Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Foods ; 13(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39272552

RESUMEN

This study aimed to investigate the leaves of six cultivars of Ipomoea batatas L. from the USA, focusing on their Total Polyphenol Content (TPC), Total Flavonoid Content (TFC), antioxidant, and antimicrobial activities. TPC and TFC ranged from 7.29 ± 0.62 to 10.49 ± 1.04 mg TAE/g Dw, and from 2.30 ± 0.04 to 4.26 ± 0.23 mg QE/g Dw, respectively, with the highest values found in the 'O'Henry' variety. RP-High-Performance Liquid Chromatography identified six phenolic and flavonoid compounds: caffeic acid, chlorogenic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and quercetin, excluding gallic acid. The highest levels of these compounds were found in acidified methanolic extracts. Antioxidant activities, measured by ABTS and DPPH assays, showed low IC50 values ranging from 94.6 ± 2.76 to 115.17 ± 7.65 µg/mL, and from 88.83 ± 1.94 to 147.6 ± 1.22 µg/mL. Ferric Ion-Reducing Antioxidant Potential (FRAP) measurements indicated significant antioxidant levels, varying from 1.98 ± 0.14 to 2.83 ± 0.07, with the 'O'Henry' variety exhibiting the highest levels. The antimicrobial activity test included five Gram-positive bacteria, three Gram-negative bacteria, and two pathogenic fungi. S. aureus, S. mutans, L. monocytogenes, E. coli, S. dysenteriae, and C. albicans were most susceptible to the methanolic extract. This study underscores the impressive antioxidant and antimicrobial activities of sweet potato leaves, often discarded, making them a valuable source of natural antioxidants, antimicrobials, and other health-promoting compounds.

2.
Front Nutr ; 11: 1440279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246396

RESUMEN

Less research has been conducted on the association between camellia oil's (CO) phenolic composition and antioxidant capability. In this study, the phenolic profile of CO and its connection to antioxidant capacity were examined utilizing a combination of widely-targeted phenolic metabolomics and multivariate statistical analysis. A total of 751 phenolics were discovered. The WGCNA was used to link phenols to antioxidants, yielding 161 antioxidant-related phenols from the blue module. In response to several antioxidant assays, 59 (FRAP), 59 (DPPH), and 53 (ABTS) phenolics were identified as differential phenolic markers (DPMs). Further stepwise multiple linear regression revealed six DPMs that substantially influenced the antioxidant capacities. Nine metabolic pathways and their associated network mechanisms for the most significant phenolics were developed. This study sheds light on the phenolic content of CO, elucidates their role in antioxidant activity, and lays the groundwork for improving extraction techniques and generating improved product.

3.
Plants (Basel) ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124134

RESUMEN

The pequi (Caryocar brasiliense) fruit peel, despite being frequently discarded, has a high content of bioactive compounds, and therefore has a high nutritional value. The present study aimed to explore the bioactivities in the pequi peel, particularly their potential health benefits at the level of antioxidant activity. The exploitation of this fruit could also present significant economic benefits and applications of pequi by-products would represent a reduction in waste, having a positive impact on the environment. Phenolic compounds present in the pequi exocarp and external mesocarp were identified by paper spray mass spectrometry (PS-MS) and quantified by HPLC. The total phenolic content (TPC) along with the amount of 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), and the amount of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) were also determined in peel extracts. Epicatechin was the most abundant phenolic compound found, followed by the caffeic, salicylic, and gallic acids. In addition, fingerprinting revealed compounds related to several beneficial health effects. In short, the results obtained were encouraging for potential applications of pequi peel in the field of functional foods.

