Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Mol Cell ; 84(7): 1243-1256.e5, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38401543

RESUMEN

Metazoan gene expression regulation involves pausing of RNA polymerase (Pol II) in the promoter-proximal region of genes and is stabilized by DSIF and NELF. Upon depletion of elongation factors, NELF appears to accompany elongating Pol II past pause sites; however, prior work indicates that NELF prevents Pol II elongation. Here, we report cryoelectron microscopy structures of Pol II-DSIF-NELF complexes with NELF in two distinct conformations corresponding to paused and poised states. The paused NELF state supports Pol II stalling, whereas the poised NELF state enables transcription elongation as it does not support a tilted RNA-DNA hybrid. Further, the poised NELF state can accommodate TFIIS binding to Pol II, allowing for Pol II reactivation at paused or backtracking sites. Finally, we observe that the NELF-A tentacle interacts with the RPB2 protrusion and is necessary for pausing. Our results define how NELF can support pausing, reactivation, and elongation by Pol II.


Asunto(s)
Proteínas Nucleares , ARN Polimerasa II , Animales , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Microscopía por Crioelectrón , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Mol Cell ; 83(18): 3253-3267.e7, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37683646

RESUMEN

RNA polymerase II (RNAPII) transcription involves initiation from a promoter, transcriptional elongation through the gene, and termination in the terminator region. In bacteria, terminators often contain specific DNA elements provoking polymerase dissociation, but RNAPII transcription termination is thought to be driven entirely by protein co-factors. We used biochemical reconstitution, single-molecule studies, and genome-wide analysis in yeast to study RNAPII termination. Transcription into natural terminators by pure RNAPII results in spontaneous termination at specific sequences containing T-tracts. Single-molecule analysis indicates that termination involves pausing without backtracking. The "torpedo" Rat1-Rai1 exonuclease (XRN2 in humans) greatly stimulates spontaneous termination but is ineffectual on other paused RNAPIIs. By contrast, elongation factor Spt4-Spt5 (DSIF) suppresses termination. Genome-wide analysis further indicates that termination occurs by transcript cleavage at the poly(A) site exposing a new 5' RNA-end that allows Rat1-Rai1 loading, which then catches up with destabilized RNAPII at specific termination sites to end transcription.


Asunto(s)
ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Humanos , ARN Polimerasa II/genética , ADN , Transcripción Genética , Exonucleasas , Factores de Elongación de Péptidos , Saccharomyces cerevisiae/genética , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae/genética
4.
Int J Biol Macromol ; 253(Pt 2): 126764, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37696373

RESUMEN

The elongation factor TFIIS interacts with Paf1C complex to facilitate processive transcription by Pol II. We here determined the crystal structure of the trypanosoma TFIIS LW domain in a complex with the LFG motif of Leo1, as well as the structures of apo-form TFIIS LW domains from trypanosoma, yeast and human. We revealed that all three TFIIS LW domains possess a conserved hydrophobic core that mediates their interactions with Leo1. Intriguingly, the structural study revealed that trypanosoma Leo1 binding induces the TFIIS LW domain to undergo a conformational change reflected in the length and orientation of α6 helix that is absent in the yeast and human counterparts. These differences explain the higher binding affinity of the TFIIS LW domain interacting with Leo1 in trypanosoma than in yeast and human, and indicate species-specific variations in the interactions. Importantly, the interactions between the TFIIS LW domain and an LFG motif of Leo1 were found to be critical for TFIIS to anchor the entire Paf1C complex. Thus, in addition to revealing a detailed structural basis for the TFIIS-Paf1C interaction, our studies also shed light on the origin and evolution of the roles of TFIIS and Paf1C complex in regulation of transcription elongation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/química , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química
5.
Plant J ; 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703573

