Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
Heliyon ; 10(16): e36430, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253135

RESUMEN

Due to concern regarding the consumption of high amount of sugar in diet and role of diet in combating overweigh and related disease, the aim of present study was to optimize a reduced calorie probiotic chocolate milk formula with suitable physicochemical properties. The formula comprising inulin, stevia (Stevia rebaudiana Bertoni), chia (Salvia hispanica L.) seed gum (CSG), and whey protein concentrate (WPC) which optimized using Box-Behnken design (BBD) and then enriched with an encapsulated probiotic strain Lactobacillus acidophilus (DSM1643). The independent variables included inulin (2-8%), CSG (0.1-0.5 %), stevia (50-100 % replacement of sugar), and WPC (1-3%). The dependent variables were selected as viscosity, average particle size, sedimentation percentage, and general acceptance. Optimization done toward achieving the highest viscosity and general acceptance and the lowest sedimentation percentage and average particle size. The optimal conditions were found to be 7.99 % inulin, 70 % stevia, 0.34 % CSG, and 1 % WPC. Under these conditions, the viscosity, sedimentation percentage, average particle size, and general acceptance of the product were equal to 40.69 mPa s, 2.2 %, 434.221 nm, and 5.1, respectively. Next, the chocolate milk was enriched with at 109 CFU/g probiotic bacteria and evaluated. The probiotic strain was resistant to simulated gastrointestinal conditions and under this condition the free bacterial cells count declined by 8 logCFU/g while the encapsulated cells decreased approximate 3 logCFU/g. The bacteria count did not undergo a significant change until the 5th day of storage. The results showed that the inulin, stevia, CSG, and WPC at optimal concentrations and encapsulated probiotic bacteria could be simultaneously applied to produce a product with good properties. This formula could be considered as a new product with health improving properties, low calorie which is suitable for people suffering from diabetes and obesity.

2.
Plant Biotechnol J ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283816

RESUMEN

Stevia rebaudiana Bertoni is popular source of plant-derived low/no-calorie natural sweeteners (LNCSs), collectively known as steviol glycosides (SGs). Nevertheless, genetic predisposition for targeted biosynthesis of SGs is complex due to multi-substrate functionality of key uridine diphosphate glycosyltransferases (UGTs). Here, we created a high-quality monoploid assembly of 1.34 Gb with N50 value of 110 Mb, 55 551 predicted protein-coding genes, and ~80% repetitive regions in Rebaudioside-A (Reb-A) enriched cultivar of S. rebaudiana. Additionally, a haplotype-based chromosome assembly consisting of haplotype A and haplotype B with an overall genome size of 2.33Gb was resolved, harbouring 639 634 variants including single nucleotide polymorphisms (SNPs), indels and structural variants (SVs). Furthermore, a lineage-specific whole genome duplication analysis revealed that gene families encoding UGTs and Cytochrome-P450 (CYPs) were tandemly duplicated. Additionally, expression analysis revealed five tandemly duplicated gene copies of UGT76G1 having significant correlations with Reb-A content, and identified key residue (leu200val) in the glycosylation of Reb-A. Furthermore, missense variations identified in the acceptor region of UGT76G1 in haplotype resolve genome, transcriptional and molecular docking analysis were confirmed with resequencing of 10 diverse stevia genotypes (~25X). Gene regulatory network analysis identified key transcription factors (MYB, bHLH, bZIP and AP2-ERF) as potential regulators of SG biosynthesis. Overall, this study provides haplotype-resolved chromosome-level genome assembly for genome editing and enhancing breeding efforts for targeted biosynthesis of SGs in S. rebaudiana.

