Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Future Microbiol ; 19(13): 1177-1184, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39105632

RESUMEN

Infectious diseases lead to significant morbidity and mortality. Often, resolution of the acute stage of the disease leads to microbial persistence, resulting in chronic debilitating disease. Management of persistent infections frequently requires lifelong therapy with antimicrobial agents. These infections could be chronic viral infections like HIV, hepatitis B or chronic bacterial persistent infections like prosthetic joint infections caused by multi-drug resistant organisms. Bacteriophages have been designed specifically to target recalcitrant bacterial infections, such as prosthetic joint infections with varying success. In this review, we describe the historic evolution of scenarios and risks associated with innovative therapy using infectious agents to treat other persistent infections.


[Box: see text].


Asunto(s)
Infección Persistente , Humanos , Terapia de Fagos/métodos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/terapia , Infecciones Bacterianas/microbiología , Antiinfecciosos/uso terapéutico , Bacteriófagos/fisiología , Virosis/tratamiento farmacológico , Virosis/terapia , Virosis/virología
2.
Malar J ; 23(1): 251, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164764

RESUMEN

BACKGROUND: Plasmodium falciparum oocysts undergo growth and maturation in a unique setting within the mosquito midgut, firmly situated between the epithelium and the basal lamina. This location exposes them to specific nutrient exchange and metabolic processes while in direct contact with the mosquito haemolymph. The limited availability of in vitro culture systems for growth of the various P. falciparum mosquito stages hampers study of their biology and impedes progress in combatting malaria. METHODS: An artificial in vitro environment was established to mimic this distinctive setting, transitioning from a 2D culture system to a 3D model capable of generating fully mature oocysts that give rise to in vitro sporozoites. RESULTS: A two-dimensional (2D) chamber slide was employed along with an extracellular matrix composed of type IV collagen, entactin, and gamma laminin. This matrix facilitated development of the optimal medium composition for cultivating mature P. falciparum oocysts in vitro. However, the limitations of this 2D culture system in replicating the in vivo oocyst environment prompted a refinement of the approach by optimizing a three-dimensional (3D) alginate matrix culture system. This new system offered improved attachment, structural support, and nutrient exchange for the developing oocysts, leading to their maturation and the generation of sporozoites. CONCLUSIONS: This technique enables the in vitro growth of P. falciparum oocysts and sporozoites.


Asunto(s)
Oocistos , Plasmodium falciparum , Plasmodium falciparum/crecimiento & desarrollo , Oocistos/crecimiento & desarrollo , Animales , Alginatos , Medios de Cultivo/química
3.
J Eukaryot Microbiol ; : e13044, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962865

RESUMEN

Coccidiosis is one of the most prevalent diseases found in local rabbits (Oryctolagus cuniculus), which is caused by the Eimeria. The study aimed to more reliably identify Eimeria species (Eimeria magna) infecting Local Rabbits in Alkarg City, Saudi Arabia, based the method on the molecular properties and morphological and molecular biological techniques. Sub-spheroidal oocysts measuring 21-27 × 12-16 (24 × 14.4) µm (20 n) and with a length/width (L/W) ratio of 0.9-1.1 (1.0) were identified by microscopic analysis of a fecal sample. Oocysts feature a bi-layered wall that is 1.0-1.2 (1.1) µm thick. About two-thirds of the wall's thickness is made up of a smooth outer layer. A polar granule is present, but neither a micropyle nor an oocyst residuum is present. The ovoidal sporozoites measure 15-18 × 8-11 (16.5 × 9.5) µm, have an L/W ratio of 1.6-1.8 (1.7), and take up around 21% of the oocyst's total surface. The mean size of the sub-Stieda body is 1.4 × 2.3 µm, while the average size of the Stieda body is 0.9 × 1.8 µm. The para-Stieda body is lacking. Sporocyst residuum appears membrane-bound and has an uneven form made up of several granules. With two refractile bodies below the striations and pronounced striations at the more pointed end, sporozoites are vermiform, measuring an average of 11.6 × 4.0 µm. The results of the sequencing for the 18S rDNA gene confirmed the species of Eimeria parasites found in the host (rabbits). The current parasite species is closely related to the previously described and deposited E. magna and deeply embedded in the genus Eimeria (family Eimeriidae). According to the findings, single oocyst molecular identification of Eimeria may be accomplished through consistent use of the morphological and molecular results. It is possible to draw the conclusion that the current research supplies relevant facts that help assess the potential infection and future control measures against rabbit coccidiosis to reduce the financial losses that can be incurred by the rabbit industry in Saudi Arabia.

