Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Structure ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39002540

RESUMEN

Bacterial conjugation is a process by which DNA is transferred unidirectionally from a donor cell to a recipient cell. It is the main means by which antibiotic resistance genes spread among bacterial populations. It is crucially dependent upon the elaboration of an extracellular appendage, termed "pilus," by a large double-membrane-spanning secretion system termed conjugative "type IV secretion system." Here we present the structure of the conjugative pilus encoded by the R388 plasmid. We demonstrate that, as opposed to all conjugative pili produced so far for cryoelectron microscopy (cryo-EM) structure determination, the conjugative pilus encoded by the R388 plasmid is greatly stimulated by the presence of recipient cells. Comparison of its cryo-EM structure with existing conjugative pilus structures highlights a number of important differences between the R388 pilus structure and that of its homologs, the most prominent being the highly distinctive conformation of its bound lipid.

2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38959853

RESUMEN

Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.


Asunto(s)
Proteínas Bacterianas , Lysobacter , Pseudomonas , Sistemas de Secreción Tipo IV , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lysobacter/genética , Lysobacter/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Regulación Bacteriana de la Expresión Génica , Oligopéptidos/metabolismo , Oligopéptidos/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor sigma/genética , Factor sigma/metabolismo
3.
Structure ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39032488

RESUMEN

Cag type IV secretion system (CagT4SS) translocates oncoprotein cytotoxin-associated gene A (CagA) into host cells and plays a key role in the pathogenesis of Helicobacter pylori. The structure of the outer membrane core complex (OMCC) in CagT4SS consists of CagX, CagY, CagM, CagT, and Cag3 in a stoichiometric ratio of 1:1:2:2:5 with 14-fold symmetry. However, the assembly pathway of OMCC remains elusive. Here, we report the crystal structures of CagT and Cag3-CagT complex, and the structural dynamics of Cag3 and CagT using hydrogen deuterium exchange-mass spectrometry (HDX-MS). The interwoven interaction of Cag3 and CagT involves conformational changes of CagT and ß strand swapping. In conjunction with biochemical and biophysical assays, we further demonstrate the different oligomerization states of Cag3 and Cag3-CagT complex. Additionally, the association with CagM requires the pre-formation of Cag3-CagT complex. These results demonstrate the generation of different intermediate sub-assemblies and their structural flexibility, potentially representing different building blocks for OMCC assembly.

4.
EMBO J ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886579

RESUMEN

Conjugative type IV secretion systems (T4SS) mediate bacterial conjugation, a process that enables the unidirectional exchange of genetic materials between a donor and a recipient bacterial cell. Bacterial conjugation is the primary means by which antibiotic resistance genes spread among bacterial populations (Barlow 2009; Virolle et al, 2020). Conjugative T4SSs form pili: long extracellular filaments that connect with recipient cells. Previously, we solved the cryo-electron microscopy (cryo-EM) structure of a conjugative T4SS. In this article, based on additional data, we present a more complete T4SS cryo-EM structure than that published earlier. Novel structural features include details of the mismatch symmetry within the OMCC, the presence of a fourth VirB8 subunit in the asymmetric unit of both the arches and the inner membrane complex (IMC), and a hydrophobic VirB5 tip in the distal end of the stalk. Additionally, we provide previously undescribed structural insights into the protein VirB10 and identify a novel regulation mechanism of T4SS-mediated pilus biogenesis by this protein, that we believe is a key checkpoint for this process.

5.
Biology (Basel) ; 13(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38927295

RESUMEN

The symbiotic interaction between leguminous and Bradyrhizobium sp. SUTN9-2 mainly relies on the nodulation process through Nod factors (NFs), while the type IV secretion system (T4SS) acts as an alternative pathway in this symbiosis. Two copies of T4SS (T4SS1 and T4SS2) are located on the chromosome of SUTN9-2. ΔT4SS1 reduces both nodule number and nitrogenase activity in all SUTN9-2 nodulating legumes. The functions of three selected genes (copG1, traG1, and virD21) within the region of T4SS1 were examined. We generated deleted mutants and tested them in Vigna radiata cv. SUT4. ΔtraG1 and ΔvirD21 exhibited lower invasion efficiency at the early stages of root infection but could be recently restored. In contrast, ΔcopG1 completely hindered nodule organogenesis and nitrogenase activity in all tested legumes. ΔcopG1 showed low expression of the nodulation gene and ttsI but exhibited high expression levels of the T4SS genes, traG1 and trbE1. The secreted proteins from ΔT4SS1 were down-regulated compared to the wild-type. Although ΔcopG1 secreted several proteins after flavonoid induction, T3SS (nopP and nopX) and the C4-dicarboxylate transporter (dct) were not detected. These results confirm the crucial role of the copG1 gene as a novel key regulator in the symbiotic relationship between SUTN9-2 and legumes.

