Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Angew Chem Int Ed Engl ; : e202413627, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375147

RESUMEN

A simple method was developed to produce polymeric nanoribbons and other nanostructures in water. This approach incorporates a perylene diimide (PDI) functionalized by hydrophilic triethylene glycol (TEG) as a hydrophobic supramolecular structure directing unit (SSDU) into the core of hydrophilic poly(N,N-dimethylacrylamide) (PDMAc) chains using RAFT polymerization. All PDI-functional polymers dissolved spontaneously in water, forming different nanostructures depending on the degree of polymerization (DPn): nanoribbons and nanocylinders for DPn = 14 and 22, and spheres for DPn > 50 as determined by cryo-TEM and SAXS analyses. UV-VIS absorption spectroscopy was used to monitor the evolution of the PDI absorption signal upon dissolution. In solid form, all polymers show a H-aggregate absorption signature, but upon dissolution in water, the shortest DPn forming nanoribbons evolved to show HJ-aggregate absorption signals. Over time, the J-aggregate band increased in intensity, while cryo-TEM monitoring evidenced an increase in the nanoribbon's width. Heating the nanoribbons above 60 °C, triggered a morphological transition from nanoribbons to nanocylinders, due to the disappearance of J-aggregates, while H-aggregates were maintained. The study shows that the TEG-PDI is a powerful SSDU to promote 2D or 1D self-assembly of polymers depending on DPn through simple dissolution in water.

2.
Biotechnol Bioeng ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267334

RESUMEN

Purification of recombinantly produced biopharmaceuticals involves removal of host cell material, such as host cell proteins (HCPs). For lysates of the common expression host Escherichia coli (E. coli) over 1500 unique proteins can be identified. Currently, understanding the behavior of individual HCPs for purification operations, such as preparative chromatography, is limited. Therefore, we aim to elucidate the elution behavior of individual HCPs from E. coli strain BLR(DE3) during chromatography. Understanding this complex mixture and knowing the chromatographic behavior of each individual HCP improves the ability for rational purification process design. Specifically, linear gradient experiments were performed using ion exchange (IEX) and hydrophobic interaction chromatography, coupled with mass spectrometry-based proteomics to map the retention of individual HCPs. We combined knowledge of protein location, function, and interaction available in literature to identify trends in elution behavior. Additionally, quantitative structure-property relationship models were trained relating the protein 3D structure to elution behavior during IEX. For the complete data set a model with a cross-validated R2 of 0.55 was constructed, that could be improved to a R2 of 0.70 by considering only monomeric proteins. Ultimately this study is a significant step toward greater process understanding.

3.
Angew Chem Int Ed Engl ; : e202415464, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39327930

RESUMEN

Photoswitchable imines demonstrate light-dependent dynamic covalent chemistry and can function as molecular ratchets. However, the design of aryliminopyrazoles (AIPs) has been limited to N-pyrazole derivatives with ortho-pyrrolidine motifs. The impact of other functionalization patterns on the photoswitching properties remains unknown. Here, we present a systematic structure-property analysis and study how the photoswitching properties can be tuned through ortho- and para-functionalization of the phenyl ring in N-pyrazole and N-phenyl AIPs. This study establishes the first set of design rules for these AIP photoswitches and reports the most stable Z-isomer of an AIP to date, enabling its crystallization and resulting in the first reported crystal structure of a metastable Z-aldimine. Finally, we demonstrate that the AIPs are promising candidates for photoswitching in the condensed phase.

