Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912572

RESUMEN

The neurons of the three cerebellar nuclei (CN) are the primary output neurons of the cerebellum. The excitatory neurons (e) of the medial (m) CN (eCNm) were recently divided into molecularly defined subdomains in the adult; however, how they are established during development is not known. We define molecular subdomains of the mouse embryonic eCNm using single-cell RNA-sequencing and spatial expression analysis, showing that they evolve during embryogenesis to prefigure the adult. Furthermore, eCNm are transcriptionally divergent from cells in the other nuclei by embryonic day 14.5. We previously showed that loss of the homeobox genes En1 and En2 leads to loss of approximately half of the embryonic eCNm. We demonstrate that mutation of En1/2 in the embryonic eCNm results in death of specific posterior eCNm molecular subdomains and downregulation of TBR2 (EOMES) in an anterior embryonic subdomain, as well as reduced synaptic gene expression. We further reveal a similar function for EN1/2 in mediating TBR2 expression, neuron differentiation and survival in the other excitatory neurons (granule and unipolar brush cells). Thus, our work defines embryonic eCNm molecular diversity and reveals conserved roles for EN1/2 in the cerebellar excitatory neuron lineage.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Neuronas , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Ratones , Neuronas/metabolismo , Neuronas/citología , Supervivencia Celular/genética , Diferenciación Celular/genética , Cerebelo/embriología , Cerebelo/metabolismo , Cerebelo/citología , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Núcleos Cerebelosos/metabolismo , Núcleos Cerebelosos/embriología , Núcleos Cerebelosos/citología , Análisis de la Célula Individual , Proteínas del Tejido Nervioso
2.
Proc Natl Acad Sci U S A ; 120(28): e2220918120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37406098

RESUMEN

Understanding the claustrum's functions has recently progressed thanks to new anatomical and behavioral studies in rodents, which suggest that it plays an important role in attention, salience detection, slow-wave generation, and neocortical network synchronization. Nevertheless, knowledge about the origin and development of the claustrum, especially in primates, is still limited. Here, we show that neurons of rhesus macaque claustrum primordium are generated between embryonic day E48 and E55 and express some neocortical molecular markers, such as NR4A2, SATB2, and SOX5. However, in the early stages, it lacks TBR1 expression, which separates it from other surrounding telencephalic structures. We also found that two waves of neurogenesis (E48 and E55) in the claustrum, corresponding to the birthdates of layers 6 and 5 of the insular cortex, establish a "core" and "shell" cytoarchitecture, which is potentially a basis for differential circuit formation and could influence information processing underlying higher cognitive functions of the claustrum. In addition, parvalbumin-positive interneurons are the dominant interneuron type in the claustrum in fetal macaque, and their maturation is independent of that in the overlaying neocortex. Finally, our study reveals that the claustrum is likely not a continuance of subplate neurons of the insular cortex, but an independent pallial region, suggesting its potentially unique role in cognitive control.


Asunto(s)
Claustro , Neocórtex , Animales , Macaca mulatta , Neuronas/metabolismo , Interneuronas
3.
Elife ; 122023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37219072

RESUMEN

Expressions of voltage-gated sodium channels Nav1.1 and Nav1.2, encoded by SCN1A and SCN2A genes, respectively, have been reported to be mutually exclusive in most brain regions. In juvenile and adult neocortex, Nav1.1 is predominantly expressed in inhibitory neurons while Nav1.2 is in excitatory neurons. Although a distinct subpopulation of layer V (L5) neocortical excitatory neurons were also reported to express Nav1.1, their nature has been uncharacterized. In hippocampus, Nav1.1 has been proposed to be expressed only in inhibitory neurons. By using newly generated transgenic mouse lines expressing Scn1a promoter-driven green fluorescent protein (GFP), here we confirm the mutually exclusive expressions of Nav1.1 and Nav1.2 and the absence of Nav1.1 in hippocampal excitatory neurons. We also show that Nav1.1 is expressed in inhibitory and a subpopulation of excitatory neurons not only in L5 but all layers of neocortex. By using neocortical excitatory projection neuron markers including FEZF2 for L5 pyramidal tract (PT) and TBR1 for layer VI (L6) cortico-thalamic (CT) projection neurons, we further show that most L5 PT neurons and a minor subpopulation of layer II/III (L2/3) cortico-cortical (CC) neurons express Nav1.1 while the majority of L6 CT, L5/6 cortico-striatal (CS), and L2/3 CC neurons express Nav1.2. These observations now contribute to the elucidation of pathological neural circuits for diseases such as epilepsies and neurodevelopmental disorders caused by SCN1A and SCN2A mutations.


