Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.970
Filtrar
1.
Biosens Bioelectron ; 263: 116630, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39102773

RESUMEN

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is facilitated by its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme 2 (hACE2) receptor. This critical interaction facilitates viral entry and is a primary target for therapeutic intervention against COVID-19. However, it is difficult to fully optimize viral infection using existing protein-protein interaction methods. Herein, we introduce a nano-luciferase binary technology (NanoBiT)-based pseudoviral sensor designed to stimulate the dynamics of viral infection in both living cells and animals. Infection progression can be dynamically visualized via a rapid increase in luminescence within 3 h using an in vivo imaging system (IVIS). Inhibition of viral infection by baicalein and baicalin was evaluated using a NanoBiT-based pseudoviral sensor. These results indicate that the inhibitory efficacy of baicalein was strengthened by targeting the spike protein, whereas baicalin targeted the hACE2 protein. Additionally, under optimized conditions, baicalein and baicalin provided a synergistic combination to inhibit pseudoviral infection. Live bioluminescence imaging was used to evaluate the in vivo effects of baicalein and baicalin treatment on LgBiT-hACE2 mice infected with the BA.2-SmBiT spike pseudovirus. This innovative bioluminescent system functions as a sensitive and early-stage quantitative viral transduction in vitro and in vivo. This platform provides novel opportunities for studying the molecular biology of animal models.

2.
J Vet Diagn Invest ; : 10406387241265955, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108146

RESUMEN

From 2014-2023, infectious bronchitis virus (IBV) was detected in 6,589 samples from Canada, and partial nucleotide (nt) sequences of the IBV spike protein (S) gene were determined for 1,678 samples. Based on their S gene nt sequence identities and origin, Canadian IBVs could be classified into 4 groups: 1) 50.3% were variant viruses related to strains described in the United States; 2) 45.6% were vaccine-like viruses; 3) 2.1% were Eurasian viruses; 4) 2.0% were Canadian variants. Outbreaks with IBVs related to strains CAL1734/04, 4/91, and DMV/1639/11 were often associated with more severe disease in all chicken commodity groups. With the emergence of numerous IBV strains, the severity of infection and number of affected flocks increased. Outbreaks with various IBV strains overlapped in their emergence, peaked, and regressed, but the introduction of DMV/1639/11 has resulted in a continuous field challenge since its first detection in 2015.

3.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125601

RESUMEN

In late 2019, the emergence of a novel coronavirus led to its identification as SARS-CoV-2, precipitating the onset of the COVID-19 pandemic. Many experimental and computational studies were performed on SARS-CoV-2 to understand its behavior and patterns. In this research, Molecular Dynamic (MD) simulation is utilized to compare the behaviors of SARS-CoV-2 and its Variants of Concern (VOC)-Alpha, Beta, Gamma, Delta, and Omicron-with the hACE2 protein. Protein structures from the Protein Data Bank (PDB) were aligned and trimmed for consistency using Chimera, focusing on the receptor-binding domain (RBD) responsible for ACE2 interaction. MD simulations were performed using Visual Molecular Dynamics (VMD) and Nanoscale Molecular Dynamics (NAMD2), and salt bridges and hydrogen bond data were extracted from the results of these simulations. The data extracted from the last 5 ns of the 10 ns simulations were visualized, providing insights into the comparative stability of each variant's interaction with ACE2. Moreover, electrostatics and hydrophobic protein surfaces were calculated, visualized, and analyzed. Our comprehensive computational results are helpful for drug discovery and future vaccine designs as they provide information regarding the vital amino acids in protein-protein interactions (PPIs). Our analysis reveals that the Original and Omicron variants are the two most structurally similar proteins. The Gamma variant forms the strongest interaction with hACE2 through hydrogen bonds, while Alpha and Delta form the most stable salt bridges; the Omicron is dominated by positive potential in the binding site, which makes it easy to attract the hACE2 receptor; meanwhile, the Original, Beta, Delta, and Omicron variants show varying levels of interaction stability through both hydrogen bonds and salt bridges, indicating that targeted therapeutic agents can disrupt these critical interactions to prevent SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Humanos , COVID-19/virología , COVID-19/metabolismo , Enlace de Hidrógeno , Sitios de Unión
4.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125749