4.
Materials (Basel) ; 17(18)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39336309

RESUMEN

Polyester-based advanced thin films have versatile industrial applications, especially in the fields of textiles, packaging, and electronics. Recent advances in polymer science and engineering have resulted in the development of advanced amorphous and semi-crystalline polyesters with exceptional performance compared to those of conventional polymeric films. Among these, 1,4-cyclohexanedimethanol (CHDM) and cyclic-monomer-based polyesters have gained considerable attention for their exceptional characteristics and potential applications in smart films. This review article provides a comprehensive overview of the recent advances in the synthesis, characterization, and applications of CHDM and cyclic-monomer-based advanced polymers for smart film applications. It discusses the structure-property relationships of these innovative polyesters and highlights their unique characteristics, including thermal, mechanical, and barrier characteristics. Furthermore, this article also emphasizes the solution, melt, and solid-state polymerizations of the polymers. Special emphasis is placed on the influence of the addition of a second diol or second diacid on the performance characteristics of synthesized polyesters/copolyesters to explore their versatile industrial applications. Additionally, the impact of the stereochemistry of the monomers is explored to optimize the characterization of polyesters suitable for industrial applications. Furthermore, this article explores the potential of these advanced polyesters to be considered as materials for smart film applications, especially in the field of flexible electronics. Finally, this article examines the challenges and future recommendations for the development of CHDM and cyclic-monomer-based polyesters for smart film applications. It discusses potential avenues for further research, including in-depth studies for the synthesis and characterization of polyesters, the development of sustainable and biodegradable alternatives to cyclic monomers, alternative green approaches for the synthesis of polymers, etc. This review article provides valuable insight for researchers in academia and industry who are working in the fields of polymer science and materials engineering.

5.
Materials (Basel) ; 17(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124451

RESUMEN

The relationship between slag structure and viscosity is studied, employing Raman spectroscopy for the five-component slag system of MnO-SiO2-CaO-Al2O3-MgO and its subsystems. This study aims to investigate the influence of variations in slag composition on viscosity, which is crucial for optimizing industrial processes. Based on industrial slag compositions produced in a silicomanganese submerged arc furnace, 17 slags with a fixed content of MnO of 10 wt% are synthesized with varying contents of SiO2 of 33 to 65 wt%; CaO within the range of 14 to 40 wt%; and fixed contents of Al2O3 and MgO of 17 and 6 wt%, respectively. The slag compositions are divided into four groups, ranging from low basicity (0.38) to high basicity (0.80), with each group containing the four slag systems of MnO-SiO2-CaO, MnO-SiO2-CaO-Al2O3, MnO-SiO2-CaO-MgO, and MnO-SiO2-CaO-Al2O3-MgO, with fixed basicity. Additionally, a five-component composition with the lowest basicity of 0.28 is considered. Raman spectroscopy measurements are performed in the wavenumber range of 200 to 1200 cm-1 using a green source laser with a 532 nm wavelength. The high-wavenumber region of the Raman spectra (800 to 1200 cm-1) is deconvoluted to quantitatively investigate the effect of each oxide on the slag structure and the degree of polymerization (DOP) of the silicate network. Results indicate that measured NBO/T increases with increasing basicity, demonstrating a reduction in DOP of the silicate structure. This depolymerization effect is more pronounced in slags containing Al2O3 compared to those without it. In a group of slags with similar basicity, the substitution of SiO2 with Al2O3 leads to further depolymerization. In contrast, substituting CaO with MgO has little effect on the silicate structure in slags without Al2O3 but causes depolymerization in slags containing Al2O3. To study the relationship between structure and viscosity, viscosity data obtained from FactSage are used as reference values. The predictions of slag viscosity using the Raman-structure model and the NBO/T viscosity model are then compared to the FactSage results. The adjustable parameters of the Raman-structure model are re-determined using the FactSage data for the studied slag compositions. The NBO/T viscosity model employs both calculated NBO/T values from the slag compositions and measured NBO/T values from the deconvolution results. The findings of this study reveal good agreement between the predictions of the Raman-structure model and the FactSage viscosity data.