6.
mBio ; 15(7): e0119824, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38832773

RESUMEN

Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).


Asunto(s)
Proteínas Bacterianas , Stenotrophomonas maltophilia , Sistemas de Secreción Tipo IV , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/enzimología , Stenotrophomonas maltophilia/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Conformación Proteica
7.
ISME Commun ; 4(1): ycae059, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38770060

RESUMEN

Mobile genetic elements (MGEs), collectively referred to as the "mobilome", can have a significant impact on the fitness of microbial communities and therefore on ecological processes. Marine MGEs have mainly been associated with wide geographical and phylogenetic dispersal of adaptative traits. However, whether the structure of this mobilome exhibits deterministic patterns in the natural community is still an open question. The aim of this study was to characterize the structure of the conjugative mobilome in the ocean surface bacterioplankton by searching the publicly available marine metagenomes from the TARA Oceans survey, together with molecular markers, such as relaxases and type IV coupling proteins of the type IV secretion system (T4SS). The T4SS machinery was retrieved in more abundance than relaxases in the surface marine bacterioplankton. Moreover, among the identified MGEs, mobilizable elements were the most abundant, outnumbering self-conjugative sequences. Detection of a high number of incomplete T4SSs provides insight into possible strategies related to trans-acting activity between MGEs, and accessory functions of the T4SS (e.g. protein secretion), allowing the host to maintain a lower metabolic burden in the highly dynamic marine system. Additionally, the results demonstrate a wide geographical dispersion of MGEs throughout oceanic regions, while the Southern Ocean appears segregated from other regions. The marine mobilome also showed a high similarity of functions present in known plasmid databases. Moreover, cargo genes were mostly related to DNA processing, but scarcely associated with antibiotic resistance. Finally, within the MGEs, integrative and conjugative elements showed wider marine geographic dispersion than plasmids.

8.
Cell Insight ; 3(3): 100161, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38646547

RESUMEN

Cell polarity is crucial for gastric mucosal barrier integrity and mainly regulated by polarity-regulating kinase partitioning-defective 1b (Par1b). During infection, the carcinogen Helicobacter pylori hijacks Par1b via the bacterial oncoprotein CagA leading to loss of cell polarity, but the precise molecular mechanism is not fully clear. Here we discovered a novel function of the actin-binding protein cortactin in regulating Par1b, which forms a complex with cortactin and the tight junction protein zona occludens-1 (ZO-1). We found that serine phosphorylation at S405/418 and the SH3 domain of cortactin are important for its interaction with both Par1b and ZO-1. Cortactin knockout cells displayed disturbed Par1b cellular localization and exhibited morphological abnormalities that largely compromised transepithelial electrical resistance, epithelial cell polarity, and apical microvilli. H. pylori infection promoted cortactin/Par1b/ZO-1 abnormal interactions in the tight junctions in a CagA-dependent manner. Infection of human gastric organoid-derived mucosoids supported these observations. We therefore hypothesize that CagA disrupts gastric epithelial cell polarity by hijacking cortactin, and thus Par1b and ZO-1, suggesting a new signaling pathway for the development of gastric cancer by Helicobacter.

9.
Trends Microbiol ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38485609

RESUMEN

Several single-nucleotide polymorphisms (SNPs) in human chromosomes are known to predispose to cancer. However, cancer-associated SNPs in bacterial pathogens were unknown until discovered in the stomach pathogen Helicobacter pylori. Those include an alanine-threonine polymorphism in the EPIYA-B phosphorylation motif of the injected effector protein CagA that affects cancer risk by modifying inflammatory responses and loss of host cell polarity. A serine-to-leucine change in serine protease HtrA is associated with boosted proteolytic cleavage of epithelial junction proteins and introduction of DNA double-strand breaks (DSBs) in host chromosomes, which co-operatively elicit malignant alterations. In addition, H. pylori genome-wide association studies (GWAS) identified several other SNPs potentially associated with increased gastric cancer (GC) risk. Here we discuss the clinical importance, evolutionary origin, and functional advantage of the H. pylori SNPs. These exciting new data highlight cancer-associated SNPs in bacteria, which should be explored in more detail in future studies.

