Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Regen ; 13(1): 7, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466341

RESUMEN

Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.

2.
FASEB J ; 38(6): e23538, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38482729

RESUMEN

Stem cells respond and remember mechanical cues from the microenvironment, which modulates their therapeutic effects. Chromatin organization and energy metabolism regulate the stem cell fate induced by mechanical cues. However, the mechanism of mechanical memory is still unclear. This study aimed to investigate the effects of mechanical amplitude, frequency, duration, and stretch cycle on mechanical memory in mesenchymal stem cells. It showed that the amplitude was the dominant parameter to the persistence of cell alignment. F-actin, paxillin, and nuclear deformation are more prone to be remolded than cell alignment. Stretching induces transcriptional memory, resulting in greater transcription upon subsequent reloading. Cell metabolism displays mechanical memory with sustained mitochondrial fusion and increased ATP production. The mechanical memory of chromatin condensation is mediated by histone H3 lysine 27 trimethylation, leading to much higher smooth muscle differentiation efficiency. Interestingly, mechanical memory can be transmitted based on direct cell-cell interaction, and stretched cells can remodel the metabolic homeostasis of static cells. Our results provide insight into the underlying mechanism of mechanical memory and its potential benefits for stem cell therapy.


Asunto(s)
Cromatina , Células Madre Mesenquimatosas , Cromatina/metabolismo , Estrés Mecánico , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Músculo Liso , Proliferación Celular
3.
Bioact Mater ; 35: 549-563, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38434800

RESUMEN

The biophysical factors of biomaterials such as their stiffness regulate stem cell differentiation. Energy metabolism has been revealed an essential role in stem cell lineage commitment. However, whether and how extracellular matrix (ECM) stiffness regulates energy metabolism to determine stem cell differentiation is less known. Here, the study reveals that stiff ECM promotes glycolysis, oxidative phosphorylation, and enhances antioxidant defense system during osteogenic differentiation in MSCs. Stiff ECM increases mitochondrial fusion by enhancing mitofusin 1 and 2 expression and inhibiting the dynamin-related protein 1 activity, which contributes to osteogenesis. Yes-associated protein (YAP) impacts glycolysis, glutamine metabolism, mitochondrial dynamics, and mitochondrial biosynthesis to regulate stiffness-mediated osteogenic differentiation. Furthermore, glycolysis in turn regulates YAP activity through the cytoskeletal tension-mediated deformation of nuclei. Overall, our findings suggest that YAP is an important mechanotransducer to integrate ECM mechanical cues and energy metabolic signaling to affect the fate of MSCs. This offers valuable guidance to improve the scaffold design for bone tissue engineering constructs.

4.
Bioact Mater ; 34: 164-180, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38343773

RESUMEN

Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.

5.
Cell Mol Life Sci ; 81(1): 26, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212548

RESUMEN

Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.


Asunto(s)
Mitocondrias , Células Madre , Diferenciación Celular/genética , Mitocondrias/metabolismo , Epigénesis Genética , Senescencia Celular , ADN Mitocondrial/genética
6.
Adv Healthc Mater ; 13(7): e2301158, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38211963

RESUMEN

To systematically unveil how substrate stiffness, a critical factor in directing cell fate through mechanotransduction, correlates with tissue regeneration, novel biodegradable and photo-curable poly(trimethylene carbonate) fumarates (PTMCFs) for fabricating elastomeric 2D substrates and 3D bone scaffolds/nerve conduits, are presented. These substrates and structures with adjustable stiffness serve as a unique platform to evaluate how this mechanical cue affects the fate of human umbilical cord mesenchymal stem cells (hMSCs) and hard/soft tissue regeneration in rat femur bone defect and sciatic nerve transection models; whilst, decoupling from topographical and chemical cues. In addition to a positive relationship between substrate stiffness (tensile modulus: 90-990 kPa) and hMSC adhesion, spreading, and proliferation mediated through Yes-associated protein (YAP), opposite mechanical preference is revealed in the osteogenesis and neurogenesis of hMSCs as they are significantly enhanced on the stiff and compliant substrates, respectively. In vivo tissue regeneration demonstrates the same trend: bone regeneration prefers the stiffer scaffolds; while, nerve regeneration prefers the more compliant conduits. Whole-transcriptome analysis further shows that upregulation of Rho GTPase activity and the downstream genes in the compliant group promote nerve repair, providing critical insight into the design strategies of biomaterials for stem cell regulation and hard/soft tissue regeneration through mechanotransduction.