4.
Sci Rep ; 14(1): 17467, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075150

RESUMEN

The availability of nutrients from mosquito blood meals accelerates the development of Plasmodium falciparum laboratory strains in artificially infected Anopheles gambiae mosquitoes. The impact of multiple blood meals on the number of P. falciparum genotypes developing from polyclonal natural human malaria infections (field-isolates) remains unexplored. Here, we experimentally infect An. gambiae with P. falciparum field-isolates and measure the impact of an additional non-infectious blood meal on parasite development. We also assess parasite genetic diversity at the blood stage level of the parasite in the human host and of the sporozoites in the mosquito. Additional blood meals increase the sporozoite infection prevalence and intensity, but do not substantially affect the genetic diversity of sporozoites in the mosquito. The most abundant parasite genotypes in the human blood were transmitted to mosquitoes, suggesting that there was no preferential selection of specific genotypes. This study underlines the importance of additional mosquito blood meals for the development of parasite field-isolates in the mosquito host.


Asunto(s)
Anopheles , Variación Genética , Malaria Falciparum , Plasmodium falciparum , Esporozoítos , Plasmodium falciparum/genética , Animales , Anopheles/parasitología , Esporozoítos/genética , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Malaria Falciparum/sangre , Mosquitos Vectores/parasitología , Genotipo , Interacciones Huésped-Parásitos/genética , Femenino
5.
Parasit Vectors ; 17(1): 236, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783366

RESUMEN

BACKGROUND: Like other oviparous organisms, the gonotrophic cycle of mosquitoes is not complete until they have selected a suitable habitat to oviposit. In addition to the evolutionary constraints associated with selective oviposition behavior, the physiological demands relative to an organism's oviposition status also influence their nutrient requirement from the environment. Yet, studies that measure transmission potential (vectorial capacity or competence) of mosquito-borne parasites rarely consider whether the rates of parasite replication and development could be influenced by these constraints resulting from whether mosquitoes have completed their gonotrophic cycle. METHODS: Anopheles stephensi mosquitoes were infected with Plasmodium berghei, the rodent analog of human malaria, and maintained on 1% or 10% dextrose and either provided oviposition sites ('oviposited' herein) to complete their gonotrophic cycle or forced to retain eggs ('non-oviposited'). Transmission potential in the four groups was measured up to 27 days post-infection as the rates of (i) sporozoite appearance in the salivary glands ('extrinsic incubation period' or EIP), (ii) vector survival and (iii) sporozoite densities. RESULTS: In the two groups of oviposited mosquitoes, rates of sporozoite appearance and densities in the salivary glands were clearly dependent on sugar availability, with shorter EIP and higher sporozoite densities in mosquitoes fed 10% dextrose. In contrast, rates of appearance and densities in the salivary glands were independent of sugar concentrations in non-oviposited mosquitoes, although both measures were slightly lower than in oviposited mosquitoes fed 10% dextrose. Vector survival was higher in non-oviposited mosquitoes. CONCLUSIONS: Costs to parasite fitness and vector survival were buffered against changes in nutritional availability from the environment in non-oviposited but not oviposited mosquitoes. Taken together, these results suggest vectorial capacity for malaria parasites may be dependent on nutrient availability and oviposition/gonotrophic status and, as such, argue for more careful consideration of this interaction when estimating transmission potential. More broadly, the complex patterns resulting from physiological (nutrition) and evolutionary (egg-retention) trade-offs described here, combined with the ubiquity of selective oviposition behavior, implies the fitness of vector-borne pathogens could be shaped by selection for these traits, with implications for disease transmission and management. For instance, while reducing availability of oviposition sites and environmental sources of nutrition are key components of integrated vector management strategies, their abundance and distribution are under strong selection pressure from the patterns associated with climate change.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Oviposición , Plasmodium berghei , Animales , Anopheles/fisiología , Anopheles/parasitología , Mosquitos Vectores/fisiología , Mosquitos Vectores/parasitología , Femenino , Malaria/transmisión , Malaria/parasitología , Plasmodium berghei/fisiología , Glándulas Salivales/parasitología , Esporozoítos/fisiología , Azúcares/metabolismo , Ratones
6.
Acta Trop ; 256: 107260, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782110