4.
Cureus ; 16(6): e63064, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39055416

RESUMEN

Background The Tele Primary Care Oral Health Clinical Information System (TPC-OHCIS) was implemented in Malaysia to digitalize health care and reduce numerous ground-level manual tasks. This study measures the psychometric properties of the TPC-OHCIS questionnaire among healthcare workers (HCWs) at primary healthcare clinics (PHC). Method A pilot study was conducted at PHC, which implemented the TPC-OHCIS application for service delivery. The questionnaire contained 65 items with four response categories, grouped into four scales: technology, organization, external support, and human resource. The questionnaire items were analyzed using the Rasch model in Winsteps 3.72.3. Results There were 319 respondents who participated (98.8%). The Cronbach alpha was 0.93. The construct validity was determined by a positive point measure correlation (PMC) value, with an infit and outfit mean square (MNSQ) range of 0.4-1.5 and a Z-standardized (ZSTD) range of -2.0 to 2.0. The person and item reliability were 0.93 and 0.97, respectively, indicating excellent reliability. The questionnaire was unidimensional, where the raw variance explained by measures was >40%. Conclusion The questionnaire was deemed fit for an actual survey after 18 items had been deleted. It has good psychometric properties and is practically applicable for evaluating HCWs on the TPC-OHCIS application implementation process monitoring using the local Malay language. High reliability and unidimensionality were achieved, supporting its use in digital healthcare. With this validated questionnaire, it will enhance digital healthcare implementation and streamline manual tasks.

5.
Cancers (Basel) ; 16(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39061242

RESUMEN

Thyrotropin (TSH) suppression is required in the management of patients with papillary thyroid carcinoma (PTC) to improve their outcomes, inevitably causing iatrogenic thyrotoxicosis. Nevertheless, the evidence supporting this practice remains limited and weak, and in vitro studies examining the mitogenic effects of TSH in cancerous cells used supraphysiological doses of bovine TSH, which produced conflicting results. Our study explores, for the first time, the impact of human recombinant thyrotropin (rh-TSH) on human PTC cell lines (K1 and TPC-1) that were transformed to overexpress the thyrotropin receptor (TSHR). The cells were treated with escalating doses of rh-TSH under various conditions, such as the presence or absence of insulin. The expression levels of TSHR and thyroglobulin (Tg) were determined, and subsequently, the proliferation and migration of both transformed and non-transformed cells were assessed. Under the conditions employed, rh-TSH was not adequate to induce either the proliferation or the migration rate of the cells, while Tg expression was increased. Our experiments indicate that clinically relevant concentrations of rh-TSH cannot induce proliferation and migration in PTC cell lines, even after the overexpression of TSHR. Further research is warranted to dissect the underlying molecular mechanisms, and these results could translate into better management of treatment for PTC patients.

6.
Front Immunol ; 15: 1389194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840905

RESUMEN

Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.


Asunto(s)
Canales de Calcio , Endosomas , Lisosomas , Neoplasias , Canales de Potencial de Receptor Transitorio , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Lisosomas/metabolismo , Lisosomas/inmunología , Endosomas/metabolismo , Endosomas/inmunología , Animales , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Calcio/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/inmunología , Canales de Dos Poros
7.
Open Med (Wars) ; 19(1): 20240949, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868316

RESUMEN

The study aimed to investigate the effect of CD1d down-regulation on the proliferation, migration, and apoptosis of papillary thyroid carcinoma cells and explore the underlying mechanism. CD1d expression was silenced in TPC-1 cells by transfection of CD1d siRNA lentivirus. The proliferation, apoptosis rate, and migration ability of TPC-1 cells were detected by CCK-8 assay, flow cytometry, and scratch assay, respectively. Western blot and qPCR analyses were performed to detect the expression of related proteins. CD1d was highly expressed in TPC-1 cells. Down-regulation of CD1d significantly decreased ALMS1, CDKN3, CDK6, Ki-67, Bcl2 expression, increased Bax and Caspase 3 expression (all P < 0.05), and decreased the migration ability of TPC-1 cells. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify the relevant signaling pathways. KEGG pathway enrichment analysis showed that the differentially expressed genes were mainly enriched in MAPK and NF-κB signaling pathways. Our findings suggest that CD1d down-regulation inhibited the proliferation and migration abilities of TPC-1 cells, increased cell apoptosis possibly via the MAPK/NF-κB signaling pathway.