Asunto(s)
Neocórtex , Ratones , Animales , Ratones Transgénicos , Neocórtex/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Tractos Piramidales , Canal de Sodio Activado por Voltaje NAV1.1/genética , Neuronas/fisiología , Células Piramidales/metabolismo
4.
Dev Cogn Neurosci ; 61: 101248, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37120994

RESUMEN

In human and nonhuman primates, the amygdala paralaminar nucleus (PL) contains immature neurons. To explore the PL's potential for cellular growth during development, we compared PL neurons in (1) infant and adolescent macaques (control, maternally-reared), and in (2) infant macaques that experienced separation from their mother in the first month of life compared to control maternally-reared infants. In maternally-reared animals, the adolescent PL had fewer immature neurons, more mature neurons, and larger immature soma volumes compared to infant PL. There were also fewer total neurons (immature plus mature) in adolescent versus infant PL, suggesting that some neurons move out of the PL by adolescence. Maternal separation did not change mean immature or mature neuron counts in infant PL. However, across all infant animals, immature neuron soma volume was strongly correlated with mature neuron counts. TBR1 mRNA, a transcript required for glutamatergic neuron maturation, is significantly reduced in the maternally-separated infant PL (DeCampo et al., 2017), and was also positively correlated with mature neuron counts in infant PL. We conclude that immature neurons gradually mature by adolescence, and that the stress of maternal separation may shift this trajectory, as revealed by correlations between TBR1 mRNA and mature neuron numbers across animals.


Asunto(s)
Amígdala del Cerebelo , Privación Materna , Humanos , Lactante , Animales , Femenino , Adolescente , Amígdala del Cerebelo/fisiología , Primates , Neuronas/fisiología , Macaca
5.
Eur J Pharmacol ; 940: 175474, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36549500

RESUMEN

Dysregulation of neuronal development may cause neurodevelopmental disorders. However, how to regulate embryonic neuronal development and whether this regulation can be medical interrupted are largely unknown. This study aimed to investigate whether and how andrographolide (ANP) regulates embryonic neuronal development. The pregnant mice at embryonic day 10.5 (E10.5) were administrated with ANP, and the embryonic brains were harvested at E17.5 or E18.5. Immunofluorescence (IF), Immunohistochemistry (IHC) performed to determine whether ANP is critical in regulating neuronal development. Real-time quantitative PCR, western blotting, cell counting kit-8 assay, Flow Cytometry assay, Boyden Chamber Migration assay carried out to evaluate whether ANP regulates neuronal proliferation and migration. Protein-protein interaction, CO-immunoprecipitation and IF staining carried out to evaluate whether ANP regulates the interaction between PFKFB3, NeuN and TBR1. Knockdown or overexpression of PFKFB3 by adenovirus infection were used to determine whether ANP inhibits neuronal development through PFKFB3 mediated glycolytic pathway. Our data indicated that ANP inhibited the maturation of embryonic neurons characterized by suppressing neuronal proliferation and migration. ANP regulated the interaction between PFKFB3, NeuN, and TBR1. Knockdown of PFKFB3 aggravated ANP mediated inhibition of neuronal proliferation and migration, while overexpression of PFKFB3 attenuated ANP mediated neuronal developmental suppression. In summary, ANP suppressed the expression of PFKFB3, and interrupted the interaction between TRB1 and NeuN, resulting in suppressing neuronal proliferation, migration and maturation and eventually inhibiting murine embryonic neuronal development.


