J Evol Biol ; 35(2): 333-346, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34689368

RESUMEN

Adaptive evolution of vision-related genes has been frequently observed in the process of invasion of new environments in a wide range of animal taxa. The typical example is that of the molecular evolution of rhodopsin associated with habitat changes in aquatic animals. However, few studies have investigated rhodopsin evolution during adaptive radiation across various habitats. In the present study, we examined the link between molecular evolutionary patterns in the rhodopsin gene and macroscopic habitat changes in Gymnogobius species (Gobiidae), which have adaptively radiated to diverse aquatic habitats including the sea, brackish waters, rivers and lakes. Analysis of amino acid substitutions in rhodopsin in the phylogenetic framework revealed convergent substitutions in 4-5 amino acids in three groups (four species), including two spectral tuning amino acid sites known to change rhodopsin's absorption wavelength. Positive selection was detected in the basal branches of each of these three groups, suggesting adaptive molecular convergence of rhodopsin. However, no significant correlation was observed between amino acid substitutions and the species' habitat changes, suggesting molecular adaptation to some unidentified micro-ecological environments. Taken together, these results emphasize the importance of considering not only macroscopic habitats but also micro-ecological environments when elucidating the driving forces of adaptive evolution of the visual system.


Asunto(s)
Rodopsina , Selección Genética , Animales , Ecosistema , Evolución Molecular , Lagos , Filogenia , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo
20.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34884976

RESUMEN

Azobenzene/tetraethyl ammonium photochromic ligands (ATPLs) are photoactive compounds with a large variety of photopharmacological applications such as nociception control or vision restoration. Absorption band maximum and lifetime of the less stable isomer are important characteristics that determine the applicability of ATPLs. Substituents allow to adjust these characteristics in a range limited by the azobenzene/tetraethyl ammonium scaffold. The aim of the current study is to find the scope and limitations for the design of ATPLs with specific spectral and kinetic properties by introducing para substituents with different electronic effects. To perform this task we synthesized ATPLs with various electron acceptor and electron donor functional groups and studied their spectral and kinetic properties using flash photolysis and conventional spectroscopy techniques as well as quantum chemical modeling. As a result, we obtained diagrams that describe correlations between spectral and kinetic properties of ATPLs (absorption maxima of E and Z isomers of ATPLs, the thermal lifetime of their Z form) and both the electronic effect of substituents described by Hammett constants and structural parameters obtained from quantum chemical calculations. The provided results can be used for the design of ATPLs with properties that are optimal for photopharmacological applications.


Asunto(s)
Compuestos Azo/química , Bloqueadores de los Canales de Potasio/química , Teoría Cuántica , Tetraetilamonio/química , Termodinámica , Fenómenos Químicos , Cinética , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...