RESUMEN

Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients. The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV), which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody reactivity against peptides representing epitopes in the spike protein identified ten sequences in the NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2 infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant increase in viral load was measured compared to that of the controls, with no detectable neutralization or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from spike proteins was observed for the pre-pandemic sera. This study highlights the importance of identifying specific epitopes generated during the humoral response to a pathogenic infection to understand the potential interplay of previous and future infections on diseases and their impact on vaccinations and immunodiagnostics.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Reacciones Cruzadas , Virus del Dengue , Epítopos de Linfocito B , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/inmunología , Humanos , Reacciones Cruzadas/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Epítopos de Linfocito B/inmunología , Virus del Dengue/inmunología , Dengue/inmunología , Dengue/virología , Acrecentamiento Dependiente de Anticuerpo/inmunología , Pandemias , Epítopos Inmunodominantes/inmunología
5.
Cureus ; 16(6): e61650, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38966433

RESUMEN

BACKGROUND: The SARS-CoV-2 virus interacts with host cells through the S1 domain of its spike protein. This study measures the IgG immune response to this domain in COVID-19 patients from Kerala, India, and explores its association with various health factors. METHODS: A cohort of 258 COVID-19 patients was analyzed for IgG antibodies targeting the S1 spike protein domain. The temporal pattern of the IgG response and its correlation with hospitalization needs, intensive care, and pre-existing conditions such as diabetes, hypertension, and coronary artery disease were assessed. RESULTS: A significant IgG response (76.4%) was detected, indicating robust immune activation post-infection. The IgG levels peaked between two to four and four to eight weeks post-infection, with a notable increase at 12 weeks, hinting at possible secondary exposure or an immune memory response. No correlation was found between IgG levels and the presence of diabetes mellitus, hypertension, or coronary artery disease. However, higher IgG responses correlated with the severity of the infection, as seen in patients requiring hospitalization or intensive care. CONCLUSIONS: The IgG response to the S1 spike protein domain serves as a potential marker of immune activation in COVID-19. It reflects the body's defense mechanism against the virus and may predict disease severity and outcomes. The findings suggest that IgG levels could be indicative of the viral load, inflammatory response, and possibly the likelihood of protection against reinfection.

6.
Front Cell Infect Microbiol ; 14: 1406091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988812

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has incurred devastating human and economic losses. Vaccination remains the most effective approach for controlling the COVID-19 pandemic. Nonetheless, the sustained evolution of SARS-CoV-2 variants has provoked concerns among the scientific community regarding the development of next-generation COVID-19 vaccines. Among these, given their safety, immunogenicity, and flexibility to display varied and native epitopes, virus-like particle (VLP)-based vaccines represent one of the most promising next-generation vaccines. In this review, we summarize the advantages and characteristics of VLP platforms, strategies for antigen display, and current clinical trial progress of SARS-CoV-2 vaccines based on VLP platforms. Importantly, the experience and lessons learned from the development of SARS-CoV-2 VLP vaccines provide insights into the development of strategies based on VLP vaccines to prevent future coronavirus pandemics and other epidemics.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunas de Partículas Similares a Virus , Humanos , Vacunas contra la COVID-19/inmunología , Vacunas de Partículas Similares a Virus/inmunología , COVID-19/prevención & control , COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Animales , Ensayos Clínicos como Asunto
7.
Artículo en Inglés | MEDLINE | ID: mdl-38981976