3.
PeerJ ; 12: e18010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308829

RESUMEN

Depending on the texture of soil, different physicochemical and microbiological parameters are characterized, and these characteristics are influenced by crop cultivation. Stevia, a popular zero-calorie sweetener crop, is widely cultivated around the world on various soil textures. Sandy loam and clay soil show great differences in physicochemical and biological parameters and are often used for Stevia cultivation. To understand the effects of Stevia cultivation on soil physicochemical and biological features, we investigated the changes of physicochemical and microbiological parameters in sandy loam and clay soil following Stevia cultivation. This study was carried out through different physiological and biochemical assays and microbiomic analysis. The results indicated that the sandy loam soil had significantly lower pH and higher nutrient content in the rhizosphere and bulk soils after the Stevia cultivation. The sandy loam soil maintained higher bacterial diversity and richness than the clay soil after Stevia harvest. Beneficial bacteria such as Dongia, SWB02, Chryseolinea, Bryobacter and Devosia were enriched in the sandy loam soil; however, bacteria such as RB41, Haliangium and Ramlibacter, which are unfavorable for nutrient accumulation, predominated in clay soil. Redundancy analysis indicated that the variation in the composition of bacterial community was mainly driven by soil pH, organic matter, total nitrogen, available phosphorus, and microbial biomass phosphorus. This study provides a deeper understanding of physicochemical and microbiological changes in different soil textures after Stevia cultivation and guidance on fertilizer management for Stevia rotational cultivation.


Asunto(s)
Arcilla , Microbiota , Microbiología del Suelo , Suelo , Stevia , Stevia/química , Stevia/crecimiento & desarrollo , Microbiota/efectos de los fármacos , Suelo/química , Arcilla/química , Concentración de Iones de Hidrógeno , Arena/microbiología , Bacterias/crecimiento & desarrollo , Bacterias/efectos de los fármacos , Rizosfera
4.
J Food Sci ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323262

RESUMEN

So far, the use of artificial low-calorie sweeteners, like sucralose, saccharin, and so on, to replace the conventional-based sugars has not succeeded due to the long-term adverse health effects, for example, hypertension, and not well-known safety stand. In this review, we discussed the next generation SvGl (rebaudioside M [Reb M]), their biosynthetic pathway in plant, high-yield production via microbial fermentation and enzyme engineering, physicochemical properties, taste modification, kinetic metabolism, application in food and beverages, safety and toxicological evaluation, regulation and dosage recommendation, and health benefits. In stevia, the biosynthesis of stevia glycosides, especially Reb M, is derived from the bifurcation of the pathway leading to gibberellin, followed by subsequent enzymatic modification of rubusoside. Reb M is more economically produced via microbial fermentation of modified yeast Yarrowia lipolytica and enzymatic bioconversion of rebaudioside A (Reb A) or Reb E. Reb M can serve as a suitable alternative to the conventional-based sugars.

5.
Mol Biol Rep ; 51(1): 993, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292293

RESUMEN

BACKGROUND: Misfolded proteins accumulate in the liver due to endoplasmic reticulum stress (ERS) caused by high blood glucose levels in diabetes. This triggers the unfolded protein response (UPR), which if persistently activated, results in cellular dysfunction. Chronic ER stress increases inflammation, insulin resistance, and apoptosis. There is growing interest in using native plants and traditional medicine for diabetes treatment. The stevia plant has recently gained attention for its potential therapeutic effects. This study investigates the protective effects of aquatic stevia extract on liver damage, ER stress, and the UPR pathway in streptozotocin (STZ)-induced diabetic rats. METHODS: Rats were randomly divided into four groups: a control group that received 1 ml of water; a diabetic group induced by intraperitoneal injection of STZ (60 mg/kg); a diabetic group treated with metformin (500 mg/kg); and a diabetic group treated with aquatic extracts of stevia (400 mg/kg). After 28 days, various parameters were assessed, including inflammatory markers, oxidative stress indices, antioxidant levels, gene expression, stereology, and liver tissue pathology. RESULT: Compared to the diabetic control group, treatment with stevia significantly decreased serum glucose, liver enzymes, inflammatory markers, and oxidative stress while increasing body weight and antioxidant levels. Additionally, stevia extract manipulated UPR gene expression and reduced apoptosis pathway activation. Histological examination revealed improved liver tissue morphology in stevia-treated diabetic rats. CONCLUSION: These findings suggest that aquatic stevia extract mitigates ER stress in diabetic rats by modulating the IRE-1 arm of the UPR and apoptosis pathways, highlighting its potential therapeutic benefits for diabetes-related liver complications.