Asunto(s)
Diterpenos , Fosfofructoquinasa-2 , Embarazo , Femenino , Ratones , Animales , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Diterpenos/farmacología , Glucólisis , Proliferación Celular
6.
Artículo en Inglés | MEDLINE | ID: mdl-38469155

RESUMEN

More than 40 retinal ganglion cell (RGC) subtypes have been categorized in mouse based on their morphologies, functions, and molecular features. Among these diverse subtypes, orientation-selective Jam2-expressing RGCs (J-RGCs) has two unique morphologic characteristics: the ventral-facing dendritic arbor and the OFF-sublaminae stratified terminal dendrites in the inner plexiform layer. Previously, we have discovered that T-box transcription factor T-brain 1 (Tbr1) is expressed in J-RGCs. We further found that Tbr1 is essential for the expression of Jam2, and Tbr1 regulates the formation and the dendritic morphogenesis of J-RGCs. However, Tbr1 begins to express in terminally differentiated RGCs around perinatal stage, suggesting that it is unlikely involved in the initial fate determination for J-RGC and other upstream transcription factors must control Tbr1 expression and J-RGC formation. Using the Cleavage Under Targets and Tagmentation technique, we discovered that Pou4f1 binds to Tbr1 on the evolutionary conserved exon 6 and an intergenic region downstream of the 3'UTR, and on a region flanking the promoter and the first exon of Jam2. We showed that Pou4f1 is required for the expression of Tbr1 and Jam2, indicating Pou4f1 as a direct upstream regulator of Tbr1 and Jam2. Most interestingly, the Pou4f1-bound element in exon 6 of Tbr1 possesses high-level enhancer activity, capable of directing reporter gene expression in J-RGCs. Together, these data revealed a Pou4f1-Tbr1-Jam2 genetic hierarchy as a critical pathway in the formation of J-RGC subtype.

7.
Vet World ; 15(7): 1772-1778, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36185509

RESUMEN

Background and Aim: Surra is caused by Trypanosoma evansi. The detection method using conventional parasitological tests has not always shown positive results in blood parasite detection, although the livestock has presented with clinical signs. Therefore, a fast and accurate diagnosis is necessary to prevent the disease predominately in field isolates. This study aimed to investigate the sensitivity of molecular detection method using two different specific primers, namely, Internal Transcribed Spacer 1 (ITS-1) and Trypanosoma brucei repeat 1/2 (TBR-1/2) against T. evansi field isolates from Banten Province, Indonesia. Materials and Methods: The isolates of T. evansi used in this study were collected from Banten Province and cultured and preserved by the National Research Center for Veterinary Science, Indonesia. Eighteen experimental rats were divided into three equal groups, which were categorized as control, 1 × 101, and 1 × 104 infective doses. The isolates were injected into all experimental albino rats intraperitoneally. All samples were tested using conventional blood smear, card agglutination test (CATT), and polymerase chain reaction (PCR) method. Results: The results of the CATT examination in all treatments showed negative results. However, PCR results showed that two different primers, namely, ITS-1 and TBR-1/2 had been successfully detected T. evansi from infected experimental rats, proven by positive PCR band appeared in 480 base pairs (bp) and 164 bp, respectively. Conclusion: Based on the molecular diagnostic test using PCR method, TBR-1/2 primer is more sensitive to detect T. evansi compared to ITS-1 primer. The present finding provides preliminary data for studying the efficiency of different primers if practically applied as a standard diagnostic test for trypanosomiasis, especially in Indonesian livestock.