RESUMEN

Platelet hyperreactivity is one of the crucial causes of coagulative disorders in patients with COVID-19. Few studies have indicated that integrin αIIbß3 may be a potential target for spike protein binding to platelets. This study aims to investigate whether spike protein interacts with platelet integrin αIIbß3 and upregulates outside-in signaling to potentiate platelet aggregation. In this study, we found that spike protein significantly potentiated platelet aggregation induced by different agonists and platelet spreading in vitro. Mechanism studies revealed that spike protein upregulated the outside-in signaling, such as increased thrombin-induced phosphorylation of ß3, c-Src. Moreover, using tirofiban to inhibit spike protein binding to αIIbß3 or using PP2 to block outside-in signaling, we found that the potentiating effect of spike protein on platelet aggregation was abolished. These results demonstrate that SARS-CoV-2 spike protein directly enhances platelet aggregation via integrin αIIbß3 outside-in signaling, and suggest a potential target for platelet hyperreactivity in patients with COVID-19. HIGHLIGHTS: • Spike protein potentiates platelet aggregation and upregulates αIIbß3 outside-in signaling. • Spike protein interacts with integrin αIIbß3 to potentiate platelet aggregation. • Blocking outside-in signaling abolishes the effect of spike protein on platelets.

8.
Biomed J ; : 100766, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004185

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts between the host and virus and govern induction, resulting in multiorgan impacts. Its pathophysiology involves the followings: 1) the angiotensin-converting enzyme (ACE2) and Toll-like receptor (TLR) pathways: 2) the neuropilin (NRP) pathway: 3) the spike protein pathway. Therefore, it is necessary to block the pathological course with modulating innate lymphoid cells against diverse corona variants in the future.

9.
Med ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39025066

RESUMEN

BACKGROUND: ABO1020 is a monovalent COVID-19 mRNA vaccine. Results from a phase 1 trial showed ABO1020 was safe and well tolerated, and phase 3 trials to evaluate the efficacy, immunogenicity, and safety of ABO1020 in healthy adults are urgently needed. METHODS: We conducted a multinational, randomized, placebo-controlled, double-blind, phase 3 trial among healthy adults (ClinicalTrials.gov: NCT05636319). Participants were randomly assigned (1:1) to receive either 2 doses of ABO1020 (15 µg per dose) or placebo, administered 28 days apart. The primary endpoint was the vaccine efficacy in preventing symptomatic COVID-19 cases that occurred at least 14 days post-full vaccination. The second endpoint included the neutralizing antibody titers against Omicron BA.5 and XBB and safety assessments. FINDINGS: A total of 14,138 participants were randomly assigned to receive either vaccine or placebo (7,069 participants in each group). A total of 366 symptomatic COVID-19 cases were confirmed 14 days after the second dose among 93 participants in the ABO1020 group and 273 participants in the placebo group, yielding a vaccine efficacy of 66.18% (95% confidence interval: 57.21-73.27, p < 0.0001). A single dose or two doses of ABO1020 elicited potent neutralizing antibodies against both BA.5 and XBB.1.5. The safety profile of ABO1020 was characterized by transient, mild-to-moderate fever, pain at the injection site, and headache. CONCLUSION: ABO1020 was well tolerated and conferred 66.18% protection against symptomatic COVID-19 in adults. FUNDING: National Key Research and Development Project of China, Innovation Fund for Medical Sciences from the CAMS, National Natural Science Foundation of China.

10.
ChemistryOpen ; : e202300198, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031747

RESUMEN

In the present work, phytoconstituents from Citrus limon are computationally tested against SARS-CoV-2 target protein such as Mpro - (5R82.pdb), Spike - (6YZ5.pdb) &RdRp - (7BTF.pdb) for COVID-19. Docking was done by glide model, QikProp was performed by in silico ADMET screening & Prime MM-GB/SA modules were used to define binding energy. When compared with approved COVID-19 drugs such as Remdesivir, Ritonavir, Lopinavir, and Hydroxychloroquine, plant-based constituents such as Quercetin, Rutoside, Naringin, Eriocitrin, and Hesperidin. bind with significant G-scores to the active SARS-CoV-2 place. The constituents Rutoside and Eriocitrin were studied in each MD simulation in 100 ns against 3 proteins 5R82.pdb, 6YZ5.pdb and 7BTF.pdb.We performed an assay with significant natural compounds from contacts and in silico results (Rutin, Eriocitrin, Naringin, Hesperidin) using 3CL protease assay kit (B.11529 Omicron variant). This kit contained 3CL inhibitor GC376 as Control. The IC50 value of the test compound was found to be Rutin -17.50 µM, Eriocitrin-37.91 µM, Naringin-39.58 µM, Hesperidine-140.20 µM, the standard inhibitory concentration of GC376 was 38.64 µM. The phytoconstituents showed important interactions with SARS-CoV-2 targets, and potential modifications could be beneficial for future development.

