Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.951
Filtrar
1.
Front Oncol ; 14: 1408614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39169943

RESUMEN

Background: Mycosis fungoides (MF) is the most common subtype of cutaneous T-cell lymphoma (CTCL). Comprehensive analysis of MF cells in situ and ex vivo is complicated by the fact that is challenging to distinguish malignant from reactive T cells with certainty. Methods: To overcome this limitation, we performed combined single-cell RNA (scRNAseq) and T-cell receptor TCR sequencing (scTCRseq) of skin lesions of cutaneous MF lesions from 12 patients. A sufficient quantity of living T cells was obtained from 9 patients, but 2 had to be excluded due to unclear diagnoses (coexisting CLL or revision to a fixed toxic drug eruption). Results: From the remaining patients we established single-cell mRNA expression profiles and the corresponding TCR repertoire of 18,630 T cells. TCR clonality unequivocally identified 13,592 malignant T cells. Reactive T cells of all patients clustered together, while malignant cells of each patient formed a unique cluster expressing genes typical of naive/memory, such as CD27, CCR7 and IL7R, or cytotoxic T cells, e.g., GZMA, NKG7 and GNLY. Genes encoding classic CTCL markers were not detected in all clusters, consistent with the fact that mRNA expression does not correlate linearly with protein expression. Nevertheless, we successfully pinpointed distinctive gene signatures differentiating reactive malignant from malignant T cells: keratins (KRT81, KRT86), galectins (LGALS1, LGALS3) and S100 genes (S100A4, S100A6) being overexpressed in malignant cells. Conclusions: Combined scRNAseq and scTCRseq not only allows unambiguous identification of MF cells, but also revealed marked heterogeneity between and within patients with unexpected functional phenotypes. While the correlation between mRNA and protein abundance was limited with respect to established MF markers, we were able to identify a single-cell gene expression signature that distinguishes malignant from reactive T cells.

2.
Vet Immunol Immunopathol ; 275: 110816, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39173398

RESUMEN

CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.

3.
Lab Invest ; : 102126, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39174007

RESUMEN

This study used artificial intelligence (AI)-based analysis to investigate the immune microenvironment in endometrial cancer (EC). We aimed to evaluate the potential of AI-based immune metrics as prognostic biomarkers. In total, 296 EC were classified into four molecular subtypes: POLE ultramutated (POLEmut), mismatch repair deficiency (MMRd), p53 abnormal (p53abn), and no specific molecular profile (NSMP). AI-based methods were used to evaluate the following immune metrics: total tumor-infiltrating lymphocytes (tTIL), intratumoral TIL (iTIL), stromal TIL (sTIL), and tumor cells using Lunit SCOPE IO, as well as CD4+, CD8+, and FOXP3+ T cells using immunohistochemistry (IHC) by QuPath. These seven immune metrics were used to perform unsupervised clustering. PD-L1 22C3 IHC expression was also evaluated. Clustering analysis demonstrated three distinct immune microenvironment groups: immune-active, immune-desert, and tumor-dominant. The immune-active group was highly prevalent in POLEmut, and it was also seen in other molecular subtypes. Although the immune-desert group was more frequent in NSMP and p53mut, it was also detected in MMRd and POLEmut. POLEmut showed the highest levels of CD4+ and CD8+ T cells, tTIL, iTIL, and sTIL with the lowest levels of FOXP3+/CD8+ ratio. In contrast, p53abn in the immune-active group showed higher FOXP3+/CD4+ and FOXP3+/CD8+ ratios. The immune-active group was associated with favorable overall survival (OS) and recurrence-free survival (RFS). In the NSMP subtype, a significant association was observed between immune-active and better RFS. The PD-L1 22C3 combined positive score (CPS) showed significant differences among the three groups, with the immune-active group having the highest median CPS and frequency of CPS≥1%. The immune microenvironment of EC was variable within molecular subtypes. Within the same immune microenvironment group, significant differences in immune metrics and T cell composition were observed according to molecular subtype. AI-based immune microenvironment groups served as prognostic markers in ECs, with the immune-active group associated with favorable outcomes.

4.
Front Immunol ; 15: 1434011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144143

RESUMEN

Background: Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods: In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results: Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion: Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.