8.
J Neurosci ; 42(37): 7166-7181, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35944998

RESUMEN

T-Box Brain Transcription Factor 1 (TBR1) plays essential roles in brain development, mediating neuronal migration, fate specification, and axon tract formation. While heterozygous loss-of-function and missense TBR1 mutations are associated with neurodevelopmental conditions, the effects of these heterogeneous mutations on brain development have yet to be fully explored. We characterized multiple mouse lines carrying Tbr1 mutations differing by type and exonic location, including the previously generated Tbr1 exon 2-3 knock-out (KO) line, and we analyzed male and female mice at neonatal and adult stages. The frameshift patient mutation A136PfsX80 (A136fs) caused reduced TBR1 protein in cortex similar to Tbr1 KO, while the missense patient mutation K228E caused significant TBR1 upregulation. Analysis of cortical layer formation found similar defects between KO and A136fs homozygotes in their CUX1+ and CTIP2+ layer positions, while K228E homozygosity produced layering defects distinct from these mutants. Meanwhile, the examination of cortical apoptosis found extensive cell death in KO homozygotes but limited cell death in A136fs or K228E homozygotes. Despite their discordant cortical phenotypes, these Tbr1 mutations produced several congruent phenotypes, including anterior commissure reduction in heterozygotes, which was previously observed in humans with TBR1 mutations. These results indicate that patient-specific Tbr1 mutant mice will be valuable translational models for pinpointing shared and distinct etiologies among patients with TBR1-related developmental conditions.SIGNIFICANCE STATEMENT Mutations of the TBR1 gene increase the likelihood of neurodevelopmental conditions such as intellectual disability and autism. Therefore, the study of TBR1 can offer insights into the biological mechanisms underlying these conditions, which affect millions worldwide. To improve the modeling of TBR1-related conditions over current Tbr1 knock-out mice, we created mouse lines carrying Tbr1 mutations identical to those found in human patients. Mice with one mutant Tbr1 copy show reduced amygdalar connections regardless of mutation type, suggesting a core biomarker for TBR1-related disorders. In mice with two mutant Tbr1 copies, brain phenotypes diverge by mutation type, suggesting differences in Tbr1 gene functionality in different patients. These mouse models will serve as valuable tools for understanding genotype-phenotype relationships among patients with neurodevelopmental conditions.


Asunto(s)
Proteínas de Unión al ADN , Neurogénesis , Proteínas de Dominio T Box , Animales , Axones/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Mutación , Neurogénesis/genética , Proteínas de Dominio T Box/genética
9.
Front Mol Neurosci ; 15: 921901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935334

RESUMEN

The cerebellar nuclear (CN) neurons are a molecularly heterogeneous population whose specification into the different cerebellar nuclei is defined by the expression of varying sets of transcription factors. Here, we present a novel molecular marker, Pou3f1, that delineates specific sets of glutamatergic CN neurons. The glutamatergic identity of Pou3f1+ cells was confirmed by: (1) the co-expression of vGluT2, a cell marker of glutamatergic neurons; (2) the lack of co-expression between Pou3f1 and GAD67, a marker of GABAergic neurons; (3) the co-expression of Atoh1, the master regulator required for the production of all cerebellar glutamatergic lineages; and (4) the absence of Pou3f1-expressing cells in the Atoh1-null cerebellum. Furthermore, the lack of Pax6 and Tbr1 expression in Pou3f1+ cells reveals that Pou3f1-expressing CN neurons specifically settle in the interposed and dentate nuclei. In addition, the Pou3f1-labeled glutamatergic CN neurons can be further classified by the expression of Brn2 and Irx3. The results of the present study align with previous findings highlighting that the survival of the interposed and dentate CN neurons is largely independent of Pax6. More importantly, the present study extends the field's collective knowledge of the molecular diversity of cerebellar nuclei.