Asunto(s)
Diabetes Mellitus Experimental , Estrés del Retículo Endoplásmico , Hígado , Estrés Oxidativo , Extractos Vegetales , Stevia , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Stevia/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Extractos Vegetales/farmacología , Ratas , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Estreptozocina , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Hipoglucemiantes/farmacología
6.
Ann Pharm Fr ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182906

RESUMEN

OBJECTIVES: This study aimed to assess the individual and combined effects of SAE and Met on the expression of genes related to insulin signaling, oxidative stress, hormonal imbalance, insulin resistance, and dyslipidemia in rats with induced PCOS. METHODS: The estrous cycle of 50 adult Wistar female rats was monitored through vaginal smears. Subsequently, the rats were randomly assigned into five groups of 10, including control (receiving 1ml of carboxymethyl cellulose for 49 days), induction (letrozole at 1mg/kg/d for 21 days), SAE, Met, and SAE/Met. SAE and Met were orally administered at doses of 400mg/kg/d and 250mg/kg/d on day 22 and continued for an additional 28 days. Vaginal smears were analyzed, and gene expression levels of GLUT4, SIRT1, TNF-α, and INSR were evaluated using RT-qPCR. Antioxidant parameters were assessed using detection kits. RESULTS: Treatment with SAE and Met restored a regular estrous cycle pattern in PCOS rats. Furthermore, SAE and Met treatment improved hormonal balance, dyslipidemia, and hyperglycemia in the rats. Administration of SAE and Met significantly elevated levels of antioxidant enzymes SOD and GPx in ovarian tissue (P<0.001). Additionally, mRNA levels of GLUT4, SIRT1, and INSR were significantly increased in ovarian tissue following SAE and Met treatment, while TNF-α gene expression decreased significantly (P<0.0001). CONCLUSION: The findings suggest that SAE and Met aqueous extract exert protective effects on letrozole-induced PCOS in rats by modulating gene expression associated with insulin signaling and oxidative stress.

7.
J Anim Sci ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177443

RESUMEN

Stevia, a perennial shrub from the genus Stevia in the Asteraceae family, contains active ingredients like chlorogenic acid and shows promise as a natural feed additive. Despite this potential, there is limited research on the impact of stevia extract specifically on yellow-feather broilers. The study aimed to evaluate the effects of dietary stevia extract with varying concentrations of chlorogenic acid on the growth performance, serum biochemical indices, and intestinal health of yellow-feathered broilers. A total of 425 one-day-old female yellow-feathered broilers were randomly allocated into five treatment groups with five replicates of 17 broilers each, and the feeding trial lasted 63 days. The groups included a control and those supplemented with stevia extract at concentrations of 100 mg/kg, 200 mg/kg, 300 mg/kg, and 400 mg/kg. Results showed that adding 100 mg/kg of stevia extract to the basal diet significantly increased the daily weight gain (ADG) of the broilers, while reducing the average daily feed intake (ADFI) and feed conversion ratio (F/G). However, supplementation with stevia extract at concentrations up to 300 mg/kg led to decreased final weight and ADG. Conversely, dietary supplementation with 100-200 mg/kg of stevia extract improved serum antioxidant capacity and reduced serum total cholesterol levels compared to the control group. Additionally, the cecum n-butyric acid level was significantly higher in the 200 mg/kg stevia extract group than in the control group. In conclusion, supplementing yellow-feathered broilers' diets with stevia extract can enhance growth performance, antioxidant and immune capacity, and intestinal health. The optimal concentration of stevia extract for these benefits is between 100 mg/kg and 200 mg/kg.