Asunto(s)
Mecanotransducción Celular , Andamios del Tejido , Ratas , Animales , Humanos , Andamios del Tejido/química , Células Madre , Regeneración Ósea , Diferenciación Celular/fisiología , Osteogénesis , Regeneración Nerviosa , Impresión Tridimensional
7.
Toxicol In Vitro ; 95: 105743, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38040129

RESUMEN

BACKGROUND: Electromagnetic fields (EMF) have an impact on numerous cellular processes. It can positively and negatively affect adipose-derived stem cells (ASCs) thus their fate through the influence of specific factors and protein secretion. EMF can be a great factor for preconditioning ASCs for regenerative medicine purposes, however, understanding the cell's biological response to its effects in vitro is essential. METHODS: ASCs were exposed to the EMF (50 Hz; 1.5 mT) for 24 and 48 h, and then cell biological response was analyzed. RESULTS: 24 h exposure of ASCs to EMF, significantly increased N6-methyladenosine (m6A) RNA methylation, indicating epitranscriptomic changes as an important factor in ASCs preconditioning. Furthermore, the expression of stem cell markers such as Nanog, Oct-4, Sox-2, CD44, and CD105 increased after 24 h of EMF exposure. Besides, western blot analysis showed upregulation of p21 and DNMT2/TRDMT1 protein levels compared to control cells with no differences in the p53 profile. Moreover, after 24 h of exposure to EMF, cell membrane flexibility, the metabolic potential of cells as well as the distribution, morphology, and metabolism of mitochondria were altered. CONCLUSION: ASCs undergo a process of mobilization and adaptation under the EMF influence through the increased m6A RNA modifications. These conditions may "force" ASCs to redefine their stem cell fate mediated by RNA-modifying enzymes and alter their reprogramming decision of as differentiation begins.


Asunto(s)
Campos Electromagnéticos , Células Madre Mesenquimatosas , Metilación de ARN , Diferenciación Celular , ARN
8.
Mol Cells ; 46(12): 727-735, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38052487

RESUMEN

Stem cells require high amounts of energy to replicate their genome and organelles and differentiate into numerous cell types. Therefore, metabolic stress has a major impact on stem cell fate determination, including self-renewal, quiescence, and differentiation. Lysosomes are catabolic organelles that influence stem cell function and fate by regulating the degradation of intracellular components and maintaining cellular homeostasis in response to metabolic stress. Lysosomal functions altered by metabolic stress are tightly regulated by the transcription factor EB (TFEB) and TFE3, critical regulators of lysosomal gene expression. Therefore, understanding the regulatory mechanism of TFEB-mediated lysosomal function may provide some insight into stem cell fate determination under metabolic stress. In this review, we summarize the molecular mechanism of TFEB/TFE3 in modulating stem cell lysosomal function and then elucidate the role of TFEB/TFE3-mediated transcriptional activity in the determination of stem cell fate under metabolic stress.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Estrés Fisiológico , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lisosomas/metabolismo , Diferenciación Celular , Autofagia
9.
FEBS J ; 290(24): 5811-5834, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37646174