RESUMEN

Transcriptional elongation by RNA polymerase II (RNAPII) through chromatin is a dynamic and highly regulated step of eukaryotic gene expression. A combination of transcript elongation factors (TEFs) including modulators of RNAPII activity and histone chaperones facilitate efficient transcription on nucleosomal templates. Biochemical and genetic analyses, primarily performed in Arabidopsis, provided insight into the contribution of TEFs to establish gene expression patterns during plant growth and development. In addition to summarising the role of TEFs in plant gene expression, we emphasise in our review recent advances in the field. Thus, mechanisms are presented how aberrant intragenic transcript initiation is suppressed by repressing transcriptional start sites within coding sequences. We also discuss how transcriptional interference of ongoing transcription with neighbouring genes is prevented. Moreover, it appears that plants make no use of promoter-proximal RNAPII pausing in the way mammals do, but there are nucleosome-defined mechanism(s) that determine the efficiency of mRNA synthesis by RNAPII. Accordingly, a still growing number of processes related to plant growth, development and responses to changing environmental conditions prove to be regulated at the level of transcriptional elongation.

6.
Biochim Biophys Acta Gen Subj ; 1866(12): 130240, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36058424

RESUMEN

BACKGROUND: The mRNA transcription is a multistep process involving distinct sets of proteins associated with RNA polymerase II (RNAPII) through various stages. Recent studies have highlighted the role of RNAPII-associated proteins in facilitating the assembly of functional complexes in a crowded nuclear milieu. RNAPII dynamics and gene expression regulation have been primarily studied in model eukaryotes like yeasts and mammals and remain largely unchartered in protozoan parasites like Toxoplasma gondii, where considerable gene expression changes accompany stage differentiations. Here we report a key modulator of RNAPII activity, TFIIS in Toxoplasma gondii (TgTFIIS). METHODS: A Pull-down assay demonstrated that TgTFIIS binds to RNAPII subunit TgRPB1. Truncation mutants of TFIIS help us define the regions critical for its binding to TgRPB1. Co-immunoprecipitation analysis confirmed the interaction between the native TgTFIIS and TgRPB1. Confocal microscopy revealed a predominantly nuclear localization. Native TgTFIIS was able to bind promoter DNA which was consistent with the CHIP results. RESULTS: TgTFIIS complements initiation defects in yeast mutants, and the regions implicated in RNAPII binding appeared essential for this function. Interestingly, the C-terminal zinc finger domain necessary for its potential elongation function is dispensable for TgRPB1 binding. TgTFIIS was found to be associated with the promoter region along with its association with the ORF on an RNAPII transcribed gene. CONCLUSION: The observations were in line with the potential role of TgTFIIS in early events of RNAPII transcription in addition to elongation. GENERAL SIGNIFICANCE: The study elucidates the potential role of RNAPII-associated proteins in multiple steps of transcription.


Asunto(s)
Proteínas Protozoarias , Toxoplasma , Factores de Elongación Transcripcional , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
7.
J Cell Immunol ; 4(2): 65-71, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813003

RESUMEN

Nuclear RNA polymerase (Pol) III synthesizes large amounts of tRNAs and other short non-coding (nc)RNAs by a unique process that involves a termination-associated reinitiation-recycling mechanism. In addition to its two largest of 17 subunits, which contribute to active center RNA-DNA binding and catalytic site, a smaller subunit of ~110 aa (yeast C11, human RPC10) monitors this site, can modify its activity, and is essential for reinitiation-recycling. Distinct, but relevant to human immunity is cytoplasmic (cyto-)Pol III that is a direct sensor of AT-rich viral DNA from which it synthesizes 5'-ppp-RNA signaling molecules that activate interferon (IFN) production. Mutations in genes encoding Pol III subunits cause severe anti-viral immunodeficiency although the mechanisms responsible for cyto-Pol III initiation on this AT-rich DNA are unknown. Cyto-Pol III has also been implicated in inducing IFN in response to cytosolic mitochondrial DNA in autoimmune dysfunction. A focus of this commentary is recent biochemical and genetics research that examined the roles of the individual domains of C11 in the Pol III termination-associated reinitiation-recycling process as well as more recent cryo-EM structural and accompanying analyses, that are considered in evolutionary and other biological contexts. The N-terminal domain (NTD) of C11/RPC10 anchors at the periphery of Pol III from which a highly conserved linker extends to the mobile C-terminal RNA cleavage domain that can reach into the active center and rescue arrested complexes. Biochemical data indicate separable activities for the NTD and CTD in the transcription cycle, whereas the NTD-Linker can confer the evolutionary unique Pol III termination-reinitiation-recycling activity. A model produced from single particle cryo-EM conformations indicates that the C11-Linker-CTD swings in and out of the active center coordinated with allosteric movements of the DNA-binding clamp by the largest subunit, coupling termination to reinitiation-recycling. These may be relevant to DNA loading by cyto-Pol III during immune signaling.