Asunto(s)
Citotoxicidad Inmunológica , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Linfocitos T Citotóxicos/inmunología , Biomarcadores , Infecciones por Orthomyxoviridae/inmunología , Perforina/metabolismo , Perforina/inmunología , Linfocitos Intraepiteliales/inmunología , Células Cultivadas
5.
Immunol Lett ; : 106911, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147242

RESUMEN

T cells play critical roles in adipose tissue (AT) inflammation. The role of CD20+ T cell in AT dysfunction and their contributing to insulin resistance (IR) and type 2 diabetes progression, is not known. The aim was to characterize CD20+ T cells in omental (OAT), subcutaneous (SAT) and peripheral blood (PB) from subjects with obesity (OB, n=42), by flow cytometry. Eight subjects were evaluated before (T1) and 12 months post (T2) bariatric/metabolic surgery (BMS). PB from subjects without obesity (nOB, n=12) was also collected. Higher percentage of CD20+ T cells was observed in OAT, compared to PB or SAT, in OB-T1. CD20 expression by PB CD4+ T cells was inversely correlated with adiposity markers, while follicular-like CD20+ T cells were positively correlated with impaired glucose tolerance (increased HbA1c). Notably, among OB-T1, IR establishment was marked by a lower percentage and absolute number of PB CD20+ T cells, compared nOB. Obesity was associated with higher percentage of activated CD20+ T cells; however, OAT-infiltrated CD20+ T cells from OB-T1 with diabetes displayed the lowest activation. CD20+ T cells infiltrating OAT from OB-T1 displayed a phenotype towards IFN-γ-producing Th1 and Tc1 cells. After BMS, the percentage of PB CD4+CD20+ T cells increased, with reduced Th1 and increased Th17 phenotype. Whereas in OAT the percentage of CD20+ T cells with Th1/17 and Tc1/17 phenotypes increased. Interestingly, OAT from OB pre/post BMS maintained higher frequency of effector memory CD20+ T cells. In conclusion, CD20+ T cells may play a prominent role in obesity-related AT inflammation.

6.
Trends Pharmacol Sci ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39147651

RESUMEN

Chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy has demonstrated significant success in treating cancers. The potential of CAR-T cells is now being explored in the context of autoimmune diseases. Recent clinical trials have shown sustained and profound elimination of autoreactive B cells by CAR-T cells, leading to promising autoimmune disease control with minimal safety concerns. These encouraging results have inspired further investigation into CAR-T cell applications for a broader range of autoimmune diseases and the development of advanced cell products with improved efficacy and safety. In this review, we discuss the mechanisms by which CAR-T cells target autoimmune conditions, summarize current preclinical models, and highlight ongoing clinical trials, including CAR-T therapy design, clinical outcomes, and challenges. Additionally, we discuss the limitations and future directions of CAR-T therapy in the treatment of autoimmune diseases.

7.
Acta Diabetol ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147954

RESUMEN

AIMS: To investigate immunometabolic associations of CD4+ T cell phenotypes with gestational diabetes mellitus (GDM). METHODS: A nested case-control study was conducted comprising 53 pairs of GDM patients and matched controls within a prospective cohort. Metabolomic signatures related to both CD4+ T cell phenotypes and glycemic traits among pregnant women were investigated by weighted gene co-expression network analysis (WGCNA). Multivariable-adjusted generalized linear models were used to explore the associations of CD4+ T cell phenotypes and selected metabolites with GDM. Mediation analysis was conducted to evaluate the mediating effect of selected metabolites on the relationship between CD4+ T cell phenotypes and glycemic traits. RESULTS: Higher levels of Treg cells (OR per SD increment (95%CI): 0.57 (0.34, 0.95), p = 0.031) and increased expression of Foxp3 (OR per SD increment (95%CI): 0.59 (0.35, 0.97), p = 0.039) and GATA3 (OR per SD increment (95%CI): 0.42 (0.25, 0.72), p = 0.002) were correlated with a decreased risk of GDM. Plasma pyruvaldehyde, S-adenosylhomocysteine (SAH), bergapten, and 9-fluorenone mediated the association between Tregs and fasting plasma glucose (FPG), with mediation proportions of 46.9%, 39.6%, 52.4%, and 56.9%, respectively. CONCLUSIONS: Treg cells and Foxp3 expressions were inversely associated with GDM risk, with potential metabolic mechanisms involving metabolites such as pyruvaldehyde and SAH.