6.
Angew Chem Int Ed Engl ; : e202413276, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132935

RESUMEN

In the deep-ultraviolet (DUV) region, nonlinear optical (NLO) crystals must meet stringent requirements, including a large optical band gap and sufficient second harmonic generation (SHG) response. Typically, these criteria are fulfilled by borates, carbonates and nitrates containing π-conjugated groups. In contrast, sulfates and phosphates, with polarizabilities significantly smaller than those of π-conjugated groups, struggle to achieve similar performance. Here, we present the discovery of Mg2PO4Cl, a magnesium-based phosphate, identified from over 10,000 phosphates based on a polar-axial-symmetry screening strategy, which exhibits the highest SHG response (5.2 × KH2PO4 (KDP)) with phase-matching ability among non-π-conjugated DUV transparent NLO crystals. This compound belongs to the Pna21 space group, with [PO4] units consistently aligned along the 21 screw axis and glide planes throughout its crystal structure. Theoretical calculations attribute its remarkable SHG effect to the orderly arrangement of heteroanionic [MgO5Cl] and [MgO4Cl2] polyhedra alongside isolated [PO4] tetrahedra, supported by Berry phase analysis. Furthermore, a crystallographic structure analysis of phosphates and sulfates with significant SHG effects validates the effectiveness of our screening strategy. These findings offer valuable insights into the origins of NLO effects in non-π-conjugated compounds from both a material design and structural chemistry perspective, inspiring future efforts to revitalize DUV phosphates.

7.
Angew Chem Int Ed Engl ; : e202412346, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136171

RESUMEN

Vacancy-ordered perovskites and derivatives represent an important subclass of hybrid metal halides with promise in applications including light emitting devices and photovoltaics. Understanding the vacancy-property relationship is crucial for designing related task-specific materials, yet research in this field remains sporadic. For the first time, we use the Connolly surface to quantitatively calculate the volume of vacancy (V□, □ = vacancy) in vacancy-ordered double perovskite derivatives (VDPDs). A relationship between void fraction and the structure, photoluminescent properties and humidity stability was established based on zero-dimensional (0-D) [N(alkyl)4]2Sb□Cl5□'-type VDPDs. Compared with the more commonly studied A2M(IV)X6□-type double perovskite (A = cation, M = metal ion, X = halide), [N(alkyl)4]2Sb□Cl5□' features double vacancy sites. Our results demonstrate an inverse relationship between the photoluminescent quantum yield and V□ in 0-D VDPDs. Additionally, structural transformation from A2SbCl5 to A3Sb2Cl9 was first reported, during which the novel 'gate-opening' gas adsorption phenomenon was observed in VDPDs for the first time, as evidenced by 'S'-shaped sorption isotherms for water vapor, indicating a cation-controlled water-vapor response behavior. A mixed-cation strategy was developed to modulate the humidity stability of VDPDs. Characterized by controllable water-responsive behavior and unique 'on-off-on' luminescent switching, A2M(III)□X5□'-type materials show great promise for multi-level information anti-counterfeiting applications.

8.
Angew Chem Int Ed Engl ; : e202410039, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39205394

RESUMEN

Fine-tuning the interfacial sites within heterogeneous catalysts is pivotal for unravelling the intricate structure-property relationship and optimizing their catalytic performance. Herein, a simple and versatile mixed-dimensional assembly approach is proposed to create nanocrystal-on-nanowire superstructures with precisely adjustable numbers of biphasic interfaces. This method leverages an efficient self-assembly process in which colloidal nanocrystals spontaneously organize onto Ag nanowires, driven by the solvophobic effect. Importantly, varying the ratio of the two components during assembly allows for accurate control over both the quantity and contact perimeter of biphasic interfaces. As a proof-of-concept demonstration, a series of Au-on-Ag superstructures with varying numbers of Au/Ag interfaces are constructed and employed as electrocatalysts for electrochemical CO2-to-CO conversion. Experimental results reveal a logarithmic linear relationship between catalytic activity and the number of Au/Ag interfaces per unit mass of Au-on-Ag superstructures. This work presents a straightforward approach for precise interface engineering, paving the way for systematic exploration of interface-dependent catalytic behaviors in heterogeneous catalysts.

