Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37371750

RESUMEN

Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome 11 and ultimately affect IGF2 gene expression. Deregulation of such control checkpoints leads to the enhancement of IGF2 gene transcription and/or transcript stabilization, ultimately leading to IGF-II peptide overproduction. This type of anomaly is responsible for the effects observed in terms of both abnormal fetal growth and increased cell proliferation, typically observed in pediatric overgrowth syndromes and cancer. We performed a review of relevant experimental work on the mechanisms affecting the human IGF2 gene at the epigenetic, transcriptional and transcript regulatory levels. The result of our work, indeed, provides a wider and diversified scenario for IGF2 gene activation than previously envisioned by shedding new light on its extended regulation. Overall, we focused on the functional integration between the epigenetic and genetic machinery driving its overexpression in overgrowth syndromes and malignancy, independently of the underlying presence of loss of imprinting (LOI). The molecular landscape provided at last strengthens the role of IGF2 in cancer initiation, progression and malignant phenotype maintenance. Finally, this review suggests potential actionable targets for IGF2 gene- and regulatory protein target-degradation therapies.

2.
Data Brief ; 46: 108827, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36582986

RESUMEN

This manuscript presents a comprehensive collection of diverse epigenomic profiling data for the human genome in 100-bp resolution with full genome-wide coverage. The datasets are processed from raw read count data collected from five types of sequencing-based assays collected by the Encyclopedia of DNA Elements consortium (ENCODE, http://www.encodeproject.org). Data from high-throughput sequencing assays were processed and crystallized into a total of 6,305 genome-wide profiles. To ensure the quality of the features, we filtered out assays with low read depth, inconsistent read counts, and poor data quality. The types of sequencing-based experiment assays include DNase-seq, histone and TF ChIP-seq, ATAC-seq, and Poly(A) RNA-seq. Merging of processed data was done by averaging read counts across technical replicates to obtain signals in about 30 million predefined 100-bp bins that tile the entire genome. We provide an example of fetching read counts using disease-related risk variants from the GWAS Catalog. Additionally, we have created a tabix index enabling fast user retrieval of read counts given coordinates in the human genome. The data processing pipeline is replicable for users' own purposes and for other experimental assays. The processed data can be found on Zenodo at https://zenodo.org/record/7015783. These data can be used as features for statistical and machine learning models to predict or infer a wide range of variables of biological interest. They can also be applied to generate novel insights into gene expression, chromatin accessibility, and epigenetic modifications across the human genome. Finally, the processing pipeline can be easily applied to data from any other genome-wide profiling assays, expanding the amount of available data.

3.
Comput Struct Biotechnol J ; 20: 5873-5885, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382181

RESUMEN

Metastatic and locally advanced prostate cancer is treated by pharmacological targeting of androgen synthesis and androgen response via androgen signaling inhibitors (ASI), most of which target the androgen receptor (AR). However, ASI therapy invariably fails after 1-2 years. Emerging clinical evidence indicates that in response to ASI therapy, the AR-positive prostatic adenocarcinoma can transdifferentiate into AR-negative neuroendocrine prostate cancer (NEPC) in 17-25 % treated patients, likely through a process called neuroendocrine differentiation (NED). Despite high clinical incidence, the epigenetic pathways underlying NED and ASI therapy-induced NED remain unclear. By utilizing a combinatorial single cell and bulk mRNA sequencing workflow, we demonstrate in a time-resolved manner that following AR inhibition with enzalutamide, prostate cancer cells exhibit immediate loss of canonical AR signaling activity and simultaneous morphological change from epithelial to NE-like (NEL) morphology, followed by activation of specific neuroendocrine (NE)-associated transcriptional programs. Additionally, we observed that activation of NE-associated pathways occurs prior to complete repression of epithelial or canonical AR pathways, a phenomenon also observed clinically via heterogenous AR status in clinical samples. Our model indicates that, mechanistically, ASI therapy induces NED with initial morphological change followed by deactivation of canonical AR target genes and subsequent de-repression of NE-associated target genes, while retaining AR expression and transcriptional shift towards non-canonical AR activity. Coupled with scRNA-seq and CUT&RUN analysis, our model system can provide a platform for screening of potential therapeutic agents that may prevent ASI-induced NED or reverse the NED process.

