Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Cancer ; 23(1): 1101, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953246

RESUMEN

TAB182 participates in DNA damage repair and radio-/chemosensitivity regulation in various tumors, but its role in tumorigenesis and therapeutic resistance in breast cancer remains unclear. In the current paper, we observed that triple-negative Breast Cancer (TNBC), a highly aggressive type of breast cancer, exhibits a lower expression of TAB182. TAB182 knockdown stimulates the proliferation, migration, and invasion of TNBC cells. Our study first obtained RNA-seq data to explore the cellular functions mediated by TAB182 at the genome level in TNBC cells. A transcriptome analysis and in vitro experiments enabled us to identify that TAB182 downregulation drives the enhanced properties of cancer stem-like cells (CSCs) in TNBC cells. Furthermore, TAB182 deletion contributes to the resistance of cells to olaparib or cisplatin, which can be rescued by silencing GLI2, a gene downstream of cancer stemness-related signaling pathways. Our results reveal a novel function of TAB182 as a potential negative regulator of cancer stem-like properties and drug sensitivity in TNBC cells, suggesting that TAB182 may be a tumor suppressor gene and is associated with increased therapeutic benefits for TNBC patients.


Asunto(s)
Células Madre Neoplásicas , Proteína 1 de Unión a Repeticiones Teloméricas , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/genética
2.
Mol Biol Rep ; 50(4): 3073-3083, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36689051

RESUMEN

BACKGROUND: TAB182 is overexpressed in cancerous tissues and correlated with poor overall survival in lung cancer patients. Mechanistically, TAB182 participates in DNA damage repair and endows tumour cells with radio- and chemoresistance. However, its role in non-small cell lung cancer (NSCLC) remains unclear. METHODS AND RESULTS: Cells with stable TAB182 knockdown (KD) were generated using A549 NSCLC cells, and we demonstrated that depleting TAB182 inhibits cell EMT, proliferation, colony formation, migration and invasion. Analysis of the TCGA database showed a positive correlation between TAB182 and EGFR, a well-established NSCLC oncoprotein. Then, we verified that silencing TAB182 decreases EGFR expression at both the mRNA and protein levels. Moreover, both TAB182 and EGFR were reported to restore ionizing radiation (IR)-triggered DNA damage. We validated that IR elevates the protein level of EGFR and that silencing TAB182 can alleviate IR-induced EGFR upregulation. Furthermore, overexpressing EGFR abrogates the inhibitory effects of TAB182 KD on EMT, migration, and invasion in A549 cells. CONCLUSIONS: Our data demonstrated that EGFR expression is regulated by TAB182 and downregulation of TAB182 has a novel function to repress EMT, migration and invasion by decreasing EGFR, indicating TAB182 could regulate the malignant progression of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pulmonares/metabolismo
3.
Cancer Med ; 10(9): 3101-3112, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33787085

RESUMEN

BACKGROUND: Radiotherapy is one of the main strategies for the treatment of esophageal squamous cell carcinoma (ESCC). However, treatment failure often occurs due to the emergence of radioresistance. In this study, we report a key regulator of radiation sensitivity, termed TAB182 that may become an ideal biomarker and therapeutic target to overcome radioresistance. MATERIALS AND METHODS: By applying qRT-PCR and immunohistochemical staining, the expression of TAB182 was detected in patient tissues. We next assessed the influence of TAB182 downregulation to radiosensitivity using clonogenic survival assay and γ-H2A.X foci analysis in TE-1, TE-10, and radioresistant TE-1R cell lines after ionizing radiation. To unveil the mechanism underlying, TAB182 interacting proteins were identified by mass spectrometry following co-immunoprecipitation. Furthermore, flow cytometry and western blot assay were applied to validate the identified proteins. RESULTS: Our results demonstrated that the expression of TAB182 is higher in cancer tissues than normal tissues and elevated expression of TAB182 correlates with poor outcomes of postoperative radiotherapy. Downregulation of TAB182 sensitized cancer cells to ionizing radiation, particularly in radioresistant TE-1R cells that spontaneously overexpress TAB182. Mechanically, TAB182 interacts with FHL2 to induce G2-M arrest through wiring the CHK2/CDC25C/CDC2 signaling pathway. Finally, overexpression of shRNA-resistant TAB182 restored the checkpoint and radioresistance. CONCLUSION: TAB182 potentiates the radioresistance of ESCC cells by modulating the G2-M checkpoint through its interaction with FHL2. Thus, TAB182 may become an ideal biomarker and therapeutic target of ESCC radiotherapy.