11.
Front Immunol ; 15: 1418678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021574

RESUMEN

Background: Knowledge about SARS-CoV-2 antibody dynamics in neonates and direct comparisons with maternal antibody responses are not well established. This study aimed to characterize and directly compare the maternal and infant antibody response in a national birth cohort from the Faroe Islands. Methods: The levels of immunoglobulins (Ig) targeting the receptor binding domain (RBD) of the spike protein and the nucleocapsid protein (N protein) of SARS-CoV-2 were investigated in maternal blood and umbilical cord blood from neonates. The study included 537 neonates and 565 mothers from the Faroe Islands, and follow-up samples were collected 12 months after birth. Multiple linear regression models were used to assess associations of maternal parameters with maternal and neonatal Ig levels and pregnancy outcomes. Results: The finding showed that neonates acquired varying levels of SARS-CoV-2 antibodies through transplacental transfer, and the levels were significantly influenced by the mother's vaccination and infection status. The study also found that maternal vaccination and the presence of SARS-CoV-2 antibodies targeting spike RBD were associated with gestational age and APGAR scores. Furthermore, the anti-RBD and -N protein-specific antibody response dynamics during 12 months after birth exhibited differences between mothers and children. RBD and N protein responses were maintained at follow-up in the mother's cohort, while only the N protein response was maintained at follow-up in the children's cohort. Conclusion: In conclusion, SARS-CoV-2-specific immune responses in newborns rely on maternal immunity, while the persistence of SARS-CoV-2-specific Igs appears to be differently regulated between mothers and children. The study provides new insights into the dynamics of SARS-CoV-2-specific immune responses in newborns and underscores the nuanced relationship between maternal factors and neonatal humoral responses.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Femenino , SARS-CoV-2/inmunología , COVID-19/inmunología , Embarazo , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Recién Nacido , Proteínas de la Nucleocápside de Coronavirus/inmunología , Adulto , Inmunidad Materno-Adquirida , Lactante , Masculino , Estudios de Cohortes , Fosfoproteínas/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Sangre Fetal/inmunología
12.
Viruses ; 16(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39066312

RESUMEN

The global effort to combat the COVID-19 pandemic faces ongoing uncertainty with the emergence of Variants of Concern featuring numerous mutations on the Spike (S) protein. In particular, the Omicron Variant is distinguished by 32 mutations, including 10 within its receptor-binding domain (RBD). These mutations significantly impact viral infectivity and the efficacy of vaccines and antibodies currently in use for therapeutic purposes. In our study, we employed structure-based computational saturation mutagenesis approaches to predict the effects of Omicron missense mutations on RBD stability and binding affinity, comparing them to the original Wuhan-Hu-1 strain. Our results predict that mutations such as G431W and P507W induce the most substantial destabilizations in the Wuhan-Hu-1-S/Omicron-S RBD. Notably, we postulate that mutations in the Omicron-S exhibit a higher percentage of enhancing binding affinity compared to Wuhan-S. We found that the mutations at residue positions G447, Y449, F456, F486, and S496 led to significant changes in binding affinity. In summary, our findings may shed light on the widespread prevalence of Omicron mutations in human populations. The Omicron mutations that potentially enhance their affinity for human receptors may facilitate increased viral binding and internalization in infected cells, thereby enhancing infectivity. This informs the development of new neutralizing antibodies capable of targeting Omicron's immune-evading mutations, potentially aiding in the ongoing battle against the COVID-19 pandemic.