4.
Comput Struct Biotechnol J ; 20: 5935-5951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382190

RESUMEN

Glycolipid metabolism disorder are major threats to human health and life. Genetic, environmental, psychological, cellular, and molecular factors contribute to their pathogenesis. Several studies demonstrated that neuroendocrine axis dysfunction, insulin resistance, oxidative stress, chronic inflammatory response, and gut microbiota dysbiosis are core pathological links associated with it. However, the underlying molecular mechanisms and therapeutic targets of glycolipid metabolism disorder remain to be elucidated. Progress in high-throughput technologies has helped clarify the pathophysiology of glycolipid metabolism disorder. In the present review, we explored the ways and means by which genomics, transcriptomics, proteomics, metabolomics, and gut microbiomics could help identify novel candidate biomarkers for the clinical management of glycolipid metabolism disorder. We also discuss the limitations and recommended future research directions of multi-omics studies on these diseases.

5.
Comput Struct Biotechnol J ; 20: 3955-3962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35950186

RESUMEN

With ever-growing genomic sequencing data, the data variabilities and the underlying biases of the sequencing technologies pose significant computational challenges ranging from the need for accurately detecting the nucleosome positioning or chromatin interaction to the need for developing normalization methods to eliminate systematic biases. This review mainly surveys the computational methods for mapping the higher-resolution nucleosome and higher-order chromatin architectures. While a detailed discussion of the underlying algorithms is beyond the scope of our survey, we have discussed the methods and tools that can detect the nucleosomes in the genome, then demonstrated the computational methods for identifying 3D chromatin domains and interactions. We further illustrated computational approaches for integrating multi-omics data with Hi-C data and the advance of single-cell (sc)Hi-C data analysis. Our survey provides a comprehensive and valuable resource for biomedical scientists interested in studying nucleosome organization and chromatin structures as well as for computational scientists who are interested in improving upon them.

6.
Curr Res Struct Biol ; 4: 118-133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573459

RESUMEN

Transcription factors play key roles in orchestrating a plethora of cellular mechanisms and controlling cellular homeostasis. Transcription factors share distinct DNA binding domains, which allows to group them into protein families. Among them, the Forkhead box O (FOXO) family contains transcription factors crucial for cellular homeostasis, longevity and response to stress. The dysregulation of FOXO signaling is linked to drug resistance in cancer therapy or cellular senescence, however, selective drugs targeting FOXOs are limited, thus knowledge about structure and dynamics of FOXO proteins is essential. Here, we provide an extensive study of structure and dynamics of all FOXO family members. We identify residues accounting for different dynamic and structural features. Furthermore, we show that the auto-inhibition of FOXO proteins by their C-terminal trans-activation domain is conserved throughout the family and that these interactions are not only possible intra-, but also inter-molecularly. This indicates a model in which FOXO transcription factors would modulate their activities by interacting mutually.

7.
Gene Rep ; 27: 101597, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35317263

RESUMEN

The coronavirus disease (COVID-19) pandemic caused by SARS-CoV-2 is ongoing. Individuals with sarcoidosis tend to develop severe COVID-19; however, the underlying pathological mechanisms remain elusive. To determine common transcriptional signatures and pathways between sarcoidosis and COVID-19, we investigated the whole-genome transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with COVID-19 and sarcoidosis and conducted bioinformatic analysis, including gene ontology and pathway enrichment, protein-protein interaction (PPI) network, and gene regulatory network (GRN) construction. We identified 33 abnormally expressed genes that were common between COVID-19 and sarcoidosis. Functional enrichment analysis showed that these differentially expressed genes were associated with cytokine production involved in the immune response and T cell cytokine production. We identified several hub genes from the PPI network encoded by the common genes. These hub genes have high diagnostic potential for COVID-19 and sarcoidosis and can be potential biomarkers. Moreover, GRN analysis identified important microRNAs and transcription factors that regulate the common genes. This study provides a novel characterization of the transcriptional signatures and biological processes commonly dysregulated in sarcoidosis and COVID-19 and identified several critical regulators and biomarkers. This study highlights a potential pathological association between COVID-19 and sarcoidosis, establishing a theoretical basis for future clinical trials.

