Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 249: 125911, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37516228

RESUMEN

Infected wounds are difficult to heal because they are vulnerable to bacterial attacks, inflammatory responses, and oxidative stress. To promote the healing of infected wounds, we developed an injectable dual-network hydrogel TFAEP (TA-Fe, APS, EPL-GMA, PVA) based on ε-poly-l-lysine-graft-glycidyl methacrylate (EPL-GMA), polyvinyl alcohol (PVA), and tannic acid-iron (TA-Fe). TA-Fe formed a stable redox pair, which acted as a dual-autocatalytic system to activate ammonium persulfate, generate free radicals, and subsequently induce EPL-GMA polymerization. Then PVA formed hydrogen bonds with TA molecules. Here, TA-Fe not only simulated peroxidase to convert H2O2 into hydroxyl radicals (OH), but also exhibited good near-infrared photothermal conversion efficiency, which all endowed the hydrogel with excellent antibacterial ability. In addition, the hydrogel could remove excessive reactive oxygen species and reactive nitrogen species, alleviating oxidative stress and reducing inflammation response due to the presence of TA molecules. Moreover, the hydrogel showed good injectability and tissue adhesion, ensuring the close adhesion of the hydrogel to the wound and achieving the maximum function. In vivo experiments demonstrated that the hydrogel promoted infected wound healing by accelerating epidermal regeneration, promoting angiogenesis and collagen deposition, and facilitating the expression of anti-inflammatory factors.


Asunto(s)
Hidrogeles , Peróxido de Hidrógeno , Hidrogeles/farmacología , Lisina , Polimerizacion , Cicatrización de Heridas , Antibacterianos/farmacología , Catálisis
2.
Molecules ; 27(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014400

RESUMEN

The present study describes the green biofunctional synthesis of magnesium oxide (MgO) nanoparticles using the aqueous Tarenna asiatica fruit extract. The characterization of Tarenna asiatica fruit extract MgO nanoparticles (TAFEMgO NPs) was achieved by X-ray powder diffraction, UV-Vis spectroscopy, FTIR, TEM, SEM, and energy-dispersive X-ray diffraction. TAFEMgO NPs scavenged the DPPH free radicals with an IC50 value of 55.95 µg/µL, and it was highly significant compared to the standard. To authenticate the observed antioxidant potential of TAFEMgO NPs, oxidative stress was induced in red blood cells (RBC) using sodium nitrite (NaNO2). Interestingly, TAFEMgO NPs ameliorated the RBC damage from oxidative stress by significantly restoring the stress parameters, such as the protein carbonyl content (PCC), lipid peroxidation (LPO), total thiol (TT), super-oxide dismutase (SOD), and catalase (CAT). Furthermore, oxidative stress was induced in-vivo in Sprague Dawley female rats using diclofenac (DFC). TAFEMgO NPs normalized the stress parameters in-vivo and minimized the oxidative damage in tissues. Most importantly, TAFEMgO NPs restored the function and architecture of the damaged livers, kidneys, and small intestines by regulating biochemical parameters. TAFEMgO NPs exhibited an anticoagulant effect by increasing the clotting time from 193 s in the control to 885 s in the platelet rich plasma. TAFEMgO NPs prolonged the formation of the clot process in the activated partial thromboplastin time and the prothrombin time, suggest the effective involvement in both intrinsic and extrinsic clotting pathways of the blood coagulation cascade. TAFEMgO NPs inhibited adenosine di-phosphate (ADP)-induced platelet aggregation. TAFEMgO NPs did not show hemolytic, hemorrhagic, and edema-inducing properties at the tested concentration of 100 mg/kgbody weight, suggesting its non-toxic property. In conclusion, TAFEMgO NPs mitigates the sodium nitrite (NaNO2)- and diclofenac (DFC)-induced stress due to oxidative damage in both in vitro and in vivo experimental models.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Trombosis , Animales , Diclofenaco/farmacología , Femenino , Óxido de Magnesio/química , Óxido de Magnesio/farmacología , Nanopartículas del Metal/química , Nanopartículas/química , Estrés Oxidativo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Carbonilación Proteica , Ratas , Ratas Sprague-Dawley , Nitrito de Sodio/farmacología
3.
Int J Biol Macromol ; 209(Pt A): 1288-1297, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35460758