10.
Mol Neurobiol ; 59(9): 5750-5765, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35781633

RESUMEN

Changes in the transcription factor (TF) expression are critical for brain development, and they may also underlie neurodevelopmental disorders. Indeed, T-box brain1 (Tbr1) is a TF crucial for the formation of neocortical layer VI, and mutations and microdeletions in that gene are associated with malformations in the human cerebral cortex, alterations that accompany autism spectrum disorder (ASD). Interestingly, Tbr1 upregulation has also been related to the occurrence of ASD-like symptoms, although limited studies have addressed the effect of increased Tbr1 levels during neocortical development. Here, we analysed the impact of Tbr1 misexpression in mouse neural progenitor cells (NPCs) at embryonic day 14.5 (E14.5), when they mainly generate neuronal layers II-IV. By E18.5, cells accumulated in the intermediate zone and in the deep cortical layers, whereas they became less abundant in the upper cortical layers. In accordance with this, the proportion of Sox5+ cells in layers V-VI increased, while that of Cux1+ cells in layers II-IV decreased. On postnatal day 7, fewer defects in migration were evident, although a higher proportion of Sox5+ cells were seen in the upper and deep layers. The abnormal neuronal migration could be partially due to the altered multipolar-bipolar neuron morphologies induced by Tbr1 misexpression, which also reduced dendrite growth and branching, and disrupted the corpus callosum. Our results indicate that Tbr1 misexpression in cortical NPCs delays or disrupts neuronal migration, neuronal specification, dendrite development and the formation of the callosal tract. Hence, genetic changes that provoke ectopic Tbr1 upregulation during development could provoke cortical brain malformations.


Asunto(s)
Trastorno del Espectro Autista , Neocórtex , Animales , Trastorno del Espectro Autista/genética , Corteza Cerebral/metabolismo , Humanos , Ratones , Neocórtex/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
11.
J Neurodev Disord ; 14(1): 11, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123407

RESUMEN

BACKGROUND: Tbr1 encodes a T-box transcription factor and is considered a high confidence autism spectrum disorder (ASD) gene. Tbr1 is expressed in the postmitotic excitatory neurons of the deep neocortical layers 5 and 6. Postnatally and neonatally, Tbr1 conditional mutants (CKOs) have immature dendritic spines and reduced synaptic density. However, an understanding of Tbr1's function in the adult mouse brain remains elusive. METHODS: We used conditional mutagenesis to interrogate Tbr1's function in cortical layers 5 and 6 of the adult mouse cortex. RESULTS: Adult Tbr1 CKO mutants have dendritic spine and synaptic deficits as well as reduced frequency of mEPSCs and mIPSCs. LiCl, a WNT signaling agonist, robustly rescues the dendritic spine maturation, synaptic defects, and excitatory and inhibitory synaptic transmission deficits. CONCLUSIONS: LiCl treatment could be used as a therapeutic approach for some cases of ASD with deficits in synaptic transmission.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/genética , Humanos , Ratones , Neurogénesis/fisiología , Neuronas , Transmisión Sináptica , Proteínas de Dominio T Box/genética , Factores de Transcripción
12.
Taiwan J Obstet Gynecol ; 60(6): 1094-1097, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34794744

RESUMEN

OBJECTIVE: To provide prenatal diagnosis for a pregnant woman with genetic history of intellectual disability. CASE REPORT: A Chinese pedigree with intellectual disability was collected in this study. Cytogenetic analysis, chromosomal microarray analysis (CMA) and whole exome sequencing (WES) followed by Sanger validation were conducted to identify the genetic pathogenesis. A novel heterozygous deletion c.370_374delTTCCC in TBR1 gene was identified, leading to a frameshift mutation starting at Phe124 followed by a premature stop codon at position 141 (p.Phe124Valfs∗18). Segregation analysis identified that this novel mutation is co-segregated among the affected family members but absent in unaffected family members. Prenatal diagnosis indicated the absence of this mutation, and the family decided to continue the pregnancy after genetic counseling. CONCLUSION: Our findings demonstrated the significance of genetic testing in the diagnosis of intellectual disability. This work also confirmed the effectiveness of WES in prenatal diagnosis.