RESUMEN

Avian haemosporidian parasites are spread worldwide and pose a threat to their hosts occasionally. A complete life cycle of these parasites requires two hosts: vertebrate and invertebrate (a blood-sucking insect that acts as a vector). In this study, we tested wild-caught mosquitoes for haemosporidian infections. Mosquitoes were collected (2021-2023) in several localities in Lithuania using a sweeping net and a CDC trap baited with CO2, morphologically identified, and preparations of salivary glands were prepared (from females collected in 2022-2023). 2093 DNA samples from either individual after dissection (1675) or pools (418 pools/1145 individuals) of female mosquito's abdomens were screened using PCR for the detection of haemosporidian parasite DNA. Salivary gland preparations were analyzed microscopically from each PCR-positive mosquito caught in 2022 and 2023. The average prevalence of haemosporidian parasites for all analyzed samples was 2.0 % and varied between 0.6 % (2021) and 3.5 % (2022). DNA of Plasmodium ashfordi (cytochrome b genetic lineage pGRW02), P. circumflexum (pTURDUS1), P. homonucleophilum (pSW2), P. matutinum (pLINN1), P. vaughani (pSYAT05), Haemoproteus brachiatus (hLK03), H. majoris (hWW2), and H. minutus (hTUPHI01) were detected in mosquitoes. Coquilletidia richiardii (3.5 %) and Culex pipiens (2.9 %) were mosquito species with the highest prevalence of haemosporidian parasite DNA detected. Mixed infections were detected in 16 mosquitoes. In one of the samples, sporozoites of P. matutinum (pLINN1) were found in the salivary gland preparation of Culex pipiens, confirming this mosquito species as a competent vector of Plasmodium matutinum and adding it to the list of the natural vectors of this avian parasite.


Asunto(s)
Mosquitos Vectores , Plasmodium , Glándulas Salivales , Animales , Femenino , Mosquitos Vectores/parasitología , Plasmodium/aislamiento & purificación , Plasmodium/genética , Plasmodium/clasificación , Glándulas Salivales/parasitología , Lituania , Haemosporida/genética , Haemosporida/aislamiento & purificación , Haemosporida/clasificación , Culicidae/parasitología , Aves/parasitología , Reacción en Cadena de la Polimerasa , Culex/parasitología , ADN Protozoario/genética
7.
Malar J ; 23(1): 111, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641838

RESUMEN

BACKGROUND: Sporozoites (SPZ), the infective form of Plasmodium falciparum malaria, can be inoculated into the human host skin by Anopheline mosquitoes. These SPZ migrate at approximately 1 µm/s to find a blood vessel and travel to the liver where they infect hepatocytes and multiply. In the skin they are still low in number (50-100 SPZ) and vulnerable to immune attack by antibodies and skin macrophages. This is why whole SPZ and SPZ proteins are used as the basis for most malaria vaccines currently deployed and undergoing late clinical testing. Mosquitoes typically inoculate SPZ into a human host between 14 and 25 days after their previous infective blood meal. However, it is unknown whether residing time within the mosquito affects SPZ condition, infectivity or immunogenicity. This study aimed to unravel how the age of P. falciparum SPZ in salivary glands (14, 17, or 20 days post blood meal) affects their infectivity and the ensuing immune responses. METHODS: SPZ numbers, viability by live/dead staining, motility using dedicated sporozoite motility orienting and organizing tool software (SMOOT), and infectivity of HC-04.j7 liver cells at 14, 17 and 20 days after mosquito feeding have been investigated. In vitro co-culture assays with SPZ stimulated monocyte-derived macrophages (MoMɸ) and CD8+ T-cells, analysed by flow cytometry, were used to investigate immune responses. RESULTS: SPZ age did not result in different SPZ numbers or viability. However, a markedly different motility pattern, whereby motility decreased from 89% at day 14 to 80% at day 17 and 71% at day 20 was observed (p ≤ 0.0001). Similarly, infectivity of day 20 SPZ dropped to ~ 50% compared with day 14 SPZ (p = 0.004). MoMɸ were better able to take up day 14 SPZ than day 20 SPZ (from 7.6% to 4.1%, p = 0.03) and displayed an increased expression of pro-inflammatory CD80, IL-6 (p = 0.005), regulatory markers PDL1 (p = 0.02), IL-10 (p = 0.009) and cytokines upon phagocytosis of younger SPZ. Interestingly, co-culture of these cells with CD8+ T-cells revealed a decreased expression of activation marker CD137 and cytokine IFNγ compared to their day 20 counterparts. These findings suggest that older (day 17-20) P. falciparum SPZ are less infectious and have decreased immune regulatory potential. CONCLUSION: Overall, this data is a first step in enhancing the understanding of how mosquito residing time affects P. falciparum SPZ and could impact the understanding of the P. falciparum infectious reservoir and the potency of whole SPZ vaccines.