8.
Toxicol Rep ; 9: 298-310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284244

RESUMEN

Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide and crop desiccant. Glyphosate has long been suspected of leading to the development of cancer and of compromising fertility. Herbicides have been increasingly recognized as epigenetic modifiers, and the impact of glyphosate on human and animal health might be mediated by epigenetic modifications. This article presents the results from an animal study where pigs were exposed to glyphosate while feeding. The experimental setup included a control group with no glyphosate added to the feed and two groups of pigs with 20 ppm and 200 ppm of glyphosate added to the feed, respectively. After exposure, the pigs were dissected, and tissues of the small intestine, liver, and kidney were used for DNA methylation and gene expression analyses. No significant change in global DNA methylation was found in the small intestine, kidney, or liver. Methylation status was determined for selected genes involved in various functions such as DNA repair and immune defense. In a CpG island of the promoter for IL18, we observed significantly reduced DNA methylation for certain individual CpG positions. However, this change in DNA methylation had no influence on IL18 mRNA expression. The expression of the DNA methylation enzymes DNMT1, DNMT3A, and DNMT3B was measured in the small intestine, kidney, and liver of pigs exposed to glyphosate. No significant changes in relative gene expression were found for these enzymes following dietary exposure to 20 and 200 ppm glyphosate. In contrast, a significant increase in expression of the enzyme TET3, responsible for demethylation, was observed in kidneys exposed to 200 ppm glyphosate.

9.
Comput Struct Biotechnol J ; 20: 90-106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34976314

RESUMEN

Glioblastoma multiforme persists to be an enigmatic distress in neuro-oncology. Its untethering capacity to thrive in a confined microenvironment, metastasize intracranially, and remain resistant to the systemic treatments, renders this tumour incurable. The glial cell type specificity in GBM remains exploratory. In our study, we aimed to address this problem by studying the GBM at the cell type level in the brain. The cellular makeup of this tumour is composed of genetically altered glial cells which include astrocyte, microglia, oligodendrocyte precursor cell, newly formed oligodendrocyte and myelinating oligodendrocyte. We extracted cell type-specific solid tumour as well as recurrent solid tumour glioma genes, and studied their functional networks and contribution towards gliomagenesis. We identified the principal transcription factors that are found to be regulating vital tumorigenic processes. We also assessed the protein-protein interaction networks at their domain level to get a more microscopic view of the structural and functional operations that transpire in these cells. This yielded the eminent protein regulators exhibiting their regulation in signaling pathways. Overall, our study unveiled regulatory mechanisms in glioma cell types that can be targeted for a more efficient glioma therapy.

10.
Mol Syst Biol ; 17(11): e10625, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34816587

RESUMEN

Plant metabolism is more complex relative to individual microbes. In single-celled microbes, transcriptional regulation by single transcription factors (TFs) is sufficient to shift primary metabolism. Corresponding genome-level transcriptional regulatory maps of metabolism reveal the underlying design principles responsible for these shifts as a model in which master regulators largely coordinate specific metabolic pathways. Plant primary and specialized metabolism occur within innumerable cell types, and their reactions shift depending on internal and external cues. Given the importance of plants and their metabolites in providing humanity with food, fiber, and medicine, we set out to develop a genome-scale transcriptional regulatory map of Arabidopsis metabolic genes. A comprehensive set of protein-DNA interactions between Arabidopsis thaliana TFs and gene promoters in primary and specialized metabolic pathways were mapped. To demonstrate the utility of this resource, we identified and functionally validated regulators of the tricarboxylic acid (TCA) cycle. The resulting network suggests that plant metabolic design principles are distinct from those of microbes. Instead, metabolism appears to be transcriptionally coordinated via developmental- and stress-conditional processes that can coordinate across primary and specialized metabolism. These data represent the most comprehensive resource of interactions between TFs and metabolic genes in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN , Regulación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Comput Struct Biotechnol J ; 19: 6229-6239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34840672