8.
Mol Cell ; 82(17): 3126-3134.e7, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35858621

RESUMEN

During gene transcription, RNA polymerase II (RNA Pol II) passes nucleosomes with the help of various elongation factors. Here, we show that RNA Pol II achieves efficient nucleosome passage when the human elongation factors DSIF, PAF1 complex (PAF), RTF1, SPT6, and TFIIS are present. The cryo-EM structure of an intermediate of the nucleosome passage shows a partially unraveled hexasome that lacks the proximal H2A-H2B dimer and interacts with the RNA Pol II jaw, DSIF, and the CTR9trestle helix. RNA Pol II adopts a backtracked state with the RNA 3' end dislodged from the active site and bound in the RNA Pol II pore. Additional structures and biochemical data show that human TFIIS enters the RNA Pol II pore and stimulates the cleavage of the backtracked RNA and nucleosome passage.


Asunto(s)
Nucleosomas , ARN Polimerasa II , Núcleo Celular/metabolismo , Humanos , Nucleosomas/genética , ARN , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo
9.
J Biol Chem ; 298(5): 101862, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35341765

RESUMEN

Elongating nuclear RNA polymerases (Pols) frequently pause, backtrack, and are then reactivated by endonucleolytic cleavage. Pol backtracking and RNA cleavage are also crucial for proofreading, which contributes to transcription fidelity. RNA polymerase I (Pol I) of the yeast Saccharomyces cerevisiae synthesizes exclusively 35S rRNA, the precursor transcript of mature ribosomal 5.8S, 18S, and 25S rRNA. Pol I contains the specific heterodimeric subunits Rpa34.5/49 and subunit Rpa12.2, which have been implicated in RNA cleavage and elongation activity, respectively. These subunits are associated with the Pol I lobe structure and encompass different structural domains, but the contribution of these domains to RNA elongation is unclear. Here, we used Pol I mutants or reconstituted Pol I enzymes to study the effects of these subunits and/or their distinct domains on RNA cleavage, backtracking, and transcription fidelity in defined in vitro systems. Our findings suggest that the presence of the intact C-terminal domain of Rpa12.2 is sufficient to support the cleavage reaction, but that the N-terminal domains of Rpa12.2 and the heterodimer facilitate backtracking and RNA cleavage. Since both N-terminal and C-terminal domains of Rpa12.2 were also required to faithfully incorporate NTPs in the growing RNA chain, efficient backtracking and RNA cleavage might be a prerequisite for transcription fidelity. We propose that RNA Pols containing efficient RNA cleavage activity are able to add and remove nucleotides until the matching nucleotide supports RNA chain elongation, whereas cleavage-deficient enzymes can escape this proofreading process by incorporating incorrect nucleotides.


Asunto(s)
ARN Polimerasa I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Nucleótidos , ARN , División del ARN , Saccharomyces cerevisiae/metabolismo , Transcripción Genética
10.
Genes Dev ; 36(5-6): 294-299, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35273076

RESUMEN

RNA polymerase II (Pol II) elongation is a critical step in gene expression. Here we found that NDF, which was identified as a bilaterian nucleosome-destabilizing factor, is also a Pol II transcription factor that stimulates elongation with plain DNA templates in the absence of nucleosomes. NDF binds directly to Pol II and enhances elongation by a different mechanism than that used by transcription factor TFIIS. Moreover, yeast Pdp3, which is related to NDF, binds to Pol II and stimulates elongation. Thus, NDF is a Pol II binding transcription elongation factor that is localized over gene bodies and is conserved from yeast to humans.