8.
Trans Am Fish Soc ; 153(1): 3-22, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38854661

RESUMEN

Arctic Grayling Thymallus arcticus are Holarctically distributed, with a single native population in the conterminous United States occurring in the Big Hole River, Montana, where water temperatures can fluctuate throughout the year from 8 to 18 °C. A gradual increase in mean water temperature has been reported in this river over the past 20 years due to riparian habitat changes and climate change effects. We hypothesized that exposing Arctic Grayling to higher temperatures would result in lower survival, decreased growth, and increased stress responses. Over a 144-day trial, Arctic Grayling juveniles were subjected to water temperatures ranging from 8-26 °C to measure the effects on growth, survival, gene expression and antioxidant enzyme activity. Fish growth increased with increasing water temperature up to 18 °C, beyond which survival was reduced. Fish did not survive at temperatures above 22 °C. In response to temperatures above 16 °C, a 3-fold and 1.5-fold increase in gene expression was observed for superoxide dismutase (SOD) and glutathione peroxidase (GPx), respectively, but no changes were seen in the ratio of Heat Shock Protein 70 (HSP70) and heat shock protein 90 (HSP90) expression. Enzyme activities of SOD and GPx also rose at temperatures above 16 °C, indicating heightened oxidative stress. Catalase (CAT) gene expression and enzyme activity decreased with rising temperatures, suggesting a preference for the GPx pathway, as GPx could also be providing help with lipid peroxidation. An increase of Thiobarbituric acid reactive substances (TBARS) was also recorded, which corresponded with rising temperatures. Our findings thus underscore the vulnerability of Arctic Grayling to minor changes in water temperature. Further increases in mean water temperature could significantly compromise survival of Arctic Grayling in the Big Hole River.

9.
Materials (Basel) ; 17(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38730929

RESUMEN

This review focuses on recent research on the phytochemicals found in bark from different trees and their potential to be used as substrates for the synthesis of thermosetting resins. Recent studies about the influence of each bark harvesting step on the extracted phytochemicals, from debarking to extraction, are investigated. A comparison of bark extracts in terms of the correlation between extraction conditions and efficiency (based on the total phenolic content (TPC) and extraction yield) is presented for six groups of trees (Norway spruce, pine species, other conifers, oak species, other deciduous trees of the north temperate zone, tropical and subtropical trees) and evaluated. The evaluation revealed that there is an interesting relationship between the extraction time and the type of solvent for some types of tree bark. It was found that a relatively short extraction time and a solvent temperature close to the boiling point are favourable. The latest research on the application of bark extracts in different types of thermosetting resins is described. This review discusses the attractiveness of bark extracts in terms of functional groups and the possibilities arising from extractable phytochemicals. In addition, different approaches (selective versus holistic) and methods of application are presented and compared.

10.
Curr Neuropharmacol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38766825

RESUMEN

Besides controlling several organellar functions, lysosomal channels also guide the catabolic "self-eating" process named autophagy, which is mainly involved in protein and organelle quality control. Neuronal cells are particularly sensitive to the rate of autophagic flux either under physiological conditions or during the degenerative process. Accordingly, neurodegeneration occurring in Parkinson's (PD), Alzheimer's (AD), and Huntington's Diseases (HD), and Amyotrophic Lateral Sclerosis (ALS) as well as Lysosomal Storage Diseases (LSD) is partially due to defective autophagy and accumulation of toxic aggregates. In this regard, dysfunction of lysosomal ionic homeostasis has been identified as a putative cause of aberrant autophagy. From a therapeutic perspective, Transient Receptor Potential Channel Mucolipin 1 (TRPML1) and Two-Pore Channel isoform 2 (TPC2), regulating lysosomal homeostasis, are now considered promising druggable targets in neurodegenerative diseases. Compelling evidence suggests that pharmacological modulation of TRPML1 and TPC2 may rescue the pathological phenotype associated with autophagy dysfunction in AD, PD, HD, ALS, and LSD. Although pharmacological repurposing has identified several already used drugs with the ability to modulate TPC2, and several tools are already available for the modulation of TRPML1, many efforts are necessary to design and test new entities with much higher specificity in order to reduce dysfunctional autophagy during neurodegeneration.