10.
Comput Struct Biotechnol J ; 23: 801-812, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38328004

RESUMEN

Many pathogenic bacteria use type IV secretion systems (T4SSs) to deliver effectors (T4SEs) into the cytoplasm of eukaryotic cells, causing diseases. The identification of effectors is a crucial step in understanding the mechanisms of bacterial pathogenicity, but this remains a major challenge. In this study, we used the full-length embedding features generated by six pre-trained protein language models to train classifiers predicting T4SEs and compared their performance. We integrated three modules into a model called T4SEpp. The first module searched for full-length homologs of known T4SEs, signal sequences, and effector domains; the second module fine-tuned a machine learning model using data for a signal sequence feature; and the third module used the three best-performing pre-trained protein language models. T4SEpp outperformed other state-of-the-art (SOTA) software tools, achieving ∼0.98 accuracy at a high specificity of ∼0.99, based on the assessment of an independent validation dataset. T4SEpp predicted 13 T4SEs from Helicobacter pylori, including the well-known CagA and 12 other potential ones, among which eleven could potentially interact with human proteins. This suggests that these potential T4SEs may be associated with the pathogenicity of H. pylori. Overall, T4SEpp provides a better solution to assist in the identification of bacterial T4SEs and facilitates studies of bacterial pathogenicity. T4SEpp is freely accessible at https://bis.zju.edu.cn/T4SEpp.

11.
Mol Microbiol ; 121(4): 636-645, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37975530

RESUMEN

Bacterial secretion systems, such as the type 3, 4, and 6 are multiprotein nanomachines expressed at the surface of pathogens with Gram-negative like envelopes. They are known to be crucial for virulence and to translocate bacteria-encoded effector proteins into host cells to manipulate cellular functions. This facilitates either pathogen attachment or invasion of the targeted cell. Effector proteins also promote evasion of host immune recognition. Imaging by cryo-electron microscopy in combination with structure determination has become a powerful approach to understand how these nanomachines work. Still, questions on their assembly, the precise secretion mechanisms, and their direct involvement in pathogenicity remain unsolved. Here, we present an overview of the recent developments in in situ cryo-electron microscopy. We discuss its potential for the investigation of the role of bacterial secretion systems during the host-bacterial crosstalk at the molecular level. These in situ studies open new perspectives for our understanding of secretion system structure and function.


Asunto(s)
Sistemas de Secreción Bacterianos , Tomografía con Microscopio Electrónico , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo III/metabolismo
12.
Microbes Infect ; 26(1-2): 105246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37926369

RESUMEN

The delivery of Helicobacter pylori CagA into host cells was long believed to occur through the integrin cell surface receptors. However, the role of CEACAM receptors has recently been highlighted, instead. Here, we have categorized the existing experimental evidence according to whether deletion, upregulation, downregulation, or inhibition of the target ligands (T4SS or HopQ) or receptors (integrins or CEACAMs), result in alterations in CagA phosphorylation, cell elongation, or IL-8 production. According to our analysis, the statistics favor the essence of most of the T4SS constituents and the involvement of HopQ adhesin in all three functions. Concerning the integrin family, the collected data is controversial, but yielding towards it being dispensable or involved in CagA translocation. Yet, regarding cell elongation, more events are showing ß1 integrin being involved, than αvß4 being inhibitory. Concerning IL-8 secretion, again there are more events showing α5, ß1 and ß6 integrins to be involved, than those showing inhibitory roles for ß1, ß4 and ß6 integrins. Finally, CEACAM 1, 3, and 5 are identified as mostly essential or involved in CagA phosphorylation, whereasCEACAM 4, 7, and 8 are found dispensable and CEACAM6 is under debate. Conversely, CEACAM1, 5 and 6 appear mostly dispensable for cell elongation. Noteworthy is the choice of cell type, bacterial strain, multiplicity and duration of infection, as well as the sensitivity of the detection methods, all of which can affect the variably obtained results.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Integrinas/metabolismo , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Helicobacter pylori/genética , Interleucina-8/metabolismo
13.
Front Cell Infect Microbiol ; 13: 1255852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089815