8.
Crit Rev Biotechnol ; 44(6): 1080-1102, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103281

RESUMEN

The rapid increase in the worldwide prevalence of obesity and certain non-communicable diseases (NCDs), such as: cardiovascular diseases, cancers, chronic respiratory diseases, and diabetes, has been mainly attributed to an excess of sugar consumption. Although the potential benefits of the synergetic use of sweeteners have been known for many years, recent development based on synthesis strategies to produce sucrose-like taste profiles is emerging where biocatalyst approaches may be preferred to produce and supply specific sweetener compounds. From a nutritional standpoint, high-intensity sweeteners have fewer calories than sugars while providing a major sweet potency, placing them in the spotlight as valuable alternatives to sugar. Due to the modern world awareness and incidence of metabolic diseases, both food research and growing markets have focused on two generally regarded as safe (GRAS) groups of compounds: the sweet diterpenoid glycosides present on the leaves of Stevia rebaudiana and, more recently, on the cucurbitane triterpene glycosides present on the fruits of Siraitia grosvenorii. In spite of their flavor advantages, biological benefits, including: antidiabetic, anticancer, and cardiovascular properties, have been elucidated. The present bibliographical review dips into the state-of-the-art of sweeteners and their role in human health as sugar replacements, as well as the biotransformation methods for steviol gylcosides and mogrosides apropos of enzymatic technology to update and locate the discoveries to date in the scientific literature to help boost the continuity of research efforts of the ongoing sweeteners.


Asunto(s)
Stevia , Edulcorantes , Humanos , Cucurbitaceae/metabolismo
9.
Biofactors ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989918

RESUMEN

Extracellular vesicles are secreted by all eukaryotic cells and they have an important role in intercellular signaling. Plant extracellular vesicles (PEVs) are a novel area of research that has gained attention due to their potential implications in biomolecule transport and therapeutic applications. PEVs are lipid bilayer-enclosed structures that contain a diverse cargo of biomolecules such as proteins and lipids. Moreover, it is known that PEVs have a noticeable therapeutic potential for various conditions such as inflammation and oxidative stress. However, there are critical problems such as removing the endosomes and plant-derived biomolecules that decrease the standardization and therapeutic efficacy of PEVs. In our study, the aim was to characterize plant cell suspension-derived extracellular vesicles (PCSEVs) obtained from two different plant cell suspension cultures: Stevia rebaudiana and Vaccaria hispanica. These vesicles were isolated using ultrafiltration and characterized with nanoparticle tracking analysis (NTA) and atomic force microscopy (AFM). The molecular composition of PCSEVs was profiled and the cellular uptake assay was performed. Our results demonstrated that PCSEVs have a spherical shape, less than 200 nm. In the fatty acid analysis, the primary components in PCSEVs were palmitic acid, linoleic acid, and cis-vaccenic acid. The protein content of Stevia rebaudiana-derived EVs (SDEVs) was largely associated with proteins involved in extracellular structures and functions. Conversely, Vaccaria hispanica-derived EVs (HDEVs) displayed a higher presence of cytosolic proteins. These findings contribute to the understanding of PCSEVs and open up potential avenues in extracellular vesicle research, pointing to promising prospects for future innovations in various fields.

10.
Plants (Basel) ; 13(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065437

RESUMEN

Currently, different strategies, including the application of bio-fertilizers, are used to ameliorate the adverse effects posed by salinity stress as the major global problem in plants. Fish waste is suggested as a novel bio-fertilizer to mitigate the effects of biotic and abiotic stresses. In this investigation, an experiment was conducted to investigate the effects by applying different concentrations (0, 5, 10, and 15% (v/v)) of fish waste bio-fertilizer on stevia plants grown under salt stress conditions (0, 20, 40, and 60 mM of NaCl). Results showed that salinity negatively affected growth parameters, the photosynthetic pigments, the relative water content, and the chlorophyll fluorescence parameters while increased the activity of antioxidant enzymes, total phenol, hydrogen peroxide (H2O2), malondialdehyde (MDA), proline, and total carbohydrates compared with control samples. On the other hand, the application of fish waste bio-fertilizer mitigated the effects of salinity stress by enhancing growth and mitigating stress-relative markers, especially at the highest salinity level (60 mM). Overall, fish waste bio-fertilizer could be considered a sustainable, innovative approach for the alleviation of salinity stress effects in plants and, in addition, fish waste bio-fertilizer did not cause more salinity issues, at least with the applied doses and experiment time, which is an imperative aspect.