8.
BMC Cancer ; 24(1): 1037, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174908

RESUMEN

CD19-targeted chimeric antigen receptors (CAR) T cells are one of the most remarkable cellular therapies for managing B cell malignancies. However, long-term disease-free survival is still a challenge to overcome. Here, we evaluated the influence of different hinge, transmembrane (TM), and costimulatory CAR domains, as well as manufacturing conditions, cellular product type, doses, patient's age, and tumor types on the clinical outcomes of patients with B cell cancers treated with CD19 CAR T cells. The primary outcome was defined as the best complete response (BCR), and the secondary outcomes were the best objective response (BOR) and 12-month overall survival (OS). The covariates considered were the type of hinge, TM, and costimulatory domains in the CAR, CAR T cell manufacturing conditions, cell population transduced with the CAR, the number of CAR T cell infusions, amount of CAR T cells injected/Kg, CD19 CAR type (name), tumor type, and age. Fifty-six studies (3493 patients) were included in the systematic review and 46 (3421 patients) in the meta-analysis. The overall BCR rate was 56%, with 60% OS and 75% BOR. Younger patients displayed remarkably higher BCR prevalence without differences in OS. The presence of CD28 in the CAR's hinge, TM, and costimulatory domains improved all outcomes evaluated. Doses from one to 4.9 million cells/kg resulted in better clinical outcomes. Our data also suggest that regardless of whether patients have had high objective responses, they might have survival benefits from CD19 CAR T therapy. This meta-analysis is a critical hypothesis-generating instrument, capturing effects in the CD19 CAR T cells literature lacking randomized clinical trials and large observational studies.


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Antígenos CD19/inmunología , Receptores Quiméricos de Antígenos/inmunología , Factores de Edad , Receptores de Antígenos de Linfocitos T/inmunología , Leucemia de Células B/terapia , Leucemia de Células B/inmunología , Leucemia de Células B/mortalidad , Resultado del Tratamiento , Linfocitos T/inmunología , Persona de Mediana Edad , Linfoma de Células B/inmunología , Linfoma de Células B/terapia , Linfoma de Células B/mortalidad
9.
J Transl Med ; 22(1): 781, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175022

RESUMEN

BACKGROUND: Naïve CD4+ T cells and their differentiated counterparts play a significant regulatory role in the tumor immune microenvironment, yet their effects on lung adenocarcinoma (LUAD) are not fully understood. METHODS: We utilized Mendelian randomization to assess the causal association between naïve CD4+ T cells and LUAD. Employing a modified single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm with The Cancer Genome Atlas (TCGA) database, we determined the infiltration levels of naïve CD4+ T cells and their differentiation subtypes and investigated their correlation with clinical characteristics. Potential regulatory pathways of T helper cells were identified through Mantel tests and Kyoto Encyclopedia of Genes and Genomes (KEGG) database enrichment analysis. RESULTS: Mendelian randomization analysis revealed an inhibitory effect of naïve CD4+ T cells on LUAD (false discovery rate < 0.05), which was corroborated by observational experiments using TCGA database. Specifically, T helper cell type 2 demonstrated a promotive effect on LUAD in terms of overall, disease-free, and progression-free survival (p < 0.05). Moreover, regulatory T cells exhibited a protective effect on LUAD in terms of disease-specific survival (p < 0.01). Concurrently, we explored the overall impact of naïve CD4+ T cell differentiation subtypes on LUAD, revealing upregulation in pathways such as neutrophil degranulation, MAPK family signaling pathways, and platelet activation, signaling, and aggregation. CONCLUSION: Naïve CD4+ T cells and their differentiated counterparts play essential regulatory roles in the tumor immune microenvironment, demonstrating bidirectionality in their effects.Thus, elucidating the mechanisms and developing novel cell differentiation-inducing agents will benefit anti-cancer therapy.


Asunto(s)
Adenocarcinoma del Pulmón , Linfocitos T CD4-Positivos , Diferenciación Celular , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/genética , Linfocitos T CD4-Positivos/inmunología , Análisis de la Aleatorización Mendeliana , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino , Transducción de Señal , Microambiente Tumoral/inmunología , Persona de Mediana Edad , Bases de Datos Genéticas
10.
Adv Sci (Weinh) ; : e2309920, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175207