RESUMEN

Many pathogens use Type III and Type IV protein secretion systems to secrete virulence factors from the bacterial cytosol into host cells. These systems operate through a one-step mechanism. The secreted substrates (protein or nucleo-protein complexes in the case of Type IV conjugative systems) are guided to the base of the secretion channel, where they are directly delivered into the host cell in an ATP-dependent unfolded state. Despite the numerous disparities between these secretion systems, here we have focused on the structural and functional similarities between both systems. In particular, on the structural similarity shared by one of the main ATPases (EscN and VirD4 in Type III and Type IV secretion systems, respectively). Interestingly, these ATPases also exhibit a structural resemblance to F1-ATPases, which suggests a common mechanism for substrate secretion. The correlation between structure and function of essential components in both systems can provide significant insights into the molecular mechanisms involved. This approach is of great interest in the pursuit of identifying inhibitors that can effectively target these systems.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Tipo IV , Sistemas de Secreción Tipo IV/metabolismo , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo , Transporte de Proteínas , Adenosina Trifosfatasas , Sistemas de Secreción Tipo III/metabolismo
14.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38069104

RESUMEN

CagY is the largest and most complex protein from Helicobacter pylori's (Hp) type IV secretion system (T4SS), playing a critical role in the modulation of gastric inflammation and risk for gastric cancer. CagY spans from the inner to the outer membrane, forming a channel through which Hp molecules are injected into human gastric cells. Yet, a tridimensional structure has been reported for only short segments of the protein. This intricate protein was modeled using different approaches, including homology modeling, ab initio, and deep learning techniques. The challengingly long middle repeat region (MRR) was modeled using deep learning and optimized using equilibrium molecular dynamics. The previously modeled segments were assembled into a 1595 aa chain and a 14-chain CagY multimer structure was assembled by structural alignment. The final structure correlated with published structures and allowed to show how the multimer may form the T4SS channel through which CagA and other molecules are translocated to gastric cells. The model confirmed that MRR, the most polymorphic and complex region of CagY, presents numerous cysteine residues forming disulfide bonds that stabilize the protein and suggest this domain may function as a contractile region playing an essential role in the modulating activity of CagY on tissue inflammation.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Proteínas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Antígenos Bacterianos/metabolismo , Inflamación
15.
Front Cell Infect Microbiol ; 13: 1259472, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937207

RESUMEN

Introduction: An extended-spectrum beta-lactamase (ESBL)-hypervirulent Klebsiella pneumoniae (HvKP) strain HKE9 was isolated from the blood in an outpatient. Methods: The effect of the global regulatory factor RpoS on antimicrobial resistance, pathogenicity, and environmental adaptability was elucidated. Results: HKE9 is a novel ST3355 (K20/O2a) hypervirulent strain with a positive string test and resistant to cephems except cefotetan. It has a genome size of 5.6M, including two plasmids. CTX-M-15 was found in plasmid 2, and only ompk37 was found in the chromosome. HKE9 could produce bacterial siderophores, and genes of enterobactin, yersiniabactin, aerobactin, and salmochelin have been retrieved in the genome. As a global regulatory factor, knockout of rpoS did not change antimicrobial resistance or hemolytic phenotype while increasing the virulence to Galleria mellonella larvae and showing higher viscosity. Moreover, rpoS knockout can increase bacterial competitiveness and cell adhesion ability. Interestingly, HKE9-M-rpoS decreased resistance to acidic pH, high osmotic pressure, heat shock, and ultraviolet and became sensitive to disinfectants (H2O2, alcohol, and sodium hypochlorite). Although there were 13 Type 6 secretion system (T6SS) core genes divided into two segments with tle1 between segments in the chromosome, transcriptomic analysis showed that rpoS negatively regulated T4SS located on plasmid 2, type 1, and type 3 fimbriae and positively regulate genes responsible for acidic response, hyperosmotic pressure, heat shock, oxidative stress, alcohol and hypochlorous acid metabolism, and quorum sensing. Discussion: Here, this novel ST3355 ESBL-HvKP strain HKE9 may spread via various clonal types. The important regulation effect of rpoS is the enhanced tolerance and resistance to environmental stress and disinfectants, which may be at the cost of reducing virulence and regulated by T4SS.


Asunto(s)
Antiinfecciosos , Desinfectantes , Animales , Virulencia/genética , Klebsiella pneumoniae , Factores de Virulencia/genética , Factores de Virulencia/farmacología , Transcriptoma , Peróxido de Hidrógeno/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Fenotipo , Desinfectantes/farmacología , Antiinfecciosos/farmacología
17.
J Microbiol Biotechnol ; 33(12): 1543-1551, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-37528551