Asunto(s)
Culicidae , Vacunas contra la Malaria , Malaria Falciparum , Animales , Humanos , Esporozoítos , Linfocitos T CD8-positivos , Envejecimiento , Plasmodium falciparum
8.
Microorganisms ; 12(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38543531

RESUMEN

Membranolytic molecules constitute the first line of innate immune defense against pathogenic microorganisms. Plasmodium sporozoites are potentially exposed to these cytotoxic molecules in the hemolymph and salivary glands of mosquitoes, as well as in the skin, blood, and liver of the mammalian host. Here, we show that sporozoites are resistant to bacteriolytic concentration of cecropin B, a cationic amphipathic antimicrobial insect peptide. Intriguingly, anti-tumoral cell-penetrating peptides derived from the anti-apoptotic protein AAC11 killed P. berghei and P. falciparum sporozoites. Using dynamic imaging, we demonstrated that the most cytotoxic peptide, called RT39, did not significantly inhibit the sporozoite motility until the occurrence of a fast permeabilization of the parasite membrane by the peptide. Concomitantly, the cytosolic fluorescent protein constitutively expressed by sporozoites leaked from the treated parasite body while To-Pro 3 and FITC-labeled RT39 internalized, respectively, binding to the nucleic acids and membranes of sporozoites. This led to an increase in the parasite granularity as assessed by flow cytometry. Most permeabilization events started at the parasite's posterior end, resulting in the appearance of a fluorescent dot in the anterior part of sporozoites. Understanding and exploiting the susceptibility of sporozoites and other plasmodial stages to membranolytic molecules might foster strategies to eliminate the parasite and block its transmission.

9.
Insects ; 14(12)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38132599

RESUMEN

Avian haemosporidians (Apicomplexa, Haemosporida) are widespread blood protists, often causing severe haemosporidiosis, pathology, or even mortality in their hosts. Migrant birds regularly bring various haemosporidian parasites from wintering grounds to European breeding areas. Some haemosporidian parasites are prevalent in breeding sites and complete their life cycles in temperate climate zones and can be transmitted, but others do not. The factors altering the spread of these haemosporidians are not fully understood. Culicoides biting midges (Diptera: Ceratopogonidae) play an important role in the transmission of worldwide distributed avian haemosporidian parasites belonging to the genus Haemoproteus, but this information is particularly scarce and insufficient. The key factors limiting the spread of these pathogens in temperate climate zones, which we suspect and aim to study, are the absence of susceptible vectors and the ecological isolation of birds from vectors during the breeding period when transmission occurs. The primary objective of this study was to evaluate how the habitats of biting midges and bird breeding sites influence parasite transmission while also seeking to expand our understanding of the natural vectors for these parasites. Biting midges were collected using UV traps on the Curonian Spit, Lithuania, in different habitats, such as woodland and reeds, from May to September. Parous Culicoides females were identified, dissected, and investigated for the presence of Haemoproteus parasites using both microscopy and PCR-based tools. Among the dissected 1135 parous Culicoides females, the sporozoites of Haemoproteus asymmetricus (genetic lineage hTUPHI01) have been detected for the first time in the salivary glands of Culicoides festivipennis. The sporozoites of four Haemoproteus lineages were detected in Culicoides segnis, C. festivipennis, and Culicoides kibunensis biting midges. PCR-based screening showed that the females of seven Culicoides species were naturally infected with Haemoproteus parasites. The DNA of the parasite of owls, Haemoproteus syrnii (hSTAL2), was detected for the first time in Culicoides punctatus. The highest abundance of collected Culicoides females was in June, but the highest prevalence of Haemoproteus parasites in biting midges was in July. The abundance of Culicoides was higher in the woodland compared with reeds during the season. The acquired findings indicate the varied abundance and diversity of biting midges throughout the season and across distinct habitats. This variability could potentially impact the transmission of Haemoproteus parasites among birds with diverse breeding site ecologies. These outcomes hold the potential to enhance our understanding of the epizootiology of Haemoproteus infections within temperate climatic zones.