Asunto(s)
COVID-19 , Mutación Missense , Unión Proteica , Estabilidad Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Humanos , COVID-19/virología , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , Anticuerpos Antivirales/inmunología
13.
Artículo en Inglés | MEDLINE | ID: mdl-39066577

RESUMEN

Protein O-glycosylation, also known as mucin-type O-glycosylation, is one of the most abundant glycosylation in mammalian cells. It is initially catalyzed by a family of polypeptide GalNAc transferases (ppGalNAc-Ts). The trimeric spike protein (S) of SARS-CoV-2 is highly glycosylated and facilitates the virus's entry into host cells and membrane fusion of the virus. However, the functions and relationship between host ppGalNAc-Ts and O-glycosylation on the S protein remain unclear. Herein, we identify 15 O-glycosites and 10 distinct O-glycan structures on the S protein using an HCD-product-dependent triggered ETD mass spectrometric analysis. We observe that the isoenzyme T6 of ppGalNAc-Ts (ppGalNAc-T6) exhibits high O-glycosylation activity for the S protein, as demonstrated by an on-chip catalytic assay. Overexpression of ppGalNAc-T6 in HEK293 cells significantly enhances the O-glycosylation level of the S protein, not only by adding new O-glycosites but also by increasing O-glycan heterogeneity. Molecular dynamics simulations reveal that O-glycosylation on the protomer-interface regions, modified by ppGalNAc-T6, potentially stabilizes the trimeric S protein structure by establishing hydrogen bonds and non-polar interactions between adjacent protomers. Furthermore, mutation frequency analysis indicates that most O-glycosites of the S protein are conserved during the evolution of SARS-CoV-2 variants. Taken together, our finding demonstrate that host O-glycosyltransferases dynamically regulate the O-glycosylation of the S protein, which may influence the trimeric structural stability of the protein. This work provides structural insights into the functional role of specific host O-glycosyltransferases in regulating the O-glycosylation of viral envelope proteins.

14.
J Cell Biochem ; : e30627, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38971996

RESUMEN

Autophagy and lysosomal pathways are involved in the cell entry of SARS-CoV-2 virus. To infect the host cell, the spike protein of SARS-CoV-2 binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2). To allow the fusion of the viral envelope with the host cell membrane, the spike protein has to be cleaved. One possible mechanism is the endocytosis of the SARS-CoV-2-ACE2 complex and subsequent cleavage of the spike protein, mainly by the lysosomal protease cathepsin L. However, detailed molecular and dynamic insights into the role of cathepsin L in viral cell entry remain elusive. To address this, HeLa cells and iPSC-derived alveolarspheres were treated with recombinant SARS-CoV-2 spike protein, and the changes in mRNA and protein levels of cathepsins L, B, and D were monitored. Additionally, we studied the effect of cathepsin L deficiency on spike protein internalization and investigated the influence of the spike protein on cathepsin L promoters in vitro. Furthermore, we analyzed variants in the genes coding for cathepsin L, B, D, and ACE2 possibly associated with disease progression using data from Regeneron's COVID Results Browser and our own cohort of 173 patients with COVID-19, exhibiting a variant of ACE2 showing significant association with COVID-19 disease progression. Our in vitro studies revealed a significant increase in cathepsin L mRNA and protein levels following exposure to the SARS-CoV-2 spike protein in HeLa cells, accompanied by elevated mRNA levels of cathepsin B and D in alveolarspheres. Moreover, an increase in cathepsin L promoter activity was detected in vitro upon spike protein treatment. Notably, the knockout of cathepsin L resulted in reduced internalization of the spike protein. The study highlights the importance of cathepsin L and lysosomal proteases in the SARS-CoV-2 spike protein internalization and suggests the potential of lysosomal proteases as possible therapeutic targets against COVID-19 and other viral infections.

15.
Biosensors (Basel) ; 14(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39056608

RESUMEN

The demand for accurate and efficient immunoassays calls for the development of precise, high-throughput analysis methods. This paper introduces a novel approach utilizing a weak measurement interface sensor for immunoassays, offering a solution for high throughput analysis. Weak measurement is a precise quantum measurement method that amplifies the weak value of a system in the weak interaction through appropriate pre- and post-selection states. To facilitate the simultaneous analysis of multiple samples, we have developed a chip with six flow channels capable of conducting six immunoassays concurrently. We can perform real-time immunoassay to determine the binding characteristics of spike protein and antibody through real-time analysis of the flow channel images and calculating the relative intensity. The proposed method boasts a simple structure, eliminating the need for intricate nano processes. The spike protein concentration and relative intensity curve were fitted using the Log-Log fitting regression equation, and R2 was 0.91. Utilizing a pre-transformation approach to account for slight variations in detection sensitivity across different flow channels, the present method achieves an impressive limit of detection(LOD) of 0.85 ng/mL for the SARS-CoV-2 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, with a system standard deviation of 5.61. Furthermore, this method has been successfully verified for monitoring molecular-specific binding processes and differentiating binding capacities.