Asunto(s)
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Puntos de Control de la Fase M del Ciclo Celular , Tolerancia a Radiación/fisiología , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas de Esófago/radioterapia , Esófago/metabolismo , Histonas/análisis , Humanos , Proteínas con Homeodominio LIM/metabolismo , Terapia Molecular Dirigida/métodos , Proteínas Musculares/metabolismo , Periodo Posoperatorio , Pronóstico , ARN Interferente Pequeño/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Insuficiencia del Tratamiento
4.
J Virol ; 92(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29593045

RESUMEN

Infection by most DNA viruses activates a cellular DNA damage response (DDR), which may be to the detriment or advantage of the virus. In the case of adenoviruses, they neutralize antiviral effects of DDR activation by targeting a number of proteins for rapid proteasome-mediated degradation. We have now identified a novel DDR protein, tankyrase 1 binding protein 1 (TNKS1BP1) (also known as Tab182), which is degraded during infection by adenovirus serotype 5 and adenovirus serotype 12. In both cases, degradation requires the action of the early region 1B55K (E1B55K) and early region 4 open reading frame 6 (E4orf6) viral proteins and is mediated through the proteasome by the action of cullin-based cellular E3 ligases. The degradation of Tab182 appears to be serotype specific, as the protein remains relatively stable following infection with adenovirus serotypes 4, 7, 9, and 11. We have gone on to confirm that Tab182 is an integral component of the CNOT complex, which has transcriptional regulatory, deadenylation, and E3 ligase activities. The levels of at least 2 other members of the complex (CNOT3 and CNOT7) are also reduced during adenovirus infection, whereas the levels of CNOT4 and CNOT1 remain stable. The depletion of Tab182 with small interfering RNA (siRNA) enhances the expression of early region 1A proteins (E1As) to a limited extent during adenovirus infection, but the depletion of CNOT1 is particularly advantageous to the virus and results in a marked increase in the expression of adenovirus early proteins. In addition, the depletion of Tab182 and CNOT1 results in a limited increase in the viral DNA level during infection. We conclude that the cellular CNOT complex is a previously unidentified major target for adenoviruses during infection.IMPORTANCE Adenoviruses target a number of cellular proteins involved in the DNA damage response for rapid degradation. We have now shown that Tab182, which we have confirmed to be an integral component of the mammalian CNOT complex, is degraded following infection by adenovirus serotypes 5 and 12. This requires the viral E1B55K and E4orf6 proteins and is mediated by cullin-based E3 ligases and the proteasome. In addition to Tab182, the levels of other CNOT proteins are also reduced during adenovirus infection. Thus, CNOT3 and CNOT7, for example, are degraded, whereas CNOT4 and CNOT1 are not. The siRNA-mediated depletion of components of the complex enhances the expression of adenovirus early proteins and increases the concentration of viral DNA produced during infection. This study highlights a novel protein complex, CNOT, which is targeted for adenovirus-mediated protein degradation. To our knowledge, this is the first time that the CNOT complex has been identified as an adenoviral target.


Asunto(s)
Infecciones por Adenoviridae/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/química , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Adenoviridae/inmunología , Adenoviridae/patogenicidad , Infecciones por Adenoviridae/virología , Proteínas Cullin/metabolismo , Exorribonucleasas , Células HEK293 , Células HeLa , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Represoras , Serogrupo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...