10.
Cell Mol Life Sci ; 80(11): 344, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910326

RESUMEN

During macroautophagy, the Atg8 protein is conjugated to phosphatidylethanolamine (PE) in autophagic membranes. In Apicomplexan parasites, two cysteine proteases, Atg4 and ovarian tumor unit (Otu), have been identified to delipidate Atg8 to release this protein from membranes. Here, we investigated the role of cysteine proteases in Atg8 conjugation and deconjugation and found that the Plasmodium parasite consists of both activities. We successfully disrupted the genes individually; however, simultaneously, they were refractory to deletion and essential for parasite survival. Mutants lacking Atg4 and Otu showed normal blood and mosquito stage development. All mice infected with Otu KO sporozoites became patent; however, Atg4 KO sporozoites either failed to establish blood infection or showed delayed patency. Through in vitro and in vivo analysis, we found that Atg4 KO sporozoites invade and normally develop into early liver stages. However, nuclear and organelle differentiation was severely hampered during late stages and failed to mature into hepatic merozoites. We found a higher level of Atg8 in Atg4 KO parasites, and the deconjugation of Atg8 was hampered. We confirmed Otu localization on the apicoplast; however, parasites lacking Otu showed no visible developmental defects. Our data suggest that Atg4 is the primary deconjugating enzyme and that Otu cannot replace its function completely because it cleaves the peptide bond at the N-terminal side of glycine, thereby irreversibly inactivating Atg8 during its recycling. These findings highlight a role for the Atg8 deconjugation pathway in organelle biogenesis and maintenance of the homeostatic cellular balance.


Asunto(s)
Proteasas de Cisteína , Malaria , Parásitos , Animales , Ratones , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Parásitos/metabolismo , Plasmodium berghei , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Protozoarias/metabolismo
11.
Vaccine ; 41(51): 7618-7625, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38007342

RESUMEN

Long-term protection against malaria remains one of the greatest challenges of vaccination against this deadly parasitic disease. Whole-sporozoite (WSp) malaria vaccine formulations, which target the Plasmodium parasite's pre-erythrocytic stages, include radiation-attenuated sporozoites (RAS), early- and late-arresting genetically-attenuated parasites (EA-GAP and LA-GAP, respectively), and chemoprophylaxis with sporozoites (CPS). Although all these four vaccine formulations induce protective immune responses in the clinic, data on the longevity of the antimalarial protection they afford remain scarce. We employed a mouse model of malaria to assess protection conferred by immunization with P. berghei (Pb)-based surrogates of these four WSp formulations over a 36-week period. We show that EA-GAP WSp provide the lowest overall protection against an infectious Pb challenge, and that while immunization with RAS and LA-GAP WSp elicits the most durable protection, the protective efficacy of CPS WSp wanes rapidly over the 36-week period, most notably at higher immunization dosages. Analyses of liver immune cells show that CD44hi CD8+ T cells in CPS WSp-immunized mice express increased levels of the co-inhibitory PD-1 and LAG-3 markers compared to mice immunized with the other WSp formulations. This indicates that memory CD8+ T cells elicited by CPS WSp immunization display a more exhausted phenotype, which may explain the rapid waning of protection conferred by the former. These results emphasize the need for a detailed comparison of the duration of protection of different WSp formulations in humans and suggest a more beneficial effect of RAS and LA-GAP WSp compared to EA-GAP or CSP WSp.


Asunto(s)
Vacunas contra la Malaria , Malaria , Humanos , Animales , Ratones , Plasmodium berghei/genética , Esporozoítos , Vacunas Atenuadas , Linfocitos T CD8-positivos , Plomo
12.
Proc Biol Sci ; 290(2011): 20232280, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018100