11.
J Exp Biol ; 227(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699869

RESUMEN

Understanding how tropical corals respond to temperatures is important to evaluating their capacity to persist in a warmer future. We studied the common Pacific coral Pocillopora over 44° of latitude, and used populations at three islands with different thermal regimes to compare their responses to temperature using thermal performance curves (TPCs) for respiration and gross photosynthesis. Corals were sampled in the local autumn from Moorea, Guam and Okinawa, where mean±s.d. annual seawater temperature is 28.0±0.9°C, 28.9±0.7°C and 25.1±3.4°C, respectively. TPCs for respiration were similar among latitudes, the thermal optimum (Topt) was above the local maximum temperature at all three islands, and maximum respiration was lowest at Okinawa. TPCs for gross photosynthesis were wider, implying greater thermal eurytopy, with a higher Topt in Moorea versus Guam and Okinawa. Topt was above the maximum temperature in Moorea, but was similar to daily temperatures over 13% of the year in Okinawa and 53% of the year in Guam. There was greater annual variation in daily temperatures in Okinawa than Guam or Moorea, which translated to large variation in the supply of metabolic energy and photosynthetically fixed carbon at higher latitudes. Despite these trends, the differences in TPCs for Pocillopora spp. were not profoundly different across latitudes, reducing the likelihood that populations of these corals could better match their phenotypes to future more extreme temperatures through migration. Any such response would place a premium on high metabolic plasticity and tolerance of large seasonal variations in energy budgets.


Asunto(s)
Antozoos , Fotosíntesis , Temperatura , Animales , Antozoos/fisiología , Fotosíntesis/fisiología , Estaciones del Año , Agua de Mar/química
12.
Structure ; 32(8): 1137-1149.e4, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38815576

RESUMEN

Two pore channels are lysosomal cation channels with crucial roles in tumor angiogenesis and viral release from endosomes. Inhibition of the two-pore channel 2 (TPC2) has emerged as potential therapeutic strategy for the treatment of cancers and viral infections, including Ebola and COVID-19. Here, we demonstrate that antagonist SG-094, a synthetic analog of the Chinese alkaloid medicine tetrandrine with increased potency and reduced toxicity, induces asymmetrical structural changes leading to a single binding pocket at only one intersubunit interface within the asymmetrical dimer. Supported by functional characterization of mutants by Ca2+ imaging and patch clamp experiments, we identify key residues in S1 and S4 involved in compound binding to the voltage sensing domain II. SG-094 arrests IIS4 in a downward shifted state which prevents pore opening via the IIS4/S5 linker, hence resembling gating modifiers of canonical VGICs. These findings may guide the rational development of new therapeutics antagonizing TPC2 activity.


Asunto(s)
Canales de Calcio , Humanos , Canales de Calcio/metabolismo , Canales de Calcio/química , Sitios de Unión , Lisosomas/metabolismo , Células HEK293 , Unión Proteica , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/metabolismo , Modelos Moleculares , Canales de Dos Poros
13.
Molecules ; 29(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611794

RESUMEN

In this study, the phytochemical composition, in vitro antioxidant, and anti-inflammatory effects of the aqueous and 60% ethanolic (EtOH) extracts of Santolina rosmarinifolia leaf, flower, and root were examined. The antioxidant activity of S. rosmarinifolia extracts was determined by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. The total phenolic content (TPC) of the extracts was measured by the Folin-Ciocalteu assay. The anti-inflammatory effect of the extracts was monitored by the Griess assay. The chemical composition of S. rosmarinifolia extracts was analysed using the LC-MS technique. According to our findings, 60% EtOH leaf extracts showed the highest Trolox equivalent antioxidant capacity (TEAC) values in both ABTS (8.39 ± 0.43 µM) and DPPH (6.71 ± 0.03 µM) antioxidant activity assays. The TPC values of the samples were in good correspondence with the antioxidant activity measurements and showed the highest gallic acid equivalent value (130.17 ± 0.01 µg/mL) in 60% EtOH leaf extracts. In addition, the 60% EtOH extracts of the leaves were revealed to possess the highest anti-inflammatory effect. The LC-MS analysis of S. rosmarinifolia extracts proved the presence of ascorbic acid, catalpol, chrysin, epigallocatechin, geraniol, isoquercitrin, and theanine, among others, for the first time. However, additional studies are needed to investigate the direct relationship between the chemical composition and physiological effects of the herb. The 60% EtOH extracts of S. rosmarinifolia leaves are potential new sources of natural antioxidants and anti-inflammatory molecules in the production of novel nutraceutical products.