RESUMEN

Cytokines, crucial in immune modulation, impact disease progression when their secretion is dysregulated. Existing methods for profiling cytokine secretion suffer from time-consuming and labor-intensive processes and often fail to capture the dynamic nature of immune responses. Here, iSECRETE, an integrated platform that enables synchronous cell activation, wash-free, and target-responsive protein detection for single-cell IFN-γ cytokine secretion analysis within 30 min at room temperature is presented. By incorporating a DNA proximity assay (DPA) into a multifunctional microfluidic system, one-pot homogenous cytokine signal amplification, with a limit of detection of ≈50 secreted molecules per cell is achieved. iSECRETE can robustly handle various sample types that are shown. Two distinct immune activation assay modalities are demonstrated on iSECRETE. Finally, the detection of single-cell IFN-γ secretion as an activation hallmark of chimeric antigen receptor T cells within 6 h of exposure to cancer targets is shown. iSECRETE represents the fastest single-cell sample-to-result cytokine secretion assay to date, providing a powerful tool for advancing the understanding of biological phenotypes, functions, and pathways under in vivo-like conditions.

11.
Front Oncol ; 14: 1455464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175472

RESUMEN

Although multiple myeloma is an incurable disease, the past decade has witnessed significant improvement in patient outcomes. This was brought about by the development of T-cell redirection therapies such as chimeric antigen receptor (CAR) T-cells, which can leverage the natural ability of the immune system to fight myeloma cells. The approval of the B-cell maturation antigen (BCMA)-directed CAR T, idecabtagene vicleucel (ide-cel), and ciltacabtagene autoleucel (cilta-cel) has resulted in a paradigm shift in the treatment of relapsed/refractory multiple myeloma. Overall response rates ranging from 73 to 97% are currently achievable. However, the limitations of KarMMa-1 and CARTITUDE-1 studies spurred the generation of real-world data to provide some insights into the effectiveness of ide-cel and cilta-cel among patients who were excluded from clinical trials, particularly those who received prior BCMA-targeted or other T-cell redirection therapies. Despite their unprecedented clinical efficacy in heavily pretreated patients, responses to CAR T remain non-durable. Although the underlying mechanisms of resistance to these agents haven't been fully elucidated, studies have suggested that resistance patterns could be multifaceted, implicating T-cell exhaustion and tumor intrinsic mechanisms such as BCMA target loss, upregulation of gamma-secretase, and others. Herein, we provide a succinct overview of the development of CAR T-cells, manufacturing process, and associated toxicities/complications. In this review, we also recapitulate the existing literature pertaining MM CAR-T as well as emerging data from some of the ongoing clinical trials designed to mitigate the shortcomings of these agents, and improve the clinical efficacy of CAR T, especially in the relapsed/refractory setting.

12.
Biophys Physicobiol ; 21(Supplemental): e211010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175859

RESUMEN

Understanding the temporal dynamics of T-cell transcription is crucial for insights into immune cell function and development. In this study, we show the features of the Timer-of-Cell-Kinetics-and-Activity (Tocky) system, which enables analysis of temporal dynamics of cell activities and differentiation, leveraging Fluorescent Timer protein, which spontaneously changes its emission spectrum from blue to red fluorescence in known kinetics, as reporters. The current study examines the properties of the Tocky system, highlighting the Timer-Angle approach, which is a core algorithm of Tocky analysis and converts Timer Blue and Red fluorescence into Timer Angle and Intensity by trigonometric transformation. Importantly, Tocky analyzes time-related events within individual cells by the two phases of measurements, distinguishing between (1) the temporal sequence of cellular activities and differentiation within the time domain, and (2) the transcription frequency within the frequency domain. The transition from time measurement to frequency analysis, particularly at the Persistent locus that bridges these domains, highlights that system's unique property in what is measured and analyzed by Tocky. Intriguingly, the sustained transcriptional activities observed in cells at the Persistent locus may have unique biological features as demonstrated in activated regulatory T-cells (Treg) and pathogenic T-cells, respectively, using Foxp3-Tocky and Nr4a3-Tocky models. In conclusion, the Tocky system can provide crucial data for advancing our understanding of T-cell dynamics and function.