RESUMEN

Notch receptor activation is regulated by the intramembrane protease γ-secretase, which cleaves and liberates the Notch intracellular domain (Nicd) that regulates gene transcription. While γ-secretase cleavage is necessary, we demonstrate it is insufficient for Notch activation and requires vesicular trafficking. Here, we report Divalent metal transporter 1 (Dmt1, Slc11A2) as a novel and essential regulator of Notch signalling. Dmt1-deficient cells are defective in Notch signalling and have perturbed endolysosomal trafficking and function. Dmt1 encodes for two isoforms, with and without an iron response element (ire). We show that isoform-specific silencing of Dmt1-ire and Dmt1+ire has opposite consequences on Notch-dependent cell fates in cell lines and intestinal organoids. Loss of Dmt1-ire suppresses Notch activation and promotes differentiation, whereas loss of Dmt1+ire causes Notch activation and maintains stem-progenitor cell fates. Dmt1 isoform expression correlates with Notch and Wnt signalling in Apc-deficient intestinal organoids and human colorectal cancers. Consistently, Dmt1-ire silencing induces Notch-dependent differentiation in colorectal cancer cells. These data identify Dmt1 isoforms as binary switches controlling Notch cell fate decisions in normal and tumour cells.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Proteínas de Transporte de Catión , Hierro , Humanos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Línea Celular , Hierro/metabolismo , Proteínas de Unión a Hierro/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Transporte de Catión/genética , Secuencias Reguladoras de Ácidos Nucleicos
10.
Biomaterials ; 300: 122179, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315386

RESUMEN

Oxygenating biomaterials can alleviate anoxic stress, stimulate vascularization, and improve engraftment of cellularized implants. However, the effects of oxygen-generating materials on tissue formation have remained largely unknown. Here, we investigate the impact of calcium peroxide (CPO)-based oxygen-generating microparticles (OMPs) on the osteogenic fate of human mesenchymal stem cells (hMSCs) under a severely oxygen deficient microenvironment. To this end, CPO is microencapsulated in polycaprolactone to generate OMPs with prolonged oxygen release. Gelatin methacryloyl (GelMA) hydrogels containing osteogenesis-inducing silicate nanoparticles (SNP hydrogels), OMPs (OMP hydrogels), or both SNP and OMP (SNP/OMP hydrogels) are engineered to comparatively study their effect on the osteogenic fate of hMSCs. OMP hydrogels associate with improved osteogenic differentiation under both normoxic and anoxic conditions. Bulk mRNAseq analyses suggest that OMP hydrogels under anoxia regulate osteogenic differentiation pathways more strongly than SNP/OMP or SNP hydrogels under either anoxia or normoxia. Subcutaneous implantations reveal a stronger host cell invasion in SNP hydrogels, resulting in increased vasculogenesis. Furthermore, time-dependent expression of different osteogenic factors reveals progressive differentiation of hMSCs in OMP, SNP, and SNP/OMP hydrogels. Our work demonstrates that endowing hydrogels with OMPs can induce, improve, and steer the formation of functional engineered living tissues, which holds potential for numerous biomedical applications, including tissue regeneration and organ replacement therapy.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Diferenciación Celular , Ingeniería de Tejidos/métodos , Hidrogeles/farmacología , Hipoxia/metabolismo , Oxígeno/metabolismo
11.
Adv Healthc Mater ; 12(22): e2202868, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37171209

RESUMEN

An ideal biomimetic periosteum is expected to wrap various bone surfaces to orchestrate an optimal microenvironment for bone regeneration, including facilitating local vascularization, recruiting osteoblasts, and mineralizing the extracellular matrix (ECM). To mimic the role of the natural periosteum in promoting bone repair, a 4D printing technique to inlay aligned cell sheets on shape-shifting hydrogel is used, containing biophysical signals and spatially adjustable physical properties, for the first time. The outer hydrogel layer endows the biomimetic periosteum with the ability to digitally coordinate its 3D geometry to match the specific macroscopic bone shape to maintain a bone healing microenvironment. The inner aligned human mesenchymal stem cells (hMSCs) layer not only promotes the migration and angiogenesis of co-cultured cells but also exhibits excellent osteogenic differentiation properties. In vivo experiments show that apart from morphing preset shapes as physical barriers, the aligned biomimetic periosteum can actively facilitate local angiogenesis and early-stage osteogenesis. Altogether, this present work provides a novel route to construct a personalized biomimetic periosteum with anisotropic microstructure by introducing a tunable shape to maintain the bone reconstruction microenvironment and this strategy can be extended to repair sophisticated bone defects.