9.
Adv Mater ; 36(35): e2406192, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39003609

RESUMEN

Bioelectricity provides electrostimulation to regulate cell/tissue behaviors and functions. In the human body, bioelectricity can be generated in electromechanically responsive tissues and organs, as well as biomolecular building blocks that exhibit piezoelectricity, with a phenomenon known as the piezoelectric effect. Inspired by natural bio-piezoelectric phenomenon, efforts have been devoted to exploiting high-performance synthetic piezoelectric biomaterials, including molecular materials, polymeric materials, ceramic materials, and composite materials. Notably, piezoelectric biomaterials polarize under mechanical strain and generate electrical potentials, which can be used to fabricate electronic devices. Herein, a review article is proposed to summarize the design and research progress of piezoelectric biomaterials and devices toward bionanotechnology. First, the functions of bioelectricity in regulating human electrophysiological activity from cellular to tissue level are introduced. Next, recent advances as well as structure-property relationship of various natural and synthetic piezoelectric biomaterials are provided in detail. In the following part, the applications of piezoelectric biomaterials in tissue engineering, drug delivery, biosensing, energy harvesting, and catalysis are systematically classified and discussed. Finally, the challenges and future prospects of piezoelectric biomaterials are presented. It is believed that this review will provide inspiration for the design and development of innovative piezoelectric biomaterials in the fields of biomedicine and nanotechnology.


Asunto(s)
Materiales Biocompatibles , Nanotecnología , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Nanotecnología/métodos , Materiales Biocompatibles/química , Animales , Materiales Biomiméticos/química , Sistemas de Liberación de Medicamentos , Técnicas Biosensibles/métodos , Electricidad
10.
J Colloid Interface Sci ; 675: 683-688, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38996698

RESUMEN

Asymmetric nitrogen/carbon-coordinated single metal sites (M-NxC4-x) outperform symmetric M-N4 sites in carbon dioxide (CO2) electroreduction. However, the challenge of crafting well-defined M-NxC4-x sites complicates the understanding of their structure-catalytic performance relationship. In this study, we employ metallized N-confused tetraphenylporphyrin (M-NCTPP) to investigate CO2 conversion on M-N3C1 sites using both density functional theory and experimental methods. The optimal cobalt (Co)-N3C1 site (Co-NCTPP) achieves a current density of 500 mA cm-2 and a carbon monoxide Faraday efficiency exceeding 90 % at -1.25 V vs. the reversible hydrogen electrode, surpassing the performance of Co-N4 (Co-TPP). This research introduces a novel approach for designing and synthesizing high-activity heteroatom-anchored single metal sites, advancing fundamental understanding in the field.

11.
Chem Biol Drug Des ; 104(1): e14576, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38969623

RESUMEN

Intestinal absorption of compounds is significant in drug research and development. To evaluate this efficiently, a method combining mathematical modeling and molecular simulation was proposed, from the perspective of molecular structure. Based on the quantitative structure-property relationship study, the model between molecular structure and their apparent permeability coefficients was successfully constructed and verified, predicting intestinal absorption of drugs and interpreting decisive structural factors, such as AlogP98, Hydrogen bond donor and Ellipsoidal volume. The molecules with strong lipophilicity, less hydrogen bond donors and receptors, and small molecular volume are more easily absorbed. Then, the molecular dynamics simulation and molecular docking were utilized to study the mechanism of differences in intestinal absorption of drugs and investigate the role of molecular structure. Results indicated that molecules with strong lipophilicity and small volume interacted with the membrane at a lower energy and were easier to penetrate the membrane. Likewise, they had weaker interaction with P-glycoprotein and were easier to escape from it and harder to export from the body. More in, less out, is the main reason these molecules absorb well.