RESUMEN

Vaccination strategies in mice inducing high numbers of memory CD8+ T cells specific to a single epitope are able to provide sterilizing protection against infection with Plasmodium sporozoites. We have recently found that Plasmodium-specific CD8+ T cells cluster around sporozoite-infected hepatocytes but whether such clusters are important in elimination of the parasite remains incompletely understood. Here, we used our previously generated data in which we employed intravital microscopy to longitudinally image 32 green fluorescent protein (GFP)-expressing Plasmodium yoelii parasites in livers of mice that had received activated Plasmodium-specific CD8+ T cells after sporozoite infection. We found significant heterogeneity in the dynamics of the normalized GFP signal from the parasites (termed 'vitality index' or VI) that was weakly correlated with the number of T cells near the parasite. We also found that a simple model assuming mass-action, additive killing by T cells well describes the VI dynamics for most parasites and predicts a highly variable killing efficacy by individual T cells. Given our estimated median per capita kill rate of k = 0.031/h we predict that a single T cell is typically incapable of killing a parasite within the 48 h lifespan of the liver stage in mice. Stochastic simulations of T cell clustering and killing of the liver stage also suggested that: (i) three or more T cells per infected hepatocyte are required to ensure sterilizing protection; (ii) both variability in killing efficacy of individual T cells and resistance to killing by individual parasites may contribute to the observed variability in VI decline, and (iii) the stable VI of some clustered parasites cannot be explained by measurement noise. Taken together, our analysis for the first time provides estimates of efficiency at which individual CD8+ T cells eliminate intracellular parasitic infection in vivo.


Asunto(s)
Malaria , Plasmodium yoelii , Ratones , Animales , Linfocitos T CD8-positivos , Hígado/parasitología , Hepatocitos/parasitología , Esporozoítos , Plasmodium berghei/metabolismo
13.
One Health ; 17: 100582, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38024285

RESUMEN

Ingestion of an additional blood meal(s) by a hematophagic insect can accelerate development of several vector-borne parasites and pathogens. Most studies, however, offer blood from the same vertebrate host species as the original challenge (for e.g., human for primary and additional blood meals). Here, we show a second blood meal from bovine and canine hosts can also enhance sporozoite migration in Anopheles stephensi mosquitoes infected with the human- and rodent-restricted Plasmodium falciparum and P. berghei, respectively. The extrinsic incubation period (time to sporozoite appearance in salivary glands) showed more consistent reductions with blood from human and bovine donors than canine blood, although the latter's effect may be confounded by the toxicity, albeit non-specific, associated with the anticoagulant used to collect whole blood from donors. The complex patterns of enhancement highlight the limitations of a laboratory system but are nonetheless reminiscent of parasite host-specificity and mosquito adaptations, and the genetic predisposition of An. stephensi for bovine blood. We suggest that in natural settings, a blood meal from any vertebrate host could accentuate the risk of human infections by P. falciparum: targeting vectors that also feed on animals, via endectocides for instance, may reduce the number of malaria-infected mosquitoes and thus directly lower residual transmission. Since endectocides also benefit animal health, our results underscore the utility of the One Health framework, which postulates that human health and well-being is interconnected with that of animals. We posit this framework will be further validated if our observations also apply to other vector-borne diseases which together are responsible for some of the highest rates of morbidity and mortality in socio-economically disadvantaged populations.

14.
Parasit Vectors ; 16(1): 342, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789458

RESUMEN

BACKGROUND: Pyrethroid resistance in the key malaria vectors threatens the success of pyrethroid-treated nets. To overcome pyrethroid resistance, Interceptor® G2 (IG2), a 'first-in-class' dual insecticidal net that combines alpha-cypermethrin with chlorfenapyr, was developed. Chlorfenapyr is a pro-insecticide, requiring bio-activation by oxidative metabolism within the insect's mitochondria, constituting a mode of action preventing cross-resistance to pyrethroids. Recent epidemiological trials conducted in Benin and Tanzania confirm IG2's public health value in areas with pyrethroid-resistant Anopheles mosquitoes. As chlorfenapyr might also interfere with the metabolic mechanism of the Plasmodium parasite, we hypothesised that chlorfenapyr may provide additional transmission-reducing effects even if a mosquito survives a sub-lethal dose. METHODS: We tested the effect of chlorfenapyr netting to reduce Plasmodium falciparum transmission using a modified WHO tunnel test with a dose yielding sub-lethal effects. Pyrethroid-resistant Anopheles gambiae s.s. with L1014F and L1014S knockdown resistance alleles and expression levels of pyrethroid metabolisers CYP6P3, CYP6M2, CYP4G16 and CYP6P1 confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) prior to conducting experiments were exposed to untreated netting and netting treated with 200 mg/m3 chlorfenapyr for 8 h overnight and then fed on gametocytemic blood meals from naturally infected individuals. Prevalence and intensity of oocysts and sporozoites were determined on day 8 and day 16 after feeding. RESULTS: Both prevalence and intensity of P. falciparum infection in the surviving mosquitoes were substantially reduced in the chlorfenapyr-exposed mosquitoes compared to untreated nets. The odds ratios in the prevalence of oocysts and sporozoites were 0.33 (95% confidence interval; 95% CI 0.23-0.46) and 0.43 (95% CI 0.25-0.73), respectively, while only the incidence rate ratio for oocysts was 0.30 (95% CI 0.22-0.41). CONCLUSION: We demonstrated that sub-lethal exposure of pyrethroid-resistant mosquitoes to chlorfenapyr substantially reduces the proportion of infected mosquitoes and the intensity of the P. falciparum infection. This will likely also contribute to the reduction of malaria in communities beyond the direct killing of mosquitoes.


Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria Falciparum , Malaria , Parásitos , Piretrinas , Animales , Humanos , Anopheles/fisiología , Plasmodium falciparum , Resistencia a los Insecticidas , Control de Mosquitos , Mosquitos Vectores/fisiología , Piretrinas/farmacología , Insecticidas/farmacología , Malaria Falciparum/prevención & control , Malaria/prevención & control , Probabilidad
15.
Expert Rev Vaccines ; 22(1): 964-1007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37571809

RESUMEN

INTRODUCTION: Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED: Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION: First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Embarazo , Niño , Animales , Humanos , Femenino , Esporozoítos , Ciencia Traslacional Biomédica , Vacunas Atenuadas , Malaria/prevención & control , Malaria Falciparum/prevención & control , Plasmodium falciparum , Inmunización
16.
Mol Biochem Parasitol ; 256: 111589, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37604406

RESUMEN

Plasmodium sporozoites can block apoptotic pathways within host hepatocytes, ensuring the survival of the parasite. However, attenuated plasmodial sporozoites are unable to prevent apoptosis, which provides many parasite antigens to immune cells. This exposure leads to protection against Malaria in both human and animal models. If these hosts are later inoculated with infectious sporozoites, apoptosis of infected hepatocytes will occur, preventing parasite development. Considering that hydrogen peroxide can induce apoptosis, it is plausible that it plays a role in the mechanisms associated with the protection mediated by attenuated plasmodial sporozoites. Based on published results that describe the relationship between Plasmodium, hydrogen peroxide, and apoptosis, a rational explanation can be provided for this hypothesis.


Asunto(s)
Vacunas contra la Malaria , Malaria , Plasmodium , Animales , Humanos , Esporozoítos , Peróxido de Hidrógeno/farmacología , Malaria/prevención & control , Malaria/parasitología , Hepatocitos/parasitología
17.
Res Sq ; 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37609210

RESUMEN

Malaria is caused by Plasmodium parasites and was responsible for over 247 million infections and 619,000 deaths in 2021. Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage infection by inducing protective liver-resident memory CD8+ T cells. Such T cells can be induced by 'prime-and-trap' vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver. Prime-and-trap confers durable protection in mice, and efforts are underway to translate this vaccine strategy to the clinic. However, it is unclear whether the RAS trapping dose must be strictly administered by the IV route. Here we show that intradermal (ID) RAS administration can be as effective as IV administration if RAS are co-administrated with the glycolipid adjuvant 7DW8-5 in an ultra-low inoculation volume. In mice, the co-administration of RAS and 7DW8-5 in ultra-low ID volumes (2.5 µL) was completely protective and dose sparing compared to standard volumes (10-50 µL) and induced protective levels of CSP-specific CD8+ T cells in the liver. Our finding that adjuvants and ultra-low volumes are required for ID RAS efficacy may explain why prior reports about higher volumes of unadjuvanted ID RAS proved less effective. The ID route may offer significant translational advantages over the IV route and could improve sporozoite vaccine development.