13.
medRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39132475

RESUMEN

Background: Arterial stiffness measured by total pulse wave velocity (T-PWV) is associated with increased risk of multiple age-related diseases. T-PWV can be described by structural (S-PWV) and load-dependent (LD-PWV) arterial stiffening. T-cells have been associated with arterial remodeling, blood pressure, and arterial stiffness in humans and animals; however, it is unknown whether T-cells are related to S-PWV or LD-PWV. Therefore, we evaluated the cross-sectional associations of peripheral T-cell subpopulations with T-PWV, S-PWV, and LD-PWV stiffness. Methods: Peripheral blood T-cells were characterized using flow cytometry and the carotid artery was measured using B-mode ultrasound to calculate T-PWV at the baseline examination in a subset of the Multi-Ethnic Study of Atherosclerosis (MESA, n=1,984). A participant-specific exponential model was used to calculate S-PWV and LD-PWV based on elastic modulus and blood pressure gradients. The associations between five primary (p-significance<0.01) and twenty-five exploratory (p-significance<0.05) immune cell subpopulations, per 1-SD increment, and arterial stiffness measures were assessed using adjusted, linear regressions. Results: For the primary analysis, higher CD4+CD28-CD57+ T-cells were associated with higher LD-PWV (ß=0.04 m/s, p<0.01) after adjusting for co-variates. For the exploratory analysis, T-cell subpopulations that commonly shift with aging towards memory and differentiated/immunosenescent phenotypes were associated with greater T-PWV, S-PWV, and LD-PWV after adjusting for co-variates. Conclusions: In this cross-sectional study, several T-cell subpopulations commonly associated with aging were related with measures of arterial stiffness. Longitudinal studies that examine changes in T-cell subpopulations and measures of arterial stiffness are warranted.

14.
Cell Rep ; 43(8): 114621, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153200

RESUMEN

Resident memory T cells (TRMs) play a vital role in regional immune defense. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency and low cell survival rates have limited the implementation of TRM-focused high-throughput assays. Here, we engineer a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation. These in-vitro-generated TRMs are phenotypically and transcriptionally similar to in vivo TRMs. Pharmacological and genetic approaches showed that transforming growth factor ß (TGF-ß) signaling plays a crucial role in their differentiation. The VEOs in our model are susceptible to viral infections and the CD8 T cells are amenable to genetic manipulation, both of which will allow a detailed interrogation of antiviral CD8 T cell biology. Altogether we have established a robust in vitro TRM differentiation system that is scalable and can be subjected to high-throughput assays that will rapidly add to our understanding of TRMs.

15.
bioRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39149302

RESUMEN

Outbreaks of Bordetella pertussis (BP), the causative agent of whooping cough, continue despite broad vaccination coverage and have been increasing since vaccination switched from whole-BP (wP) to acellular BP (aP) vaccines. wP vaccination has been associated with more durable protective immunity and an induced Th1 polarized memory T cell response. Here, a multi-omics approach was applied to profile the immune response of 30 wP and 31 aP-primed individuals and identify correlates of T cell polarization before and after Tdap booster vaccination. We found that transcriptional changes indicating an interferon response on day 1 post-booster along with elevated plasma concentrations of IFN-γ and interferon-induced chemokines that peaked at day 1-3 post-booster correlated best with the Th1 polarization of the vaccine-induced memory T cell response on day 28. Our studies suggest that wP-primed individuals maintain their Th1 polarization through this early memory interferon response. This suggests that stimulating the interferon pathway during vaccination could be an effective strategy to elicit a predominant Th1 response in aP-primed individuals that protects better against infection.

16.
Front Immunol ; 15: 1432015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144149

RESUMEN

Therapeutic strategies targeting non-adaptive immune cells are currently in clinical development. γδT cells are a small subtype of T cells (1-10% of total T cells) that mediate their effector function without the necessity of the antigen presenting machinery, and also share functional properties with innate cells. Among the different γδT subtypes, antibodies against Vγ9Vδ2T have reported signs of clinical efficacy in early clinical studies. In this review we describe the biology of this subtype of non-conventional T cells and provide insights into the mechanism of action of novel antibodies that activate these cells. We will focus on antibodies targeting the BTN3A ligand and bi-specific γδT cell engagers. We will review in detail the advantages of these strategies including the potential for overcoming mechanisms of resistance to check point inhibitors, or the much more adequate safety profile compared with agents activating classical T cells. Limitations identified during the first studies in humans and strategies to overcome them will be revised and discussed. Finally, clinical options for future clinical development will be suggested.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta , Humanos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Animales , Butirofilinas/inmunología , Activación de Linfocitos/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Inmunoterapia/métodos , Linfocitos Intraepiteliales/inmunología , Antígenos CD
17.
J Clin Invest ; 134(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145452