Asunto(s)
Células Madre Mesenquimatosas , Periostio , Humanos , Osteogénesis , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Biomimética , Regeneración Ósea , Neovascularización Patológica , Hidrogeles , Impresión Tridimensional
12.
Methods Mol Biol ; 2608: 183-205, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653709

RESUMEN

The mammary gland consists of a bilayered epithelial structure with an extensively branched morphology. The majority of this epithelial tree is laid down during puberty, during which actively proliferating terminal end buds repeatedly elongate and bifurcate to form the basic structure of the ductal tree. Mammary ducts consist of a basal and luminal cell layer with a multitude of identified sub-lineages within both layers. The understanding of how these different cell lineages are cooperatively driving branching morphogenesis is a problem of crossing multiple scales, as this requires information on the macroscopic branched structure of the gland, as well as data on single-cell dynamics driving the morphogenic program. Here we describe a method to combine genetic lineage tracing with whole-gland branching analysis. Quantitative data on the global organ structure can be used to derive a model for mammary gland branching morphogenesis and provide a backbone on which the dynamics of individual cell lineages can be simulated and compared to lineage-tracing approaches. Eventually, these quantitative models and experiments allow to understand the couplings between the macroscopic shape of the mammary gland and the underlying single-cell dynamics driving branching morphogenesis.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Animales , Morfogénesis/genética , Linaje de la Célula
13.
Semin Cell Dev Biol ; 150-151: 58-65, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36470715

RESUMEN

Homeostatic balance in the intestinal epithelium relies on a fast cellular turnover, which is coordinated by an intricate interplay between biochemical signalling, mechanical forces and organ geometry. We review recent modelling approaches that have been developed to understand different facets of this remarkable homeostatic equilibrium. Existing models offer different, albeit complementary, perspectives on the problem. First, biomechanical models aim to explain the local and global mechanical stresses driving cell renewal as well as tissue shape maintenance. Second, compartmental models provide insights into the conditions necessary to keep a constant flow of cells with well-defined ratios of cell types, and how perturbations can lead to an unbalance of relative compartment sizes. A third family of models address, at the cellular level, the nature and regulation of stem fate choices that are necessary to fuel cellular turnover. We also review how these different approaches are starting to be integrated together across scales, to provide quantitative predictions and new conceptual frameworks to think about the dynamics of cell renewal in complex tissues.


Asunto(s)
Transducción de Señal , Células Madre , Animales , Células Madre/metabolismo , Mucosa Intestinal , Homeostasis , Mamíferos
14.
Hum Cell ; 36(2): 540-553, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36580272

RESUMEN

Piezo ion channel is a mechanosensitive protein on the cell membrane, which contains Piezo1 and Piezo2. Piezo channels are activated by mechanical forces, including stretch, matrix stiffness, static pressure, and shear stress. Piezo channels transmit mechanical signals that cause different downstream responses in the differentiation process, including integrin signaling pathway, ERK1/2 MAPK signaling pathway, Notch signaling, and WNT signaling pathway. In the fate of stem cell differentiation, scientists found differences in Piezo channel expression and found that Piezo channel expression is related to developmental diseases. Here, we briefly review the structure and function of Piezo channels and the relationship between Piezo and mechanical signals, discussing the current understanding of the role of Piezo channels in stem cell fate and associated molecules and developmental diseases. Ultimately, we believe this review will help identify the association between Piezo channels and stem cell fate.