RESUMEN

INTRODUCTION: The risk of infection with COVID-19 is high in lung adenocarcinoma (LUAD) patients, and there is a dearth of studies on the molecular mechanism underlying the high susceptibility of LUAD patients to COVID-19 from the perspective of the global differential expression landscape. OBJECTIVES: To fill the research void on the molecular mechanism underlying the high susceptibility of LUAD patients to COVID-19 from the perspective of the global differential expression landscape. METHODS: Herein, we identified genes, specifically the differentially expressed genes (DEGs), correlated with the susceptibility of LUAD patients to COVID-19. These were obtained by calculating standard mean deviation (SMD) values for 49 SARS-CoV-2-infected LUAD samples and 24 non-affected LUAD samples, as well as 3931 LUAD samples and 3027 non-cancer lung samples from 40 pooled RNA-seq and microarray datasets. Hub susceptibility genes significantly related to COVID-19 were further selected by weighted gene co-expression network analysis. Then, the hub genes were further analyzed via an examination of their clinical significance in multiple datasets, a correlation analysis of the immune cell infiltration level, and their interactions with the interactome sets of the A549 cell line. RESULTS: A total of 257 susceptibility genes were identified, and these genes were associated with RNA splicing, mitochondrial functions, and proteasomes. Ten genes, MEA1, MRPL24, PPIH, EBNA1BP2, MRTO4, RABEPK, TRMT112, PFDN2, PFDN6, and NDUFS3, were confirmed to be the hub susceptibility genes for COVID-19 in LUAD patients, and the hub susceptibility genes were significantly correlated with the infiltration of multiple immune cells. CONCLUSION: In conclusion, the susceptibility genes for COVID-19 in LUAD patients discovered in this study may increase our understanding of the high risk of COVID-19 in LUAD patients.

12.
Comput Struct Biotechnol J ; 18: 2438-2444, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32905022

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 29 million people and has caused more than 900,000 deaths worldwide as of September 14, 2020. The SARS-CoV-2 human cell receptor ACE2 has recently received extensive attention for its role in SARS-CoV-2 infection. Many studies have also explored the association between ACE2 and cancer. However, a systemic investigation into associations between ACE2 and oncogenic pathways, tumor progression, and clinical outcomes in pan-cancer remains lacking. Using cancer genomics datasets from the Cancer Genome Atlas (TCGA) program, we performed computational analyses of associations between ACE2 expression and antitumor immunity, immunotherapy response, oncogenic pathways, tumor progression phenotypes, and clinical outcomes in 13 cancer cohorts. We found that ACE2 upregulation was associated with increased antitumor immune signatures and PD-L1 expression, and favorable anti-PD-1/PD-L1/CTLA-4 immunotherapy response. ACE2 expression levels inversely correlated with the activity of cell cycle, mismatch repair, TGF-ß, Wnt, VEGF, and Notch signaling pathways. Moreover, ACE2 expression levels had significant inverse correlations with tumor proliferation, stemness, and epithelial-mesenchymal transition. ACE2 upregulation was associated with favorable survival in pan-cancer and in multiple individual cancer types. These results suggest that ACE2 is a potential protective factor for cancer progression. Our data may provide potential clinical implications for treating cancer patients infected with SARS-CoV-2.

13.
Comput Struct Biotechnol J ; 18: 1891-1903, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774784

RESUMEN

The effective non-invasive diagnosis and prognosis are critical for cancer treatment. The plasma cell-free DNA (cfDNA) provides a good material for cancer liquid biopsy and its worth in this field is increasingly explored. Here we describe a new pipeline for effectively finding new cfDNA-based biomarkers for cancers by combining SALP-seq and machine learning. Using the pipeline, 30 cfDNA samples from 26 esophageal cancer (ESCA) patients and 4 healthy people were analyzed as an example. As a result, 103 epigenetic markers (including 54 genome-wide and 49 promoter markers) and 37 genetic markers were identified for this cancer. These markers provide new biomarkers for ESCA diagnosis, prognosis and therapy. Importantly, these markers, especially epigenetic markers, not only shed important new insights on the regulatory mechanisms of this cancer, but also could be used to classify the cfDNA samples. We therefore developed a new pipeline for effectively finding new cfDNA-based biomarkers for cancers by combining SALP-seq and machine learning. In this study, we also discovered new clinical worth of cfDNA distinct from other reported characters.