Asunto(s)
Secuenciación del Exoma/métodos , Discapacidad Intelectual/genética , Diagnóstico Prenatal/métodos , Proteínas de Dominio T Box/genética , Adulto , Femenino , Humanos , Discapacidad Intelectual/diagnóstico , Mutación , Linaje , Embarazo
13.
Neurosci Bull ; 37(8): 1091-1106, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33948885

RESUMEN

Genetic composition plays critical roles in the pathogenesis of autism spectrum disorder (ASD). Especially, inherited and de novo intronic variants are often seen in patients with ASD. However, the biological significance of intronic variants is difficult to address. Here, among a Chinese ASD cohort, we identified a recurrent inherited intronic variant in the CHD7 gene, which is specifically enriched in East Asian populations. CHD7 has been implicated in numerous developmental disorders including CHARGE syndrome and ASD. To investigate whether the ASD-associated CHD7 intronic variant affects neural development, we established human embryonic stem cells carrying this variant using CRISPR/Cas9 methods and found that the level of CHD7 mRNA significantly decreased compared to control. Upon differentiation towards the forebrain neuronal lineage, we found that neural cells carrying the CHD7 intronic variant exhibited developmental delay and maturity defects. Importantly, we found that TBR1, a gene also implicated in ASD, was significantly increased in neurons carrying the CHD7 intronic variant, suggesting the intrinsic relevance among ASD genes. Furthermore, the morphological defects found in neurons carrying CHD7 intronic mutations were rescued by knocking down TBR1, indicating that TBR1 may be responsible for the defects in CHD7-related disorders. Finally, the CHD7 intronic variant generated three abnormal forms of transcripts through alternative splicing, which all exhibited loss-of-function in functional assays. Our study provides crucial evidence supporting the notion that the intronic variant of CHD7 is potentially an autism susceptibility site, shedding new light on identifying the functions of intronic variants in genetic studies of autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Diferenciación Celular , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Humanos , Mutación/genética , Neuronas
14.
Brain Struct Funct ; 226(3): 759-785, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33544184

RESUMEN

The prethalamic eminence (PThE), a diencephalic caudal neighbor of the telencephalon and alar hypothalamus, is frequently described in mammals and birds as a transient embryonic structure, undetectable in the adult brain. Based on descriptive developmental analysis of Tbr1 gene brain expression in chick embryos, we previously reported that three migratory cellular streams exit the PThE rostralward, targeting multiple sites in the hypothalamus, subpallium and septocommissural area, where eminential cells form distinct nuclei or disperse populations. These conclusions needed experimental corroboration. In this work, we used the homotopic quail-chick chimeric grafting procedure at stages HH10/HH11 to demonstrate by fate-mapping the three predicted tangential migration streams. Some chimeric brains were processed for Tbr1 in situ hybridization, for correlation with our previous approach. Evidence supporting all three postulated migration streams is presented. The results suggested a slight heterochrony among the juxtapeduncular (first), the peripeduncular (next), and the eminentio-septal (last) streams, each of which followed differential routes. A possible effect of such heterochrony on the differential selection of medial to lateral habenular hodologic targets by the migrated neurons is discussed.