Asunto(s)
Canales Iónicos , Células Madre , Diferenciación Celular , Canales Iónicos/metabolismo , Membrana Celular/metabolismo , Células Madre/metabolismo , Sistema de Señalización de MAP Quinasas
15.
World J Stem Cells ; 14(7): 490-502, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-36157525

RESUMEN

Stem cell fate determination is one of the central questions in stem cell biology, and although its regulation has been studied at genomic and proteomic levels, a variety of biological activities in cells occur at the metabolic level. Metabolomics studies have established the metabolome during stem cell differentiation and have revealed the role of metabolites in stem cell fate determination. While metabolism is considered to play a biological regulatory role as an energy source, recent studies have suggested the nexus between metabolism and epigenetics because several metabolites function as cofactors and substrates in epigenetic mechanisms, including histone modification, DNA methylation, and microRNAs. Additionally, the epigenetic modification is sensitive to the dynamic metabolites and consequently leads to changes in transcription. The nexus between metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy through manipulating metabolites. In the present review, we summarize the possible nexus between metabolic and epigenetic regulation in stem cell fate determination, and discuss the potential preventive and therapeutic strategies via targeting metabolites.

16.
Dev Biol ; 491: 43-55, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36063869

RESUMEN

Many tissues contain multipotent stem cells that are critical for maintaining tissue function. In Caenorhabditis elegans, germline stem cells allow gamete production to continue in adulthood. In the gonad, GLP-1/Notch signaling from the distal tip cell niche to neighboring germ cells activates a complex regulatory network to maintain a stem cell population. GLP-1/Notch signaling positively regulates production of LST-1 and SYGL-1 proteins that, in turn, interact with a set of PUF/FBF proteins to positively regulate the stem cell fate. We previously described sog (suppressor of glp-1 loss of function) and teg (tumorous enhancer of glp-1 gain of function) genes that limit the stem cell fate and/or promote the meiotic fate. Here, we show that sog-10 is allelic to nhl-2. NHL-2 is a member of the conserved TRIM-NHL protein family whose members can bind RNA and ubiquitinate protein substrates. We show that NHL-2 acts, at least in part, by inhibiting the expression of PUF-3 and PUF-11 translational repressor proteins that promote the stem cell fate. Two other negative regulators of stem cell fate, CGH-1 (conserved germline helicase) and ALG-5 (Argonaute protein), may work with NHL-2 to modulate the stem cell population. In addition, NHL-2 activity promotes the male germ cell fate in XX animals.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Células Germinativas/metabolismo , Péptido 1 Similar al Glucagón/genética , Péptido 1 Similar al Glucagón/metabolismo , Masculino , ARN/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo
17.
Stem Cell Reports ; 17(10): 2318-2333, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150383

RESUMEN

Mesenchymal stromal cells (MSCs) transplantation could enhance bone repair. However, the cell fate of transplanted MSCs, in terms of their local distribution and spatial associations with other types of cells were poorly understood. Here, we developed a single-cell 3D spatial correlation (sc3DSC) method to track transplanted MSCs based on deep tissue microscopy of fluorescent nanoparticles (fNPs) and immunofluorescence of key proteins. Locally delivered fNP-labeled MSCs enhanced tibial defect repair, increased the number of stem cells and vascular maturity in mice. fNP-MSCs persisted in the defect throughout repair. But only a small portion of transplanted cells underwent osteogenic differentiation (OSX+); a significant portion has maintained their expression of mesenchymal stem cell and skeletal stem cell markers (SCA-1 and PRRX1). Our results contribute to the optimization of MSC-based therapies. The sc3DSC method may be useful in studying cell-based therapies for the regeneration of other tissue types or disease models.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Diferenciación Celular/fisiología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis/fisiología , Análisis Espacio-Temporal
18.
Cell Physiol Biochem ; 56(4): 436-448, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36037065