14.
Comput Struct Biotechnol J ; 18: 686-695, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257052

RESUMEN

Hepatocellular carcinoma (HCC) is an essentially incurable inflammation-related cancer. We have previously shown by network analysis of proteomic data that the flavonoids epigallocatechin gallate (EGCG) and fisetin (FIS) efficiently downregulated pro-tumor cytokines released by HCC through inhibition of Akt/mTOR/RPS6 phospho-signaling. However, their mode of action at the global transcriptome level remains unclear. Herein, we endeavor to compare gene expression alterations mediated by these compounds through a comprehensive transcriptome analysis based on RNA-seq in HEP3B, a responsive HCC cell line, upon perturbation with a mixture of prototypical stimuli mimicking conditions of tumor microenvironment or under constitutive state. Analysis of RNA-seq data revealed extended changes on HEP3B transcriptome imposed by test nutraceuticals. Under stimulated conditions, EGCG and FIS significantly modified, compared to the corresponding control, the expression of 922 and 973 genes, respectively, the large majority of which (695 genes), was affected by both compounds. Hierarchical clustering based on the expression data of shared genes demonstrated an almost identical profile in nutraceutical-treated stimulated cells which was virtually opposite in cells exposed to stimuli alone. Downstream enrichment analyses of the co-modified genes uncovered significant associations with cancer-related transcription factors as well as terms of Gene Ontology/Reactome Pathways and highlighted ECM dynamics as a nodal modulation point by nutraceuticals along with angiogenesis, inflammation, cell motility and growth. RNA-seq data for selected genes were independently confirmed by RT-qPCR. Overall, the present systems approach provides novel evidence stepping up the mechanistic understanding of test nutraceuticals, thus rationalizing their clinical exploitation in new preventive/therapeutic modalities against HCC.

15.
Comput Struct Biotechnol J ; 17: 1415-1428, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31871587

RESUMEN

Gene regulatory regions contain short and degenerated DNA binding sites recognized by transcription factors (TFBS). When TFBS harbor SNPs, the DNA binding site may be affected, thereby altering the transcriptional regulation of the target genes. Such regulatory SNPs have been implicated as causal variants in Genome-Wide Association Study (GWAS) studies. In this study, we describe improved versions of the programs Variation-tools designed to predict regulatory variants, and present four case studies to illustrate their usage and applications. In brief, Variation-tools facilitate i) obtaining variation information, ii) interconversion of variation file formats, iii) retrieval of sequences surrounding variants, and iv) calculating the change on predicted transcription factor affinity scores between alleles, using motif scanning approaches. Notably, the tools support the analysis of haplotypes. The tools are included within the well-maintained suite Regulatory Sequence Analysis Tools (RSAT, http://rsat.eu), and accessible through a web interface that currently enables analysis of five metazoa and ten plant genomes. Variation-tools can also be used in command-line with any locally-installed Ensembl genome. Users can input personal collections of variants and motifs, providing flexibility in the analysis.

16.
Comput Struct Biotechnol J ; 17: 1047-1055, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452857

RESUMEN

DNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial chromosome and coordinating its transcriptional response. We present available evidence that DNA supercoiling is modulated by environmental stress conditions relevant to the infection process according to ancestral mechanisms, in zoopathogens as well as phytopathogens. We review the results of transcriptomics studies obtained in widely distant bacterial species, showing that such structural transitions of the chromosome are associated to a complex transcriptional response affecting a large fraction of the genome. Mechanisms and computational models of the transcriptional regulation by DNA supercoiling are then discussed, involving both basal interactions of RNA Polymerase with promoter DNA, and more specific interactions with regulatory proteins. A final part is specifically focused on the regulation of virulence genes within pathogenicity islands of several pathogenic bacterial species.