Asunto(s)
Enlace de Hidrógeno , Absorción Intestinal , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Humanos , Estructura Molecular , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Interacciones Hidrofóbicas e Hidrofílicas , Permeabilidad
12.
Nanotechnology ; 35(41)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38991516

RESUMEN

In this study, we present a nanosized biosensor based on the photobiological properties of one-dimensional (1D) topological photonic crystals (PCs). A topological structure had been designed by combining two PC structures (PC 1 and PC 2) comprised of functional material layers, Si and SiO2. These two, PC 1 and PC 2, differ in terms of the thickness and arrangement of these dielectric materials. We carried out a comparison between two distinct topological PCs: one using random PCs, and the other featuring a mirror heterostructure. Tuberculosis may be diagnosed by inserting a sensor layer into 1D topological PCs. The sensing process is based on the refractive indexes of the analytes in the sensor layer. When the 1D-topological heterostructure-based PC and its mirror-image structures are stacked together, the sensor becomes more efficient for analyte detection than the conventional PCs. The random-based topological PC outperformed the heterostructure-based topological PC in analyte sensing. Photonic media witness notable blue shifts due to the analytes' variations in refractive index. The numerical results of the sensor are computed using the transfer matrix approach. Effective results are achieved by optimizing the thicknesses of the sensor layer and dielectric layers; number of periods and incident angle. In normal incident light, the developed sensor shows a high sensitivity of 1500 nm RIU-1with a very low limit of detection in the order of 2.2 × 10-06RIU and a high-quality factor of 30 659.54.

13.
Materials (Basel) ; 17(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38998387

RESUMEN

Laser hot wire directed energy deposition (LHW-DED) is a layer-by-layer additive manufacturing technique that permits the fabrication of large-scale Ti-6Al-4V (Ti64) components with a high deposition rate and has gained traction in the aerospace sector in recent years. However, one of the major challenges in LHW-DED Ti64 is heat accumulation, which affects the part quality, microstructure, and properties of as-built specimens. These issues require a comprehensive understanding of the layerwise heat-accumulation-driven process-structure-property relationship in as-deposited samples. In this study, a systematic investigation was performed by fabricating three Ti-6Al-4V single-wall specimens with distinct interlayer delays, i.e., 0, 120, and 300 s. The real-time acquisition of high-fidelity thermal data and high-resolution melt pool images were utilized to demonstrate a direct correlation between layerwise heat accumulation and melt pool dimensions. The results revealed that the maximum heat buildup temperature of the topmost layer decreased from 660 °C to 263 °C with an increase to a 300 s interlayer delay, allowing for better control of the melt pool dimensions, which then resulted in improved part accuracy. Furthermore, the investigation of the location-specific composition, microstructure, and mechanical properties demonstrated that heat buildup resulted in the coarsening of microstructures and, consequently, the reduction of micro-hardness with increasing height. Extending the delay by 120 s resulted in a 5% improvement in the mechanical properties, including an increase in the yield strength from 817 MPa to 859 MPa and the ultimate tensile strength from 914 MPa to 959 MPa. Cooling rates estimated at 900 °C using a one-dimensional thermal model based on a numerical method allowed us to establish the process-structure-property relationship for the wall specimens. The study provides deeper insight into the effect of heat buildup in LHW-DED and serves as a guide for tailoring the properties of as-deposited specimens by regulating interlayer delay.

14.
Molecules ; 29(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999108

RESUMEN

Cyclodextrins are macrocyclic rings composed of glucose residues. Due to their remarkable structural properties, they can form host-guest inclusion complexes, which is why they are frequently used in the pharmaceutical, cosmetic, and food industries, as well as in environmental and analytical chemistry. This review presents the reports from 2011 to 2023 on the quantitative structure-activity/property relationship (QSAR/QSPR) approach, which is primarily employed to predict the thermodynamic stability of inclusion complexes. This article extensively discusses the significant developments related to the size of available experimental data, the available sets of descriptors, and the machine learning (ML) algorithms used, such as support vector machines, random forests, artificial neural networks, and gradient boosting. As QSAR/QPR analysis only requires molecular structures of guests and experimental values of stability constants, this approach may be particularly useful for predicting these values for complexes with randomly substituted cyclodextrins, as well as for estimating their dependence on pH. This work proposes solutions on how to effectively use this knowledge, which is especially important for researchers who will deal with this topic in the future. This review also presents other applications of ML in relation to CD complexes, including the prediction of physicochemical properties of CD complexes, the development of analytical methods based on complexation with CDs, and the optimisation of experimental conditions for the preparation of the complexes.