RESUMEN

In this research, ovalbumin (OVA) and sodium alginate (SA) were used as the materials to prepare OVA-SA composite carriers, which protected and encapsulated the hydrophobic kaempferol (KAE) and the hydrophilic tannic acid (TA). To achieve the purpose of targeted delivery, the TA-Fe3+ coating film was prepared. Results showed that the observation of small diffraction peaks in carriers proved the formation of TA/Fe3+ coating film on the surface of four composite nanoparticles (pOVA, pOVA-SA, pOVA-KAE-SA, and pOVA-KAE-TA-SA). The protein structure of the composite nanoparticles coated with TA/Fe3+ changed, and the order of the changes was pOVA-KAE > pOVA > pOVA-KAE-SA > pOVA-KAE-TA-SA > pOVA-SA. This phenomenon is due to the fact that the chromophore -C=O and the auxo-chromophore -OH are in the opposite position in the benzene ring of TA, and the two substituents have opposite effects and synergize, resulting in the different degrees of redshift of the composite nanoparticle λmax. Additionally, pOVA-SA had the highest α-helix content and the lowest random coils, conferring the protein structure the strongest stability. The coating of TA/Fe3+ increased the system stability and the thermal stability of the composite nanoparticles. Additionally, the carriers were endowed with antioxidant activity, and their antibacterial ability against Staphylococcus aureus and Escherichia coli was pOVA-KAE-TA-SA > pOVA-KAE-SA > pOVA-KAE > pOVA-SA > pOVA based on the difference in antibacterial diameter (D, mm) and square (S, mm2). pOVA-KAE-TA-SA had the strongest antioxidant activity and antibacterial ability, which improved the bioavailability of TA/KAE. These results provide a theoretical basis for the application of OVA-SA composite nanoparticles in the delivery of bioactive compounds.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Alginatos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Escherichia coli , Quempferoles/farmacología , Nanopartículas/química , Ovalbúmina , Polifenoles , Taninos
4.
Bioact Mater ; 9: 461-474, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34820583

RESUMEN

Bacterial infection, tissue hypoxia and inflammatory response can hinder the infected wound repair process. To mitigate the above issues, tannic acid-chelated Fe-decorated molybdenum disulfide nanosheets (MoS2@TA/Fe NSs) with dual enzyme activities were developed and anchored to a multifunctional hydrogel. The hydrogel exhibited excellent antibacterial ability owing to the combined effects of photothermal therapy (PTT), glutathione (GSH) loss, and the peroxidase (POD)-like activity (catalyse H2O2 into ·OH under acid condition) of MoS2@TA/Fe NSs. Benefitting from the catalase (CAT)-like activity, the hydrogel could decompose H2O2 into O2 at neutral pH to relieve hypoxia and supply adequate O2. POD-like activity was mainly attributed to MoS2 NSs, while CAT-like activity was primarily due to TA/Fe complex. Moreover, MoS2@TA/Fe NSs endowed the hydrogel with outstanding anti-oxidant ability to scavenge redundant reactive oxygen species (ROS) and reactive nitrogen species (RNS) under neutral environment to maintain the balance of antioxidant systems and prevent inflammation. In addition, the hydrogel could inhibit the release of inflammatory factors for the anti-inflammatory property of TA. TA retained partial phenolic hydroxyl groups, which cross-linked the nanosheets to the network structure of the hydrogel and promoted the adhesion of hydrogels. Due to the dynamic boron ester bonds between polyvinyl alcohol (PVA), dextran (Dex), MoS2@TA/Fe, and borax, the hydrogel demonstrated fast self-healing and rapid shape adaptability. This shape-adaptable adhesive hydrogel could fill the whole wound and closely contact the wound, ensuring that it achieved its functions with maximum efficiency. The MoS2@TA/Fe nanozyme-anchored multifunctional hydrogel showed high potential for bacteria-infected wound healing.

5.
Br J Nutr ; 115(9): 1598-606, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27245102

RESUMEN

Obesity in young adults is an increasing health problem in Australia and many other countries. Evidence-based information is needed to guide interventions that reduce the obesity-promoting elements in tertiary-education environments. In a food environmental audit survey, 252 outlets were audited across seven institutions: three universities and four technical and further education institutions campuses. A scoring instrument called the food environment-quality index was developed and used to assess all food outlets on these campuses. Information was collated on the availability, accessibility and promotion of foods and beverages and a composite score (maximum score=148; higher score indicates healthier outlets) was calculated. Each outlet and the overall campus were ranked into tertiles based on their 'healthiness'. Differences in median scores for each outcome measure were compared between institutions and outlet types using one-way ANOVA with post hoc Scheffe's testing, χ 2 tests, Kruskal-Wallis H test and the Mann-Whitney U test. Binomial logistic regressions were used to compare the proportion of healthy v. unhealthy food categories across different types of outlets. Overall, the most frequently available items were sugar-sweetened beverages (20 % of all food/drink items) followed by chocolates (12 %), high-energy (>600 kJ/serve) foods (10 %), chips (10 %) and confectionery (10 %). Healthy food and beverages were observed to be less available, accessible and promoted than unhealthy options. The median score across all outlets was 72 (interquartile range=7). Tertiary-education food environments are dominated by high-energy, nutrient-poor foods and beverages. Interventions to decrease availability, accessibility and promotion of unhealthy foods are needed.


Asunto(s)
Dieta , Ambiente , Abastecimiento de Alimentos/normas , Obesidad/etiología , Universidades , Adulto , Conducta Alimentaria , Humanos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...