11.
Nanomaterials (Basel) ; 14(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998710

RESUMEN

The objective of this study is the development of innovative nanocurcumin-based formulations designed for the treatment and prevention of oxidative stress and diabetes. Nanocurcumin was obtained through a micronization process and subsequently encapsulated within biopolymers derived from corn starch and fenugreek mucilage, achieving encapsulation rates of 75% and 85%, respectively. Subsequently, the encapsulated nanocurcumin was utilized in the formulation of sugar-free syrups based on Stevia rebaudiana Bertoni. The stability of the resulting formulations was assessed by monitoring particle size distribution and zeta potential over a 25-day period. Dynamic light scattering (DLS) revealed a particle size of 119.9 nm for the fenugreek mucilage-based syrup (CURF) and 117 nm for the corn starch-based syrup (CURA), with polydispersity indices PDIs of 0.509 and 0.495, respectively. The dissolution rates of the encapsulated nanocurcumin were significantly enhanced, showing a 67% improvement in CURA and a 70% enhancement in CURF compared with crude curcumin (12.82%). Both formulations demonstrated excellent antioxidant activity, as evidenced by polyphenol quantification using the 2.2-diphenyl 1-pycrilhydrazyl (DPPH) assay. In the evaluation of antidiabetic activity conducted on Wistar rats, a substantial reduction in fasting blood sugar levels from 392 to 187 mg/mL was observed. The antioxidant properties of CURF in reducing oxidative stress were clearly demonstrated by a macroscopic observation of the rats' livers, including their color and appearance.

12.
Heliyon ; 10(11): e31581, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841479

RESUMEN

The research aimed to enhance the nutritional value of gummy candies by incorporating pistachio green hull extract (PGHE), stevia, and starch into the formulations. The gummy candies formulations were optimized using PGHE (1-5 %), stevia (0.013-0.040 %) and gelatin-to-starch ratio (9:1, 2:8, and 3:7) by response surface methodology (RSM), central composite design (CCD), with six center points. The physicochemical and textural properties of the gummy candies were assessed. Three optimal formulations were determined, which were preferred by the majority of panelists. One of them was selected for testing total phenolic content (680.31 ± 0.6 mg GAE/100g gummy candy), antioxidant activity (IC50 = 277 µg/mL), FTIR analysis, morphology examination, and storage stability. This study resulted in the development of gummy candies that not only offer a reduced-sugar product (50 %; equal to 12 % of sucrose) with high antioxidant activity but also eliminate the need for artificial flavors and synthetic colorants in the formulation.

13.
Antioxidants (Basel) ; 13(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38929131

RESUMEN

Stevia rebaudiana Bertoni, a no-calorie natural sweetener, contains a plethora of polyphenols that exert antioxidant properties with potential medicinal significance. Due to the variety of functional groups, polyphenols exhibit varying solubility depending on the nature of the extraction solvents (water, organic, or their mixtures, defined further on as hydroalcoholic extracts). In the present study, we performed a systematic review, following PRISMA guidelines, and meta-analysis, synthesizing all available data from 45 articles encompassing 250 different studies. Our results showed that the total phenolic content (TPC) of hydroalcoholic and aqueous extracts presents higher values (64.77 and 63.73 mg GAE/g) compared to organic extracts (33.39). Total flavonoid content (TFC) was also higher in aqueous and hydroalcoholic extracts; meta-regression analysis revealed that outcomes in different measuring units (mg QE/g, mg CE/g, and mg RUE/g) do not present statistically significant differences and can be synthesized in meta-analysis. Using meta-regression analysis, we showed that outcomes from the chemical-based ABTS, FRAP, and ORAC antioxidant assays for the same extract type can be combined in meta-analysis because they do not differ statistically significantly. Meta-analysis of ABTS, FRAP, and ORAC assays outcomes revealed that the antioxidant activity profile of various extract types follows that of their phenolic and flavonoid content. Using regression meta-analysis, we also presented that outcomes from SOD, CAT, and POX enzymatic antioxidant assays are independent of the assay type (p-value = 0.905) and can be combined. Our study constitutes the first effort to quantitatively and statistically synthesize the research results of individual studies using all methods measuring the antioxidant activity of stevia leaf extracts. Our results, in light of evidence-based practice, uncover the need for a broadly accepted, unified, methodological strategy to perform antioxidant tests, and offer documentation that the use of ethanol:water 1:1 mixtures or pure water can more efficiently extract stevia antioxidant compounds.