Asunto(s)
ARN Polimerasa II , Factores de Transcripción , Humanos , Nucleosomas/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
11.
Biomol NMR Assign ; 16(1): 87-89, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35060010

RESUMEN

TFIIS is one of the best-characterized transcription elongation factors, with a domain I (named also as LW domain) in the N-terminus. It can relieve the arrest of RNA polymerase II (RNAP II) when the elongation of RNAP II is impaired. Here we report the resonance assignments of the protein backbone and side chains of the LW domain of TFIIS from S. cerevisiae, the secondary structure prediction indicates the ScTFIIS LW domain contains six α-helices with no ß-sheet, which will lay the foundation for the protein structure determination and function elucidation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Resonancia Magnética Nuclear Biomolecular , Proteínas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/química
12.
Mol Cell ; 82(1): 159-176.e12, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34847357

RESUMEN

The MYCN oncoprotein drives the development of numerous neuroendocrine and pediatric tumors. Here we show that MYCN interacts with the nuclear RNA exosome, a 3'-5' exoribonuclease complex, and recruits the exosome to its target genes. In the absence of the exosome, MYCN-directed elongation by RNA polymerase II (RNAPII) is slow and non-productive on a large group of cell-cycle-regulated genes. During the S phase of MYCN-driven tumor cells, the exosome is required to prevent the accumulation of stalled replication forks and of double-strand breaks close to the transcription start sites. Upon depletion of the exosome, activation of ATM causes recruitment of BRCA1, which stabilizes nuclear mRNA decapping complexes, leading to MYCN-dependent transcription termination. Disruption of mRNA decapping in turn activates ATR, indicating transcription-replication conflicts. We propose that exosome recruitment by MYCN maintains productive transcription elongation during S phase and prevents transcription-replication conflicts to maintain the rapid proliferation of neuroendocrine tumor cells.


Asunto(s)
Núcleo Celular/enzimología , Proliferación Celular , Replicación del ADN , Exosomas/enzimología , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/enzimología , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Roturas del ADN de Doble Cadena , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Exosomas/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Proteína Proto-Oncogénica N-Myc/genética , Células 3T3 NIH , Neuroblastoma/genética , Neuroblastoma/patología , Regiones Promotoras Genéticas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Polimerasa II/genética , Terminación de la Transcripción Genética
13.
Gene X ; 5: 100028, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32550555

RESUMEN

Post-fermentation fungal biomass waste provides a viable source for chitin. Cell wall chitin of filamentous fungi, and in particular its de-N-acetylated derivative chitosan, has a wide range of commercial applications. Although the cell wall of filamentous fungi comprises 10-30% chitin, these yields are too low for cost-effective production. Therefore, we aimed to identify the genes involved in increased chitin deposition by screening a collection of UV-derived cell wall mutants in Aspergillus niger. This screen revealed a mutant strain (RD15.4#55) that showed a 30-40% increase in cell wall chitin compared to the wild type. In addition to the cell wall chitin phenotype, this strain also exhibited sensitivity to SDS and produces an unknown yellow pigment. Genome sequencing combined with classical genetic linkage analysis identified two mutated genes on chromosome VII that were linked with the mutant phenotype. Single gene knockouts and subsequent complementation analysis revealed that an 8 bp deletion in NRRL3_09595 is solely responsible for the associated phenotypes of RD15.4#55. The mutated gene, which was named cwcA (cell wall chitin A), encodes an orthologue of Saccharomyces cerevisiae Bypass of ESS1 (BYE1), a negative regulator of transcription elongation. We propose that this conserved fungal protein is involved in preventing cell wall integrity signaling under non-inducing conditions, where loss of function results in constitutive activation of the cell wall stress response pathway, and consequently leads to increased chitin content in the mutant cell wall.