Asunto(s)
Hipotálamo/embriología , Neuronas/citología , Codorniz/embriología , Telencéfalo/metabolismo , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Embrión de Pollo , Pollos , Diencéfalo/embriología
15.
Anim Cells Syst (Seoul) ; 24(2): 114-123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32489691

RESUMEN

In utero electroporation (IUE) is a useful technique for gene delivery in embryonic mouse brain. IUE technique is used to investigate the mammalian brain development in vivo. However, according to recent studies, IUE methodology has some limitations like the formation of artificial ectopias and heterotopias at the micro-injection site. Thus far, the artificial heterotopias generated by physical trauma during IUE are rarely reported. Here, we reported the artificial heterotopias and ectopias generated from surgical damages of micropipette in detail, and moreover, we described the protocol to avoid these phenotypes. For the experimental purpose, we transferred empty plasmids (pCAGIG-GFP) with green fluorescent-labelled protein into the cortical cortex by IUE and then compared the structure of the cortex region between the injected and un-injected cerebral hemispheres. The coronary section showed that ectopias and heterotopias were appeared on imperfect-injected brains, and layer maker staining, which including Ctip2 and TBR1 and laminin, can differentiate the physical damage, revealing the neurons in artificial ectopic and heterotopic area were not properly arranged. Moreover, premature differentiation of neurons in ectopias and heterotopias were observed. To avoid heterotopias and ectopias, we carefully manipulated the method of IUE application. Thus, this study might be helpful for the in utero electroporator to distinguish the artificial ectopias and heterotopias that caused by the physical injury by microneedle and the ways to avoid those undesirable circumstances.

16.
Cell Rep ; 31(2): 107495, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294447

RESUMEN

Tbr1 is a high-confidence autism spectrum disorder (ASD) gene encoding a transcription factor with distinct pre- and postnatal functions. Postnatally, Tbr1 conditional knockout (CKO) mutants and constitutive heterozygotes have immature dendritic spines and reduced synaptic density. Tbr1 regulates expression of several genes that underlie synaptic defects, including a kinesin (Kif1a) and a WNT-signaling ligand (Wnt7b). Furthermore, Tbr1 mutant corticothalamic neurons have reduced thalamic axonal arborization. LiCl and a GSK3ß inhibitor, two WNT-signaling agonists, robustly rescue the dendritic spines and the synaptic and axonal defects, suggesting that this could have relevance for therapeutic approaches in some forms of ASD.


Asunto(s)
Espinas Dendríticas/metabolismo , Proteínas de Dominio T Box/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Trastorno del Espectro Autista/genética , Proteínas de Unión al ADN/metabolismo , Espinas Dendríticas/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/fisiología , Tálamo/metabolismo , Vía de Señalización Wnt/genética
17.
Proc Natl Acad Sci U S A ; 117(12): 6836-6843, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32144139

RESUMEN

Visuomotor impairments characterize numerous neurological disorders and neurogenetic syndromes, such as autism spectrum disorder (ASD) and Dravet, Fragile X, Prader-Willi, Turner, and Williams syndromes. Despite recent advances in systems neuroscience, the biological basis underlying visuomotor functional impairments associated with these clinical conditions is poorly understood. In this study, we used neuroimaging connectomic approaches to map the visuomotor integration (VMI) system in the human brain and investigated the topology approximation of the VMI network to the Allen Human Brain Atlas, a whole-brain transcriptome-wide atlas of cortical genetic expression. We found the genetic expression of four genes-TBR1, SCN1A, MAGEL2, and CACNB4-to be prominently associated with visuomotor integrators in the human cortex. TBR1 gene transcripts, an ASD gene whose expression is related to neural development of the cortex and the hippocampus, showed a central spatial allocation within the VMI system. Our findings delineate gene expression traits underlying the VMI system in the human cortex, where specific genes, such as TBR1, are likely to play a central role in its neuronal organization, as well as on specific phenotypes of neurogenetic syndromes.