RESUMEN

BACKGROUND/AIMS: It is unknown whether cancer stem cells respond differentially to treatment compared with progeny, potentially providing therapeutic vulnerabilities. Our program pioneered use of ultra-high single dose radiotherapy, which cures diverse metastatic diseases at a higher rate (90-95%) than conventional fractionation (~65%). Single dose radiotherapy engages a distinct biology involving microvascular acid sphingomyelinase/ceramide signaling, which, via NADPH oxidase-2-dependent perfusion defects, initiates an adaptive tumor SUMO Stress Response that globally-inactivates homologous recombination repair of double stand breaks, conferring cure. Accumulating data show diverse stem cells display heightened-dependence on homologous recombination repair to repair resolve double stand breaks. METHODS: Here we use colorectal cancer patient-derived xenografts containing logarithmically-increased Lgr5+ stem cells to explore whether optimizing engagement of this acid sphingomyelinase dependent biology enhances stem cell dependent tumor cure. RESULTS: We show radioresistant colorectal cancer patient-derived xenograft CLR27-2 contains radioresistant microvasculature and stem cells, whereas radiosensitive colorectal cancer patient-derived xenograft CLR1-1 contains radiosensitive microvasculature and stem cells. Pharmacologic or gene therapy enhancement of single dose radiotherapy-induced acid sphingomyelinase/ceramide-mediated microvascular dysfunction dramatically sensitizes CLR27-2 homologous recombination repair inactivation, converting Lgr5+ cells from the most resistant to most sensitive patient-derived xenograft population, yielding tumor cure. CONCLUSION: We posit homologous recombination repair represents a vulnerability determining colorectal cancer stem cell fate, approachable therapeutically using single dose radiotherapy.


Asunto(s)
Neoplasias Colorrectales , Lesiones del Sistema Vascular , Animales , Ceramidas , Neoplasias Colorrectales/genética , Modelos Animales de Enfermedad , Humanos , Células Madre Neoplásicas , Esfingomielina Fosfodiesterasa/genética
19.
Acta Biotheor ; 70(4): 24, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35962861

RESUMEN

Much of the current research in regenerative medicine concentrates on stem-cell therapy that exploits the regenerative capacities of stem cells when injected into different types of human tissues. Although new therapeutic paths have been opened up by induced pluripotent cells and human mesenchymal cells, the rate of success is still low and mainly due to the difficulties of managing cell proliferation and differentiation, giving rise to non-controlled stem cell differentiation that ultimately leads to cancer. Despite being still far from becoming a reality, these studies highlight the role of physical and biological constraints (e.g., cues and morphogenetic fields) placed by tissue microenvironment on stem cell fate. This asks for a clarification of the coupling of stem cells and microenvironmental factors in regenerative medicine. We argue that extracellular matrix and stem cells have a causal reciprocal and asymmetric relationship in that the 3D organization and composition of the extracellular matrix establish a spatial, temporal, and mechanical control over the fate of stem cells, which enable them to interact and control (as well as be controlled by) the cellular components and soluble factors of microenvironment. Such an account clarifies the notions of stemness and stem cell regeneration consistently with that of microenvironment.


Asunto(s)
Medicina Regenerativa , Ingeniería de Tejidos , Animales , Diferenciación Celular , Humanos , Células Madre
20.
Cell Biosci ; 12(1): 78, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642004

RESUMEN

BACKGROUND: Mental retardation is a complex neurodevelopmental disorder. NPAT, a component of the histone locus body (HLB), has been implicated as a candidate gene for mental retardation, with a mechanism yet to be elucidated. RESULTS: We identified that mxc, the Drosophila ortholog of NPAT, is required for the development of nervous system. Knockdown of mxc resulted in a massive loss of neurons and locomotion dysfunction in adult flies. In the mxc mutant or RNAi knockdown larval brains, the neuroblast (NB, also known as neural stem cell) cell fate is prematurely terminated and its proliferation potential is impeded concurrent with the blocking of the differentiation process of ganglion mother cells (GMCs). A reduction of transcription levels of histone genes was shown in mxc knockdown larval brains, accompanied by DNA double-strand breaks (DSBs). The subsidence of histone transcription levels leads to prematurely termination of NB cell fate and blockage of the GMC differentiation process. Our data also show that the increase in autophagy induced by mxc knockdown in NBs could be a defense mechanism in response to abnormal HLB assembly and premature termination of NB cell fate. CONCLUSIONS: Our study demonstrate that Mxc plays a critical role in maintaining neural stem cell fate and GMC differentiation in the Drosophila larval brain. This discovery may shed light on the understanding of the pathogenesis of NPAT-related mental retardation in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...