15.
ACS Appl Mater Interfaces ; 16(26): 33633-33646, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38910450

RESUMEN

We report the synthesis of LiCoO2 (LCO) cathode materials for lithium-ion batteries via aerosol spray pyrolysis, focusing on the effect of synthesis temperatures from 600 to 1000 °C on the materials' structural and morphological features. Utilizing both nitrate and acetate metal precursors, we conducted a comprehensive analysis of material properties through X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Our findings reveal enhanced crystallinity and significant oxide decomposition within the examined temperature range. Morphologically, nitrate-derived particles exhibited hollow, spherical shapes, whereas acetate-derived particles were irregular. Guided by high-temperature X-ray diffraction (HT-XRD) data, the formation of a layered LCO oxide structure, with distinct spinel Li2Co2O4 and layered oxide LCO phases was shown to emerge at different annealing temperatures. Optimally annealed particles showcased well-defined layered structures, translating to high electrochemical performance. Specifically, nitrate-based particles annealed at 775 °C for 1 h demonstrated initial discharge capacities close to 179 mAh/g, while acetate-based particles, annealed at 750 °C for 3 h, achieved 136 mAh/g at a 0.1C discharge rate. This study elucidates the influence of synthesis conditions on LCO cathode material properties, offering insights that advance high throughput processes for lithium-ion battery materials synthesis.

16.
Front Chem ; 12: 1413850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860237

RESUMEN

Topological indices (TIs) have rich applications in various biological contexts, particularly in therapeutic strategies for cancer. Predicting the performance of compounds in the treatment of cancer is one such application, wherein TIs offer insights into the molecular structures and related properties of compounds. By examining, various compounds exhibit different degree-based TIs, analysts can pinpoint the treatments that are most efficient for specific types of cancer. This paper specifically delves into the topological indices (TIs) implementations in forecasting the biological and physical attributes of innovative compounds utilized in addressing cancer through therapeutic interventions. The analysis being conducted to derivatives of sulfonamides, namely, 4-[(2,4-dichlorophenylsulfonamido)methyl]cyclohexanecarboxylic acid (1), ethyl 4-[(naphthalene-2-sulfonamido)methyl]cyclohexanecarboxylate (2), ethyl 4-[(2,5-dichlorophenylsulfonamido)methyl]cyclohexanecarboxylate (3), 4-[(naphthalene-2-sulfonamido)methyl]cyclohexane-1-carboxylic acid (4) and (2S)-3-methyl-2-(naphthalene-1-sulfonamido)-butanoic acid (5), is performed by utilizing edge partitioning for the computation of degree-based graph descriptors. Subsequently, a linear regression-based model is established to forecast characteristics, like, melting point and formula weight in a quantitative structure-property relationship. The outcomes emphasize the effectiveness or capability of topological indices as a valuable asset for inventing and creating of compounds within the realm of cancer therapy.

17.
Macromol Rapid Commun ; : e2400304, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837515

RESUMEN

A generic model of elastin-like polypeptides (ELP) is derived that includes proline isomerization (ProI). As a case study, conformational transition of a -[valine-proline-glycine-valine-glycine]- sequence is investigated in aqueous ethanol mixtures. While the non-bonded interactions are based on the Lennard-Jones (LJ) parameters, the effect of ProI is incorporated by tuning the intramolecular 3- and 4-body interactions known from the underlying all-atom simulations into the generic model. One of the key advantages of such a minimalistic model is that it readily decouples the effects of geometry and the monomer-solvent interactions due to the presence of ProI, thus gives a clearer microscopic picture that is otherwise rather nontrivial within the all-atom setups. These results are consistent with the available all-atom and experimental data. The model derived here may pave the way to investigate large scale self-assembly of ELPs or biomimetic polymers in general.