Asunto(s)
Canales de Calcio/genética , Corteza Motora/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Trastornos del Neurodesarrollo/patología , Proteínas/genética , Proteínas de Dominio T Box/genética , Corteza Visual/fisiopatología , Adulto , Anciano , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Mapeo Encefálico , Estudios de Cohortes , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patología , Desempeño Psicomotor , Percepción Visual
18.
Front Mol Neurosci ; 12: 241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680851

RESUMEN

Mutations in Tbr1, a high-confidence ASD (autism spectrum disorder)-risk gene encoding the transcriptional regulator TBR1, have been shown to induce diverse ASD-related molecular, synaptic, neuronal, and behavioral dysfunctions in mice. However, whether Tbr1 mutations derived from autistic individuals cause similar dysfunctions in mice remains unclear. Here we generated and characterized mice carrying the TBR1-K228E de novo mutation identified in human ASD and identified various ASD-related phenotypes. In heterozygous mice carrying this mutation (Tbr1 +/K228E mice), levels of the TBR1-K228E protein, which is unable to bind target DNA, were strongly increased. RNA-Seq analysis of the Tbr1 +/K228E embryonic brain indicated significant changes in the expression of genes associated with neurons, astrocytes, ribosomes, neuronal synapses, and ASD risk. The Tbr1 +/K228E neocortex also displayed an abnormal distribution of parvalbumin-positive interneurons, with a lower density in superficial layers but a higher density in deep layers. These changes were associated with an increase in inhibitory synaptic transmission in layer 6 pyramidal neurons that was resistant to compensation by network activity. Behaviorally, Tbr1 +/K228E mice showed decreased social interaction, increased self-grooming, and modestly increased anxiety-like behaviors. These results suggest that the human heterozygous TBR1-K228E mutation induces ASD-related transcriptomic, protein, neuronal, synaptic, and behavioral dysfunctions in mice.

19.
Mol Brain ; 12(1): 91, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31699123

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneous group of complex neurodevelopmental disorders without a unique or definite underlying pathogenesis. Although savant syndrome is common in ASD, few models are available for studying the molecular and cellular mechanisms of this syndrome. In this study, we generated urinary induced pluripotent stem cells (UiPSCs) from a 13-year-old male autistic savant with exceptional memory. The UiPSC-derived neurons of the autistic savant exhibited upregulated expression levels of ASD genes/learning difficulty-related genes, namely PAX6, TBR1 and FOXP2, accompanied by hypertrophic neural somas, enlarged spines, reduced spine density, and an increased frequency of spontaneous excitatory postsynaptic currents. Although this study involved only a single patient and a single control because of the rarity of such cases, it provides the first autistic savant UiPSC model that elucidates the potential cellular mechanisms underlying the condition.


Asunto(s)
Trastorno Autístico/patología , Trastorno Autístico/fisiopatología , Memoria , Neuronas/patología , Adolescente , Animales , Trastorno Autístico/genética , Trastorno Autístico/orina , Diferenciación Celular , Niño , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores , Humanos , Hipertrofia , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones Endogámicos ICR , Modelos Biológicos , Síndrome , Regulación hacia Arriba/genética
20.
Neuroscience ; 413: 230-238, 2019 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-31202705

RESUMEN

Radial glial maintenance is essential for the proper development of the cortex. It is known that the evolutionarily conserved Notch signaling pathway is required for maintaining the pool of radial glial stem cells although the mechanisms involved are not entirely understood. Here, we study the Notch ligand, Jagged1, in the mouse ventricular zone at a late stage of embryonic development. We use a conditional loss of function allele to show that Jagged1 is required for maintaining radial glial cells and when absent, leads to defects in the cortical proliferation zone and expression of intermediate progenitor cells. Using in vitro approaches, we found that depletion of Jagged1 reduced the size of primary neurospheres and their capacity to self-renewal. Finally, Jagged1 mutants also showed precocious neuronal differentiation and cortical defects. Together, these data support a role for Jagged1 in radial glia maintenance in the neocortex.


Asunto(s)
Corteza Cerebral/metabolismo , Células Ependimogliales/metabolismo , Proteína Jagged-1/metabolismo , Nicho de Células Madre/fisiología , Animales , Movimiento Celular , Corteza Cerebral/embriología , Proteína Jagged-1/genética , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/metabolismo , Receptores Notch/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...