Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroimage ; 243: 118513, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34450262

RESUMEN

A major goal of large-scale brain imaging datasets is to provide resources for investigating heterogeneous populations. Characterisation of functional brain networks for individual subjects from these datasets will have an enormous potential for prediction of cognitive or clinical traits. We propose for the first time a technique, Stochastic Probabilistic Functional Modes (sPROFUMO), that is scalable to UK Biobank (UKB) with expected 100,000 participants, and hierarchically estimates functional brain networks in individuals and the population, while allowing for bidirectional flow of information between the two. Using simulations, we show the model's utility, especially in scenarios that involve significant cross-subject variability, or require delineation of fine-grained differences between the networks. Subsequently, by applying the model to resting-state fMRI from 4999 UKB subjects, we mapped resting state networks (RSNs) in single subjects with greater detail than has been possible previously in UKB (>100 RSNs), and demonstrate that these RSNs can predict a range of sensorimotor and higher-level cognitive functions. Furthermore, we demonstrate several advantages of the model over independent component analysis combined with dual-regression (ICA-DR), particularly with respect to the estimation of the spatial configuration of the RSNs and the predictive power for cognitive traits. The proposed model and results can open a new door for future investigations into individualised profiles of brain function from big data.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Macrodatos , Humanos , Modelos Estadísticos , Análisis de Regresión
2.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33579821

RESUMEN

The migratory dynamics of cells in physiological processes, ranging from wound healing to cancer metastasis, rely on contact-mediated cell-cell interactions. These interactions play a key role in shaping the stochastic trajectories of migrating cells. While data-driven physical formalisms for the stochastic migration dynamics of single cells have been developed, such a framework for the behavioral dynamics of interacting cells still remains elusive. Here, we monitor stochastic cell trajectories in a minimal experimental cell collider: a dumbbell-shaped micropattern on which pairs of cells perform repeated cellular collisions. We observe different characteristic behaviors, including cells reversing, following, and sliding past each other upon collision. Capitalizing on this large experimental dataset of coupled cell trajectories, we infer an interacting stochastic equation of motion that accurately predicts the observed interaction behaviors. Our approach reveals that interacting noncancerous MCF10A cells can be described by repulsion and friction interactions. In contrast, cancerous MDA-MB-231 cells exhibit attraction and antifriction interactions, promoting the predominant relative sliding behavior observed for these cells. Based on these experimentally inferred interactions, we show how this framework may generalize to provide a unifying theoretical description of the diverse cellular interaction behaviors of distinct cell types.


Asunto(s)
Comunicación Celular , Movimiento Celular , Línea Celular , Línea Celular Tumoral , Humanos , Modelos Teóricos , Análisis Espacio-Temporal , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...