14.
Med Sci (Basel) ; 12(2)2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38921683

RESUMEN

BACKGROUND: Insulin exerts a crucial impact on glucose control, cellular growing, function, and metabolism. It is partially modulated by nutrients, especially as a response to the intake of foods, including carbohydrates. Moreover, insulin can exert an anorexigenic effect when inserted into the hypothalamus of the brain, in which a complex network of an appetite/hunger control system occurs. The current literature review aims at thoroughly summarizing and scrutinizing whether insulin release in response to glucose exposure may be a better choice to control body weight gain and related diseases compared to the use of sucrose substitutes (SSs) in combination with a long-term, well-balanced diet. METHODS: This is a comprehensive literature review, which was performed through searching in-depth for the most accurate scientific databases and applying effective and relevant keywords. RESULTS: The insulin action can be inserted into the hypothalamic orexigenic/anorexigenic complex system, activating several anorexigenic peptides, increasing the hedonic aspect of food intake, and effectively controlling the human body weight. In contrast, SSs appear not to affect the orexigenic/anorexigenic complex system, resulting in more cases of uncontrolled body weight maintenance while also increasing the risk of developing related diseases. CONCLUSIONS: Most evidence, mainly derived from in vitro and in vivo animal studies, has reinforced the insulin anorexigenic action in the hypothalamus of the brain. Simultaneously, most available clinical studies showed that SSs during a well-balanced diet either maintain or even increase body weight, which may indirectly be ascribed to the fact that they cannot cover the hedonic aspect of food intake. However, there is a strong demand for long-term longitudinal surveys to effectively specify the impact of SSs on human metabolic health.


Asunto(s)
Apetito , Glucosa , Insulina , Humanos , Glucosa/metabolismo , Apetito/efectos de los fármacos , Animales , Mantenimiento del Peso Corporal , Sacarosa , Saciedad
15.
Nutrition ; 125: 112465, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38823252

RESUMEN

OBJECTIVES: It is unclear whether parental consumption of non-nutritive sweetener (NNS) can affect subsequent generations. The aim of this study was to determine whether chronic parental consumption of sucralose and stevia in mice affects body weight gain and liver and intestinal expression of histone deacetylase 3 (Hdac3) in these animals and in the subsequent first filial (F1) and second filial (F2) generations. METHODS: Male and female mice (n = 47) were divided into three groups to receive water alone or supplemented with sucralose (0.1 mg/mL) or stevia (0.1 mg/mL) for 16 wk (parental [F0] generation). F0 mice were bred to produce the F1 generation; then, F1 mice were bred to produce the F2 generation. F1 and F2 animals did not receive NNSs. After euthanasia, hepatic and intestinal expression of Hdac3 was determined by quantitative reverse transcription polymerase chain reaction. RESULTS: Body weight gain did not differ between the three groups in the F0 generation, but it was greater in the F1 sucralose and stevia groups than in the control group. Consumption of both NNSs in the F0 generation was associated with lower Hdac3 expression in the liver and higher in the intestine. Hepatic Hdac3 expression was normalized to the control values in the F1 and F2 animals of the sucralose and stevia groups. Intestinal expression was still higher in the F1 generations of the sucralose and stevia groups but was partially normalized in the F2 generation of these groups, compared with control. CONCLUSIONS: NNS consumption differentially affects hepatic and intestinal Hdac3 expression. Changes in hepatic expression are not transmitted to the F1 and F2 generations whereas those in intestinal expression are enhanced in the F1 and attenuated in the F2 generations.