18.
Pathogens ; 12(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36678481

RESUMEN

Cytauxzoon felis is a tick-transmitted, obligate, hemoprotozoal, piroplasmid pathogen of felids and the causative agent of cytauxzoonosis. It has a complex life cycle which includes a tick as its definitive host and a felid as its intermediate host. Since its first description in 1976, C. felis infections of felids have been reported in several southeastern and south-central U.S. states, overlapping with the ranges of its two known biological vectors, Amblyomma americanum (Lone star tick) and Dermacentor variabilis (American dog tick). Infected felids demonstrate disease as either an acute, often-fatal, infection, or a subclinical carrier infection. To develop effective C. felis transmission control strategies, the incidence of acute cytauxzoonosis, patient risk factors, the role of domestic cat carriers, and ecological variabilities need to be investigated further. Of equal importance is communicating these strategies for high-risk cat populations, including recommending year-round use of an acaricide product for all cats that spend any time outdoors. More studies are needed to further identify factors affecting C. felis and other Cytauxzoon spp. infection, transmission, disease progression, and treatment options and outcomes within the U.S. and globally. Here we provide an overview of C. felis highlighting its lifecycle within its definitive host, transmission to its intermediate host, symptoms and signs providing evidence of transmission, definitive diagnosis, current treatment and prevention strategies, and future considerations regarding this condition.

19.
Pathog Glob Health ; 117(3): 284-292, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36003062

RESUMEN

All protozoan parasites are lacking the pathway to synthesize purines de novo and therefore they depend on their host cells to provide purines. A number of highly conserved nucleoside transporter (NT) proteins are encoded in malaria parasite genomes, of which NT1 is characterized in Plasmodium falciparum and P. yoelii as a plasma membrane protein that is responsible for salvage of purines from the host, and NT2 is an endoplasmic membrane NT protein. Whereas NT3 is only present in primate malaria parasites, little is known about NT4, which is conserved in all malaria parasite species. Herein, we targeted NT4 gene for deletion in P. berghei. NT4 knockout parasites developed normally as blood stages, ookinetes and formed oocysts with sporozoites compared with wild-type (WT) P. berghei ANKA parasites. However, nt4(-) sporozoites showed significantly decreased egress from oocysts to hemolymph, significant reduction of colonization of the salivary glands, and complete abolishment of infection of the mammalian host by salivary gland and hemolymph sporozoites. Therefore, we identify NT4 as a NT that is important, not for replication and growth, but for sporozoite infectivity functions.


Asunto(s)
Anopheles , Malaria , Parásitos , Animales , Esporozoítos/genética , Anopheles/genética , Oocistos/metabolismo , Malaria/parasitología , Proteínas Protozoarias/genética , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Mamíferos/metabolismo
20.
Ticks Tick Borne Dis ; 14(1): 102056, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399958

RESUMEN

Cytauxzoon felis is a tick-borne piroplasmid hemoparasite that causes life-threatening disease in cats. Despite the critical role that ticks play in pathogen transmission, our knowledge regarding the C. felis life cycle remains limited to the feline hosts. Specific life stages of C. felis within the tick host have never been visualized microscopically and previous investigations have been limited to molecular detection by polymerase chain reaction (PCR). Sporozoites are the infectious stage of piroplasmids that are transmitted by ticks. In other tick-borne piroplasmids, sporozoite-based vaccines play a key role in disease prevention and management. We believe sporozoites have similar potential for cytauxzoonosis. Therefore, the objective of this study was to use different molecular and microscopic techniques to detect and evaluate C. felis sporozoites in tick salivary glands (SG). A total of 140 Amblyomma americanum adults that were fed on C. felis-infected cats as nymphs were included for this study. Specifically, dissected SGs were quartered and subjected to C. felis RT-PCR, RNAscope® in situ hybridization (ISH), histology, direct azure staining, and transmission electron microscopy (TEM). Cytauxzoon felis RT-PCR was also performed on half tick (HT) carcasses after SG dissection. Cytauxzoon felis RNA was detected in SGs of 17/140 ticks. Of these, 7/17 ticks had microscopic visualization via ISH and/or TEM. The remaining 10/17 ticks had only molecular detection of C. felis in SGs via RT-PCR without visualization. Cytauxzoon felis RNA was detected solely in HT carcasses via RT-PCR in 9/140 ticks. In ISH-positive tick SGs, hybridization signals were present in cytoplasms of SG acinar cells. TEM captured rare C. felis organisms with characteristic ultrastructural features of sporozoites. This study describes the first direct visualization of any developing stage of C. felis in ticks. Forthcoming studies should employ a combination of molecular and microscopic techniques to investigate the C. felis life cycle in A. americanum.


Asunto(s)
Amblyomma , Glándulas Salivales , Gatos , Animales , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...