RESUMEN

T cells rewire their metabolic activities to meet the demand of immune responses, but how to coordinate the immune response by metabolic regulators in activated T cells is unknown. Here, we identified autocrine VEGF-B as a metabolic regulator to control lipid synthesis and maintain the integrity of the mitochondrial inner membrane for the survival of activated T cells. Disruption of autocrine VEGF-B signaling in T cells reduced cardiolipin mass, resulting in mitochondrial damage, with increased apoptosis and reduced memory development. The addition of cardiolipin or modulating VEGF-B signaling improved T cell mitochondrial fitness and survival. Autocrine VEGF-B signaling through GA-binding protein α (GABPα) induced sentrin/SUMO-specific protease 2 (SENP2) expression, which further de-SUMOylated PPARγ and enhanced phospholipid synthesis, leading to a cardiolipin increase in activated T cells. These data suggest that autocrine VEGF-B mediates a signal to coordinate lipid synthesis and mitochondrial fitness with T cell activation for survival and immune response. Moreover, autocrine VEGF-B signaling in T cells provides a therapeutic target against infection and tumors as well as an avenue for the treatment of autoimmune diseases.


Asunto(s)
Comunicación Autocrina , Cardiolipinas , Mitocondrias , Transducción de Señal , Linfocitos T , Factor B de Crecimiento Endotelial Vascular , Mitocondrias/metabolismo , Mitocondrias/inmunología , Animales , Ratones , Comunicación Autocrina/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transducción de Señal/inmunología , Cardiolipinas/inmunología , Cardiolipinas/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/inmunología , Activación de Linfocitos , PPAR gamma/metabolismo , PPAR gamma/inmunología , PPAR gamma/genética , Humanos
18.
Zhongguo Fei Ai Za Zhi ; 27(7): 550-558, 2024 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-39147710

RESUMEN

Non-small cell lung cancer (NSCLC) is a prevalent and aggressive global malignancy. Conventional surgical treatments, radiotherapy, chemotherapy, and targeted therapies often fall short in halting disease progression due to inherent limitations, resulting in suboptimal prognosis. Despite the advent of immunotherapy drugs offering new hope for NSCLC treatment, current efficacy remains insufficient to meet all patient needs. Therefore, actively exploring novel immunotherapeutic approaches to further reduce mortality rates in NSCLC patients has become a crucial focus of NSCLC research. This article aims to systematically review the anti-tumor effects of interleukin-21 and follicular helper T cells in NSCLC immunotherapy by summarizing and analyzing relevant literatures from both domestic and international sources, as well as exploring the potential for enhancing NSCLC treatment prospects through immune checkpoint regulation via immunotherapeutic means.
.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Interleucinas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Interleucinas/inmunología , Interleucinas/uso terapéutico , Inmunoterapia/métodos , Animales
19.
Cell Mol Life Sci ; 81(1): 352, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153043

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.


Asunto(s)
Linfocitos T CD4-Positivos , Diferenciación Celular , Citocinas , Enfermedad de Parkinson , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/metabolismo , Humanos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Animales , Citocinas/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/inmunología , alfa-Sinucleína/metabolismo , alfa-Sinucleína/inmunología
20.
Elife ; 132024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158947

RESUMEN

The fate of developing T cells is determined by the strength of T cell receptor (TCR) signal they receive in the thymus. This process is finely regulated through the tuning of positive and negative regulators in thymocytes. The Family with sequence similarity 49 member B (Fam49b) protein is a newly discovered negative regulator of TCR signaling that has been shown to suppress Rac-1 activity in vitro in cultured T cell lines. However, the contribution of Fam49b to the thymic development of T cells is unknown. To investigate this important issue, we generated a novel mouse line deficient in Fam49b (Fam49b-KO). We observed that Fam49b-KO double positive (DP) thymocytes underwent excessive negative selection, whereas the positive selection stage was unaffected. Fam49b deficiency impaired the survival of single positive thymocytes and peripheral T cells. This altered development process resulted in significant reductions in CD4 and CD8 single-positive thymocytes as well as peripheral T cells. Interestingly, a large proportion of the TCRγδ+ and CD8αα+TCRαß+ gut intraepithelial T lymphocytes were absent in Fam49b-KO mice. Our results demonstrate that Fam49b dampens thymocytes TCR signaling in order to escape negative selection during development, uncovering the function of Fam49b as a critical regulator of the selection process to ensure normal thymocyte development and peripheral T cells survival.


Asunto(s)
Ratones Noqueados , Receptores de Antígenos de Linfocitos T , Transducción de Señal , Timocitos , Animales , Timocitos/metabolismo , Timocitos/citología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Ratones , Supervivencia Celular , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...