Asunto(s)
Técnicas Biosensibles , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/análisis , Inmunoensayo/métodos , Humanos , COVID-19/diagnóstico , COVID-19/virología , Límite de Detección , Ensayos Analíticos de Alto Rendimiento
16.
Int J Nanomedicine ; 19: 6931-6943, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005960

RESUMEN

Purpose: Over the past three years, extensive research has been dedicated to understanding and combating COVID-19. Targeting the interaction between the SARS-CoV-2 Spike protein and the ACE2 receptor has emerged as a promising therapeutic strategy against SARS-CoV-2. This study aimed to develop ACE2-coated virus-like particles (ACE2-VLPs), which can be utilized to prevent viral entry into host cells and efficiently neutralize the virus. Methods: Virus-like particles were generated through the utilization of a packaging plasmid in conjunction with a plasmid containing the ACE2 envelope sequence. Subsequently, ACE2-VLPs and ACE2-EVs were purified via ultracentrifugation. The quantification of VLPs was validated through multiple methods, including Nanosight 3000, TEM imaging, and Western blot analysis. Various packaging systems were explored to optimize the ACE2-VLP configuration for enhanced neutralization capabilities. The evaluation of neutralization effectiveness was conducted using pseudoviruses bearing different spike protein variants. Furthermore, the study assessed the neutralization potential against the Omicron BA.1 variant in Vero E6 cells. Results: ACE2-VLPs showed a high neutralization capacity even at low doses and demonstrated superior efficacy in in vitro pseudoviral assays compared to extracellular vesicles carrying ACE2. ACE2-VLPs remained stable under various environmental temperatures and effectively blocked all tested variants of concern in vitro. Notably, they exhibited significant neutralization against Omicron BA.1 variant in Vero E6 cells. Given their superior efficacy compared to extracellular vesicles and proven success against live virus, ACE2-VLPs stand out as crucial candidates for treating SARS-CoV-2 infections. Conclusion: This novel therapeutic approach of coating VLPs with receptor particles provides a proof-of-concept for designing effective neutralization strategies for other viral diseases in the future.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Células Vero , Chlorocebus aethiops , Humanos , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Anticuerpos Neutralizantes/farmacología , Células HEK293 , Internalización del Virus/efectos de los fármacos
17.
Vaccine X ; 19: 100518, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39040888

RESUMEN

Background: Our investigation focused whether infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) before or after receiving the mRNA COVID-19 vaccine can increase immune protection. And we also investigated relationship of infection acquired. Methods: Three shots of the mRNA coronavirus disease 2019 (COVID-19) vaccine BNT162b2 were administered to 736 healthcare workers at Tokyo Shinagawa Hospital. Serum samples were collected before the first shot (P1), at one month (P2), and at six months (P3) after the second shot and at one month after the third shot (P4). The presence of infection was assessed using IgG against the nucleocapsid (IgG (N) and RBD in the spike protein of SARS-CoV-2. We defined infection before P2 as natural infection (NI) and infection between P2 and P3 as breakthrough infection (BI) and compared susceptibility to further infection between the NI (-) and NI (+) groups and between BI (-) and BI (+) groups. Events in 485 participants who had a complete dataset of IgG (N) and IgG (RBD) from P1 to P4 were analyzed. Results: The presence of SARS-CoV-2 infection before P2 were examined by examining the titers of IgG (N)P1, IgG (N) P2, and IgG (RBD) P1 that exceeded the cutoff values. Consequently, 35 participants (7.22 %) were categorized into the NI (+) group, whereas 450 (92.8 %) were categorized into the NI (-) group. Between P2 and P3, the NI (-) group showed a higher rate of SARS-CoV-2 infection than the NI (+) group; however, there was no significant difference in the infection rate between P3 and P4. The infection rate was significantly lower in the BI (+) group than in the BI (-) group. Pre-primary vaccination infection significantly increased IgG (RBD) levels between P1 and P3. Post-primary vaccination infection significantly increased IgG (RBD) levels between P3 and P4. Conclusions: Infection with SARS-CoV-2 before or after receiving the mRNA COVID-19 vaccine can increase immune protection; however, the duration of this effect may be limited.