Asunto(s)
Histona Desacetilasas , Hígado , Stevia , Sacarosa , Edulcorantes , Animales , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Masculino , Sacarosa/análogos & derivados , Sacarosa/farmacología , Femenino , Ratones , Hígado/efectos de los fármacos , Hígado/metabolismo , Edulcorantes/farmacología , Aumento de Peso/efectos de los fármacos , Edulcorantes no Nutritivos/farmacología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Peso Corporal/efectos de los fármacos
16.
Plant Dis ; 108(9): 2865-2873, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38764335

RESUMEN

Septoria leaf spot is a significant disease affecting cultivated stevia, potentially reducing yields by > 50%. The disease is caused by Septoria steviae, first identified in 1978 in Japan as a new pathogen of stevia. Understanding the origin of S. steviae could clarify how it spread to new production areas. To investigate this, 12 isolates of Septoria sp. were obtained from stevia's native range in the Amambay forests and field plantings in Paraguay from 2018 to 2020. These isolates underwent colony morphology and molecular characterization of Actin, ß-Tubulin, Calmodulin, ITS, LSU, RPB2, and TEF1α loci. GenBank sequences from S. steviae isolates collected in France, Japan, and the United States were included. Multilocus sequence phylogenetic analysis generated a maximum likelihood (ML) tree. The morphological characteristics of Paraguayan isolates were similar to those of previously reported S. steviae type cultures from Japan. The ML analysis showed that Paraguayan isolates formed a monophyletic group with S. steviae isolates from France, Japan, and the United States. During blotter tests, pycnidia and cirri of S. steviae were observed on multiple stevia seed surfaces from different sources. Further characterization confirmed viable pathogenic conidia of S. steviae. This observation suggests that S. steviae could be associated with stevia seed, possibly spreading from the center of origin to other countries. This research is the first to genetically characterize S. steviae from Paraguay and propose its potential spread mechanism from the center of origin to the rest of the world.


Asunto(s)
Filogenia , Enfermedades de las Plantas , Stevia , Enfermedades de las Plantas/microbiología , Stevia/microbiología , Ascomicetos/genética , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Tipificación de Secuencias Multilocus , Paraguay , Hojas de la Planta/microbiología , Japón
17.
Food Chem ; 453: 139622, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38761729

RESUMEN

For health and safety reasons, the search for green, healthy, and low-calorie sweeteners with good taste has become the demand of many consumers. Furthermore, the need for sugar substitutes of natural origin has increased dramatically. In this review, we briefly discussed the safety and health benefits of stevia sweeteners and enumerated some examples of physiological functions of steviol glycosides (SGs), such as anti-inflammatory, anti-obesity, antihypertensive, anti-diabetes, and anticaries, citing various evidence related to their application in the food industry. The latest advances in emerging technologies for extracting and purifying SGs and the process variables and operational strategies were discussed. The impact of the extraction methods and their comparison against the conventional techniques have also been demonstrated. These technologies use minimal energy solvents and simplify subsequent purification stages, making viable alternatives suitable for a possible industrial application. Furthermore, we also elucidated the potential for advancing and applying the natural sweeteners SGs.


Asunto(s)
Diterpenos de Tipo Kaurano , Extractos Vegetales , Stevia , Edulcorantes , Stevia/química , Diterpenos de Tipo Kaurano/aislamiento & purificación , Diterpenos de Tipo Kaurano/química , Edulcorantes/aislamiento & purificación , Edulcorantes/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Humanos , Glucósidos/aislamiento & purificación , Glucósidos/química , Animales , Glicósidos/aislamiento & purificación , Glicósidos/química
18.
AMB Express ; 14(1): 59, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761277

RESUMEN

The growth of material science and technology places a high importance on the creation of better processes for the synthesis of copper nanoparticles. So that, an easy, ecological, and benign process for producing copper nanoparticles (CuNPs) has been developed using candy leaf (Stevia rebaudiana) leaves aqueous extract for the first time. UV-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), Fourier transmission infrared (FTIR), and zeta potential were applied to demonstrate strong characterization for the biosynthesized stevia-CuNPs. The UV-visible absorbance at 575 nm of surface plasmon resonance (SPR) was 1.2. The particle size mean diameter was recorded as 362.3 nm with - 10.8 mV zeta potential. The HR-TEM scanning revealed 51.46-53.17 nm and spherical-shaped stevia-CuNPs surrounded by coat-shell proteins. The cytotoxicity and cytocompatibility activity assay revealed that stevia-CuNPs was safe in lower concentrations and had a significant cell viability reduction in higher concentrations. The produced stevia-CuNPs were applied as antimicrobial agents against eight pathogenic bacteria and five fungi strains. The inhibitory action of the stevia-CuNPs was more pronounced in bacteria than in fungi, and they likewise demonstrated further inhibition zones in Staphylococcus aureus (50.0 mm) than in Aspergillus flavus (55.0 mm). With inhibition zone sizes of 50.0 mm and 47.0 mm and 50 µg/ml minimum inhibitory concentration, S. aureus and A. flavus were the most inhibited pathogens. The minimum lethal effect (MLC) estimate for S. aureus was 50 µg/ml, whereas 75 µg/ml for A. flavus. The stevia-CuNPs mode of action was characterized as bactericidal/fungicidal as the ratio of MIC to MLC was estimated to be equal to or less than 2. After all, stevia-CuNPs could be used as an alternative to commercial antibiotics to solve the problem of multidrug-resistant (MDR) microorganisms.