17.
Noncoding RNA Res ; 4(3): 86-95, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32083232

RESUMEN

Persistence of mycobacteria in the hostile environment of human macrophage is pivotal for its successful pathogenesis. Rapid adaptation to diverse stresses is the key aspect for their survival in the host cells. A range of heterogeneous mechanisms operate in bacteria to retaliate stress conditions. Small RNAs (sRNA) have been implicated in many of those mechanisms in either a single or multiple regulatory networks to post-transcriptionally modulate bacterial gene expression. Although small RNA profiling in mycobacteria by advanced technologies like deep sequencing, tilling microarray etc. have identified hundreds of sRNA, however, a handful of those small RNAs have been unearthed with precise regulatory mechanism. Extensive investigations on sRNA-mediated gene regulations in eubacteria like Escherichia coli revealed the existence of a plethora of distinctive sRNA mechanisms e.g. base pairing, protein sequestration, RNA decoy etc. Increasing studies on mycobacterial sRNA also discovered several eccentric mechanisms where sRNAs act at the posttranscriptional stage to either activate or repress target gene expression that lead to promote mycobacterial survival in stresses. Several intrinsic features like high GC content, absence of any homologue of abundant RNA chaperones, Hfq and ProQ, isolate sRNA mechanisms of mycobacteria from that of other bacteria. An insightful approach has been taken in this review to describe sRNA identification and its regulations in mycobacterial species especially in Mycobacterium tuberculosis.

18.
Biotechnol Rep (Amst) ; 19: e00264, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29992098

RESUMEN

Echinocandin B is a potent antifungal against the majority of fungal pathogens and its biosynthesis occurred by ecd and hty gene clusters in Emericella rugulosa NRRL 11440. We elucidated the functional necessity of in-clustered transcription factor; ecdB in the production of echinocandin B. We deleted the ecdB gene and found that ΔecdB mutant has no significant effect on echinocandin B production. The expression level of most of the ecd and hty cluster genes was not significantly altered except few of them up-regulated in knockout strain. The complete abrogation in ecdB gene expression was observed in ΔecdB strain. However, the interactions of purified EcdB protein with DNA sequence of ecdA, ecdH, ecdK and ecdI promoter was confirmed in-vitro. Our results conclude that EcdB protein in-vitro binds to the ecdA, ecdH, ecdK and ecdI promoter but in-vivo, it could not significantly affect the gene expression and echinocandin B production in Emericella rugulosa.

19.
Cell Regen ; 7(1): 1-6, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30671223

RESUMEN

Myocardial infarction leads to the loss of a huge number of cardiomyocytes and the reparatory response to this phenomenon is scar tissue formation, which impairs heart function. Direct reprogramming technology offers an alternative strategy for the generation of functional cardiomyocytes not only in vitro, but also in vivo in the site of injury. Results have demonstrated cardiac tissue regeneration and improvement in heart function after myocardial infarction following local injection of vectors encoding reprogramming transcription factors or miRNAs. This shows the great potential of cardiac reprogramming technology for heart regeneration. However, in addition to cardiomyocytes, other cell types, including endothelial cells and smooth muscle cells are also required to be generated in the damaged area in order to achieve complete cardiac tissue regeneration. To this aim induced proliferative/expandable cardiovascular progenitor cells (iCPCs) appear to be an appropriate cell source, which is capable of differentiation into three cardiovascular lineages both in vitro and in vivo. In this regard, this study goes over in vitro and in vivo cardiac reprogramming technology and specifically deals with cardiac progenitor reprogramming and its potential for heart regeneration.

20.
JACC Basic Transl Sci ; 1(7): 590-602, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30167544

RESUMEN

Cardiovascular disease remains the number one global cause of death and presents as multiple phenotypes in which the interplay between cardiomyocytes and cardiac fibroblasts (CFs) has become increasingly highlighted. Fetal and adult CFs influence neighboring cardiomyocytes in different ways. Thus far, a detailed comparison between the two is lacking. Using a genome-wide approach, we identified and validated 2 crucial players for maintaining the adult primary human CF phenotype. Knockdown of these factors induced significant phenotypical changes, including senescence and reduced collagen gene expression. These may now represent novel therapeutic targets against deleterious functions of CFs in adult cardiovascular disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...