14.
Biomol NMR Assign ; 14(2): 201-203, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32361817

RESUMEN

LW domain is the N-terminal domain I of transcription elongation factor TFIIS, which is a component of RNA polymerase II (Pol II) preinitiation complexes (PICs). Here, we report the resonance assignments of TFIIS LW domain from Homo sapiens for further understanding of the relationship between its structure and function.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Espectroscopía de Protones por Resonancia Magnética , Factores de Elongación Transcripcional/química , Humanos , Isótopos de Nitrógeno , Dominios Proteicos
15.
Mol Cell ; 76(1): 57-69.e9, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31519522

RESUMEN

Although correlations between RNA polymerase II (RNAPII) transcription stress, R-loops, and genome instability have been established, the mechanisms underlying these connections remain poorly understood. Here, we used a mutant version of the transcription elongation factor TFIIS (TFIISmut), aiming to specifically induce increased levels of RNAPII pausing, arrest, and/or backtracking in human cells. Indeed, TFIISmut expression results in slower elongation rates, relative depletion of polymerases from the end of genes, and increased levels of stopped RNAPII; it affects mRNA splicing and termination as well. Remarkably, TFIISmut expression also dramatically increases R-loops, which may form at the anterior end of backtracked RNAPII and trigger genome instability, including DNA strand breaks. These results shed light on the relationship between transcription stress and R-loops and suggest that different classes of R-loops may exist, potentially with distinct consequences for genome stability.


Asunto(s)
Inestabilidad Genómica , Estructuras R-Loop , ARN Mensajero/genética , Estrés Fisiológico , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Mutación , ARN Polimerasa II/metabolismo , Empalme del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Relación Estructura-Actividad , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética
16.
DNA Repair (Amst) ; 81: 102652, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31326363

RESUMEN

RNA transcription errors are transient, yet frequent, events that do have consequences for the cell. However, until recently we lacked the tools to empirically measure and study these errors. Advances in RNA library preparation and next generation sequencing (NGS) have allowed the spectrum of transcription errors to be empirically measured over the entire transcriptome and in nascent transcripts. Combining these powerful methods with forward and reverse genetic strategies has refined our understanding of transcription factors known to enhance RNA accuracy and will enable the discovery of new candidates. Furthermore, these approaches will shed additional light on the complex interplay between transcription fidelity and other DNA transactions, such as replication and repair, and explore a role for transcription errors in cellular evolution and disease.


Asunto(s)
Epigénesis Genética , Inestabilidad Genómica , Transcripción Genética , Animales , Escherichia coli/genética , Eucariontes/genética , Humanos
17.
Front Plant Sci ; 10: 516, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105721

RESUMEN

Plant DNA is damaged by exposure to solar radiation, which includes ultraviolet (UV) rays. UV damaged DNA is repaired either by photolyases, using visible light energy, or by nucleotide excision repair (NER), also known as dark repair. NER consists of two subpathways: global genomic repair (GGR), which repairs untranscribed DNA throughout the genome, and transcription-coupled repair (TCR), which repairs transcribed DNA. In mammals, CSA, CSB, UVSSA, USP7, and TFIIS have been implicated in TCR. Arabidopsis homologs of CSA (AtCSA-1/2) and CSB (CHR8) have previously been shown to contribute to UV tolerance. Here we examine the role of Arabidopsis homologs of UVSSA, USP7 (UBP12/13), and TFIIS (RDO2) in UV tolerance. We find that loss of function alleles of UVSSA, UBP12, and RDO2 exhibit increased UV sensitivity in both seedlings and adults. UV sensitivity in atcsa-1, uvssa, and ubp12 mutants is specific to dark conditions, consistent with a role in NER. Interestingly, chr8 mutants exhibit UV sensitivity in both light and dark conditions, suggesting that the Arabidopsis CSB homolog may play a role in both NER and light repair. Overall our results indicate a conserved role for UVSSA, USP7 (UBP12), and TFIIS (RDO2) in TCR.

18.
Mol Cell ; 73(1): 107-118.e4, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30503775

RESUMEN

In addition to phosphodiester bond formation, RNA polymerase II has an RNA endonuclease activity, stimulated by TFIIS, which rescues complexes that have arrested and backtracked. How TFIIS affects transcription under normal conditions is poorly understood. We identified backtracking sites in human cells using a dominant-negative TFIIS (TFIISDN) that inhibits RNA cleavage and stabilizes backtracked complexes. Backtracking is most frequent within 2 kb of start sites, consistent with slow elongation early in transcription, and in 3' flanking regions where termination is enhanced by TFIISDN, suggesting that backtracked pol II is a favorable substrate for termination. Rescue from backtracking by RNA cleavage also promotes escape from 5' pause sites, prevents premature termination of long transcripts, and enhances activation of stress-inducible genes. TFIISDN slowed elongation rates genome-wide by half, suggesting that rescue of backtracked pol II by TFIIS is a major stimulus of elongation under normal conditions.