18.
Mol Pharm ; 21(7): 3356-3374, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805643

RESUMEN

Block copolymers, composed of poly(2-oxazoline)s and poly(2-oxazine)s, can serve as drug delivery systems; they form micelles that carry poorly water-soluble drugs. Many recent studies have investigated the effects of structural changes of the polymer and the hydrophobic cargo on drug loading. In this work, we combine these data to establish an extended formulation database. Different molecular properties and fingerprints are tested for their applicability to serve as formulation-specific mixture descriptors. A variety of classification and regression models are built for different descriptor subsets and thresholds of loading efficiency and loading capacity, with the best models achieving overall good statistics for both cross- and external validation (balanced accuracies of 0.8). Subsequently, important features are dissected for interpretation, and the DrugBank is screened for potential therapeutic use cases where these polymers could be used to develop novel formulations of hydrophobic drugs. The most promising models are provided as an open-source software tool for other researchers to test the applicability of these delivery systems for potential new drug candidates.


Asunto(s)
Sistemas de Liberación de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Aprendizaje Automático , Micelas , Polímeros , Polímeros/química , Sistemas de Liberación de Medicamentos/métodos , Oxazoles/química , Portadores de Fármacos/química , Oxazinas/química , Solubilidad , Química Farmacéutica/métodos
19.
Small ; 20(37): e2400549, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38726954

RESUMEN

A large optical anisotropy is the most important parameter of birefringent crystals. Integrating π-conjugated groups with large polarizable anisotropy into target compounds is a common strategy for constructing brilliant birefringent crystals. However, the key problem is to enhance the density of the birefringence-active units and further arrange them parallelly. In this study, three novel birefringent crystals, C9H7NBrX (X = Cl, Br, NO3), are successfully synthesized by introducing a new birefringence-active [C9H7NBr]+ unit. Interestingly, these compounds feature similar layered structures but exhibit different optical anisotropies at 550 nm (0.277 for C9H7NBrCl, 0.328 for C9H7NBrBr, and 0.401 for C9H7NBrNO3) owing to the different anions in them. Particularly, the small trigonal planar NO3 anions perfectly fill the interstices of the π-conjugated [C9H7NBr]+ groups with large optical anisotropy, with the resulting compound C9H7NBrNO3 showing superior optical properties compared to the others. The above findings provide strategies for designing new optical materials with large birefringence by matching birefringence-active groups of different sizes. Additionally, a new theory for predicting and comparing the polarizability anisotropy of compounds is proposed, which would guide in exploring large birefringent crystals.

20.
Small ; 20(38): e2400605, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38794874

RESUMEN

The developments of mixed matrix membranes (MMMs) are severely hindered by the complex inter-phase interaction and the resulting poor utilization of inorganics' microporosity. Herein, a dual porosity framework is constructed in MMMs to enhance the accessibility of inorganics' microporosity to external gas molecules for the effective application of microporosity for gas separation. Nanocomposite organogels are first prepared from the supramolecular complexation of rigid polymers and 2 nm microporous coordination nanocages (CNCs). The network structures can be maintained with microporous features after solvent removal originated from the rigid nature of polymers, and the strong coordination and hydrogen bond between the two components. Moreover, the strong supramolecular attraction reinforces the frustrated packing of the rigid polymers on CNC surface, leading to polymer networks' extrinsic pores and the interconnection of CNCs' micro-cavities for the fast gas transportation. The gas permeabilities of the MMMs are 869 times for H2 and 1099 times for CO2 higher than those of pure polymers. The open metal sites from nanocage also contribute to the enhanced gas selectivity and the overall performance surpasses 2008 H2/CO2 Robeson upper bound. The supramolecular complexation reinforced packing frustration strategy offers a simple and practical solution to achieve improved gas permselectivity in MMMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...