19.
Molecules ; 29(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675686

RESUMEN

Stevia rebaudiana Bertoni is a plant native to South America that has gathered much interest in recent decades thanks to diterpene glycosides, called steviosides, which it produces. These compounds are characterised by their sweetness, which is 250-300 times higher than saccharose, and they contain almost no caloric value. Stevia is currently also grown outside the South American continent, in various countries characterised by warm weather. This research aimed to determine whether it is viable to grow Stevia rebaudiana plants in Poland, a country characterised by a cooler climate than the native regions for stevia plants. Additionally, the impact of adding various dosages and forms of nitrogen fertiliser was analysed. It was determined that Stevia rebaudiana grown in Poland is characterised by a rather low concentration of steviosides, although proper nitrogen fertilisation can improve various characteristics of the grown plants. The addition of 100 kg or 150 kg of nitrogen per hectare of the field in the form of urea or ammonium nitrate increased the yield of the stevia plants. The stevioside content can be increased by applying fertilisation using 100 kg or 150 kg of nitrogen per hectare in the form of ammonium sulfate. The total yield of the stevia plants grown in Poland was lower than the yield typically recorded in warmer countries, and the low concentration of steviosides in the plant suggests that more research about growing Stevia rebaudiana in Poland would be needed to develop profitable methods of stevia cultivation.


Asunto(s)
Fertilizantes , Nitrógeno , Stevia , Stevia/química , Stevia/crecimiento & desarrollo , Polonia , Nitrógeno/análisis , Fertilizantes/análisis , Diterpenos de Tipo Kaurano/análisis , Diterpenos de Tipo Kaurano/química , Glucósidos/análisis , Glucósidos/química , Nitratos/análisis , Nitratos/química
20.
J Agric Food Chem ; 72(14): 8140-8148, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38563232

RESUMEN

Rebaudioside (Reb) M is an important sweetener with high sweetness, but its low content in Stevia rebaudiana and low catalytic capacity of the glycosyltransferases in heterologous microorganisms limit its production. In order to improve the catalytic efficiency of the conversion of stevioside to Reb M by Saccharomyces cerevisiae, several key issues must be resolved including knocking out endogenous hydrolases, enhancing glycosylation, and extending the enzyme catalytic process. Herein, endogenous glycosyl hydrolase SCW2 was knocked out in S. cerevisiae. The glycosylation process was enhanced by screening glycosyltransferases, and UGT91D2 from S. rebaudiana was identified as the optimum glycosyltransferase. The UDP-glucose supply was enhanced by overexpressing UGP1, and co-expressing UGT91D2 and UGT76G1 achieved efficient conversion of stevioside to Reb M. In order to extend the catalytic process, the silencing information regulator 2 (SIR2) which can prolong the growth cycle of S. cerevisiae was introduced. Finally, combining these modifications produced 12.5 g/L Reb M and the yield reached 77.9% in a 5 L bioreactor with 10.0 g/L stevioside, the highest titer from steviol glycosides to Reb M reported to date. The engineered strain could facilitate the industrial production of Reb M, and the strategies provide references for the production of steviol glycosides.


Asunto(s)
Diterpenos de Tipo Kaurano , Stevia , Trisacáridos , Saccharomyces cerevisiae/genética , Uridina Difosfato , Hidrolasas , Glucósidos , Glicosiltransferasas/genética , Glicósidos , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...