RESUMEN

The recently published high-resolution R388 T4SS structure provides exciting new details about the complete complex of T4SS, including the components making up the stalk and arches, numerous symmetry mismatches between regions of the complex, and an intriguing interpretation of the closed stalk and radial symmetry of the inner membrane complex, which is related to pilus biogenesis assembly. However, there are a few unidentified densities in the electron microscopy map and portions of the identified component sequences for which the structure is not yet known. It is also unclear how well this minimized DNA-transporting T4SS predicts the structure of other T4SSs, such as expanded systems and those that transport proteins rather than DNA. In this review, we evaluate what can be inferred from the recent high-resolution structure of the R388 T4SS with respect to the Cag and Dot/Icm systems. These systems were selected because, given what is currently known about these systems, we expect them to present most structural differences compared to the R388 T4SS structure. Furthermore, we discuss bacterial physiology and diversity, the T4SS structures and their variations between different bacterial species. These insights may prove beneficial for researchers who elucidate the structure and functions of T4SS in different bacterial species.


Asunto(s)
ADN , Sistemas de Secreción Tipo IV , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Transporte Biológico , Proteínas Bacterianas/genética
18.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37653467

RESUMEN

Legionella pneumophila is an opportunistic pathogen responsible for Legionnaires' disease or Legionellosis. This bacterium is found in the environment interacting with free-living amoebae such as Acanthamoeba castellanii. Until now, proteomic analyses have been done in amoebae infected with L. pneumophila but focused on the Legionella-containing vacuole. In this study, we propose a global proteomic analysis of the A. castellanii proteome following infection with L. pneumophila wild-type (WT) or with an isogenic ΔdotA mutant strain, which is unable to replicate intracellularly. We found that infection with L. pneumophila WT leads to reduced levels of A. castellanii proteins associated with lipid homeostasis/metabolism, GTPase regulation, and kinase. The levels of organelle-associated proteins were also decreased during infection. Legionellapneumophila WT infection leads to increased levels of proteins associated with polyubiquitination, folding or degradation, and antioxidant activities. This study reinforces our knowledge of this too little explored but so fundamental interaction between L. pneumophila and A. castellanii, to understand how the bacterium could resist amoeba digestion.


Asunto(s)
Acanthamoeba castellanii , Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Proteómica , Legionella pneumophila/genética , Homeostasis
19.
Front Microbiol ; 14: 1195755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37389331

RESUMEN

A bacterial strain, designated T173T, was previously isolated from a root-nodule of a Melilotus albus plant growing in Canada and identified as a novel Ensifer lineage that shared a clade with the non-symbiotic species, Ensifer adhaerens. Strain T173T was also previously found to harbour a symbiosis plasmid and to elicit root-nodules on Medicago and Melilotus species but not fix nitrogen. Here we present data for the genomic and taxonomic description of strain T173T. Phylogenetic analyses including the analysis of whole genome sequences and multiple locus sequence analysis (MLSA) of 53 concatenated ribosome protein subunit (rps) gene sequences confirmed placement of strain T173T in a highly supported lineage distinct from named Ensifer species with E. morelensis Lc04T as the closest relative. The highest digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of genome sequences of strain T173T compared with closest relatives (35.7 and 87.9%, respectively) are well below the respective threshold values of 70% and 95-96% for bacterial species circumscription. The genome of strain T173T has a size of 8,094,229 bp with a DNA G + C content of 61.0 mol%. Six replicons were detected: a chromosome (4,051,102 bp) and five plasmids harbouring plasmid replication and segregation (repABC) genes. These plasmids were also found to possess five apparent conjugation systems based on analysis of TraA (relaxase), TrbE/VirB4 (part of the Type IV secretion system (T4SS)) and TraG/VirD4 (coupling protein). Ribosomal RNA operons encoding 16S, 23S, and 5S rRNAs that are usually restricted to bacterial chromosomes were detected on plasmids pT173d and pT173e (946,878 and 1,913,930 bp, respectively) as well as on the chromosome of strain T173T. Moreover, plasmid pT173b (204,278 bp) was found to harbour T4SS and symbiosis genes, including nodulation (nod, noe, nol) and nitrogen fixation (nif, fix) genes that were apparently acquired from E. medicae by horizontal transfer. Data for morphological, physiological and symbiotic characteristics complement the sequence-based characterization of strain T173T. The data presented support the description of a new species for which the name Ensifer canadensis sp. nov. is proposed with strain T173T (= LMG 32374T = HAMBI 3766T) as the species type strain.

20.
Infect Immun ; 91(7): e0043622, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37338415

RESUMEN

The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Tipo IV , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Proteínas Bacterianas/metabolismo , Bacterias/genética , Transporte Biológico , ADN/metabolismo , ADN Bacteriano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...