Asunto(s)
División del ARN , ARN Polimerasa II/metabolismo , ARN/metabolismo , Elongación de la Transcripción Genética , Terminación de la Transcripción Genética , Activación Transcripcional , Región de Flanqueo 3' , Animales , Regulación de la Expresión Génica , Células HEK293 , Humanos , Cinética , Ratones , Mutación , ARN/genética , ARN Polimerasa II/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
19.
Transcription ; 9(5): 286-291, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29624124

RESUMEN

Transcription by RNA polymerase II (Pol II) is accomplished with the aid of numerous accessory factors specific to each transcriptional stage. The structure of the Pol II elongation complex (EC) bound with Spt4/5, Elf1, and TFIIS unveiled the sophisticated basal EC architecture essential for transcription elongation and other transcription-related events.


Asunto(s)
Complejos Multiproteicos/química , ARN Polimerasa II/química , Elongación de la Transcripción Genética , Factores de Elongación Transcripcional/química , Archaea , Núcleo Celular/química , Núcleo Celular/metabolismo , Simulación por Computador , Cristalografía por Rayos X , Eucariontes , Conformación Molecular , Complejos Multiproteicos/metabolismo , ARN Polimerasa II/metabolismo , Factores de Elongación Transcripcional/metabolismo
20.
Epigenetics Chromatin ; 10(1): 58, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29212533

RESUMEN

BACKGROUND: TFIIS stimulates RNA cleavage by RNA polymerase II and promotes the resolution of backtracking events. TFIIS acts in the chromatin context, but its contribution to the chromatin landscape has not yet been investigated. Co-transcriptional chromatin alterations include subtle changes in nucleosome positioning, like those expected to be elicited by TFIIS, which are elusive to detect. The most popular method to map nucleosomes involves intensive chromatin digestion by micrococcal nuclease (MNase). Maps based on these exhaustively digested samples miss any MNase-sensitive nucleosomes caused by transcription. In contrast, partial digestion approaches preserve such nucleosomes, but introduce noise due to MNase sequence preferences. A systematic way of correcting this bias for massively parallel sequencing experiments is still missing. RESULTS: To investigate the contribution of TFIIS to the chromatin landscape, we developed a refined nucleosome-mapping method in Saccharomyces cerevisiae. Based on partial MNase digestion and a sequence-bias correction derived from naked DNA cleavage, the refined method efficiently mapped nucleosomes in promoter regions rich in MNase-sensitive structures. The naked DNA correction was also important for mapping gene body nucleosomes, particularly in those genes whose core promoters contain a canonical TATA element. With this improved method, we analyzed the global nucleosomal changes caused by lack of TFIIS. We detected a general increase in nucleosomal fuzziness and more restricted changes in nucleosome occupancy, which concentrated in some gene categories. The TATA-containing genes were preferentially associated with decreased occupancy in gene bodies, whereas the TATA-like genes did so with increased fuzziness. The detected chromatin alterations correlated with functional defects in nascent transcription, as revealed by genomic run-on experiments. CONCLUSIONS: The combination of partial MNase digestion and naked DNA correction of the sequence bias is a precise nucleosomal mapping method that does not exclude MNase-sensitive nucleosomes. This method is useful for detecting subtle alterations in nucleosome positioning produced by lack of TFIIS. Their analysis revealed that TFIIS generally contributed to nucleosome positioning in both gene promoters and bodies. The independent effect of lack of TFIIS on nucleosome occupancy and fuzziness supports the existence of alternative chromatin dynamics during transcription elongation.


Asunto(s)
Nucleasa Microcócica/metabolismo , Nucleosomas/metabolismo , Factores de Elongación Transcripcional/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharomyces cerevisiae/metabolismo , Técnica de Sustracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...