18.
Iran Biomed J ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-39044638

RESUMEN

Background: Since the beginning of the SARS-CoV-2 pandemic, there have been mutations caused by new SARS-CoV-2 variants, such as Alpha, Beta, Gamma, Delta, and Omicron, recognized as the VOC worldwide. These variants can affect vaccine efficacy, disease control, and treatment effectiveness. The present study aimed to evaluate the levels of total and neutralizing antibodies produced by PastoCoAd vaccine candidates against the VOC strains at different time points. Methods: Two vaccine candidates were employed against SARS-CoV-2 using adenoviral vectors: prime only (a mixture of rAd5-S and rAd5 RBD-N) and heterologous prime-boost (rAd5-S/SOBERANA vaccine). The immunogenicity of these vaccine candidates was assessed in mouse, rabbit, and hamster models using ELISA assay and virus neutralization antibody test. Results: The immunogenicity results indicated a significant increase in both total and neutralizing antibodies titers in the groups receiving the vaccine candidates at various time points compared to the control group (p < 0.05). The results also showed that the PastoCoAd vaccine candidates Ad5 S & RBD-N and Ad5 S/SOBERANA could neutralize the VOC strains in the animal models. Conclusion: The ability of vaccine candidate to neutralize the VOC strains in animal models by generating neutralizing antibodies at different time points may be attributed to the use of the platform based on the Adenoviral vector, the N proteins in the Ad5 S & RBD-N vaccine candidate, and the SOBERANA Plus booster in the Ad5 S/SOBERANA vaccine candidate.

20.
Med Chem ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39041278

RESUMEN

BACKGROUND: In the search for anti-COVID-19 therapy, 1,2,3,4,6-pentakis-O-galloyl-ßD-glucopyranoside, a natural polyphenolic compound isolated from many traditional medicinal herbs, has been reported as an RBD-ACE2 binding inhibitor and as a broad-spectrum anticoronaviral inhibitor targeting the main protease and RNA-dependent RNA polymerase of SARSCoV-2. To facilitate the structure-activity relationship studies of 1,2,3,4,6-pentakis-O-galloyl-ß-Dglucopyranoside, we describe its chemical synthesis and characterization, as well as its activity towards the SARS-CoV-2 spike interaction with host ACE2 receptor. METHODS: 1,2,3,4,6-Pentakis-O-galloyl-ß-D-glucopyranoside was synthesized in two quantitative steps from 3,4,5-tribenzyloxybenzoic acid and ß-D-glucopyranoside: DCC-mediated esterification and palladium-catalyzed per-debenzylation. The synthesized molecule was evaluated using a SARS-CoV-2 spike trimer (S1 + S2) ACE2 inhibitor screening colorimetric assay kit, SARS-CoV2 spike S1 RBD ACE2 inhibitor screening colorimetric assay kit, and a cellular neutralization assay using the Spike (SARS-CoV-2) Pseudotyped Lentivirus, ACE2-HEK293 recombinant cell line. RESULTS: The chemically synthesized product blocked the binding of the spike trimer of SARSCoV-2 to the human ACE2 receptor with IC50=22±2 µM. It also blocked ACE2:spike RBD binding with IC50=27±3 µM. Importantly, it inhibited the infectivity of SARS2-CoV2-Spike pseudotyped lentivirus on the ACE2 HEK293 cell line with IC50=20±2 µM. CONCLUSION: Overall, the chemically synthesized 1,2,3,4,6-pentakis-O-galloyl-ß-D-glucopyranoside represents a lead molecule to develop anti-SARS-CoV-2 therapies that block the initial stage of the viral infection by blocking the virus entry to the host cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...