Asunto(s)
Antioxidantes , Asteraceae , Benzotiazoles , Antioxidantes/farmacología , Ácido Ascórbico , Ácidos Sulfónicos , Antiinflamatorios/farmacología
14.
J Physiol ; 602(8): 1623-1636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598430

RESUMEN

Two-pore channels and TRP mucolipins are ubiquitous endo-lysosomal cation channels of pathophysiological relevance. Both are Ca2+-permeable and regulated by phosphoinositides, principally PI(3,5)P2. Accumulating evidence has uncovered synergistic channel activation by PI(3,5)P2 and endogenous metabolites such as the Ca2+ mobilizing messenger NAADP, synthetic agonists including approved drugs and physical cues such as voltage and osmotic pressure. Here, we provide an overview of this coordination.


Asunto(s)
Canales de Calcio , Canales de Potencial de Receptor Transitorio , Canales de Calcio/metabolismo , Canales de Dos Poros , Calcio/metabolismo , Lisosomas/metabolismo , NADP/metabolismo , Presión Osmótica , Canales de Potencial de Receptor Transitorio/metabolismo
15.
3 Biotech ; 14(5): 127, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38585410

RESUMEN

Endophytic fungi have emerged as a significant source of natural products with remarkable bioactivities. Recent research has identified numerous antioxidant molecules among the secondary metabolites of endophytic fungi. These organisms, whether unicellular or micro-multicellular, offer the potential for genetic manipulation to enhance the production of these valuable antioxidant compounds, which hold promise for promoting health, vitality, and various biotechnological applications. In this study, we provide a critical review of methods for extracting, purifying, characterizing, and estimating the total antioxidant capacity (TAC) of endophytic fungi metabolites. While many endophytes produce metabolites similar to those found in plants with established symbiotic associations, we also highlight the existence of novel metabolites with potential scientific interest. Additionally, we discuss how advancements in nanotechnology have opened new avenues for exploring nanoformulations of endophytic metabolites in future studies, offering opportunities for diverse biological and industrial applications.

17.
Food Chem ; 451: 139419, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677134

RESUMEN

Plant extracts rich in phytochemicals are known for their health benefits. Plant extract library from edible plants obtained from the region of Upper Austria was prepared. Food grade extraction procedures were applied, and relevant physico-chemical parameters measured. A focus on polyphenolic compounds revealed a significant correlation between the total phenolic content (measured by a colorimetric assay) and the cumulated concentration of main individual polyphenols (measured by HPLC-DAD), demonstrating the comparability of these parameters. Targeted screening was performed by HPLC-FLD and -MS for the presence of phytomelatonin. 20 extracts were identified with concentrations of up to 1.4 µg/mL of this phytochemical, which attracts much attention from the food industry. Finally, chemometric methods were employed to cluster extracts based on their phenolic compound profile. This approach allows for an informed preselection of extracts without the need for comprehensive chemical analysis.


Asunto(s)
Extractos Vegetales , Polifenoles , Extractos Vegetales/química , Austria , Cromatografía Líquida de Alta Presión , Polifenoles/química , Polifenoles/análisis , Fitoquímicos/química , Plantas Comestibles/química , Espectrometría de Masas , Fenoles/química , Fenoles/análisis
18.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38684475

RESUMEN

Heterotrophic bacteria are commonly found in water samples. While these Heterotrophic Bacterial/Plate Counts (HPC) do not necessarily indicate a health hazard, high counts provide a good indication of the efficiency of water disinfection and integrity of distribution systems. The aim of this study was to compare the PetrifimTM AC method to the pour plate technique for the testing of HPC in water samples. Artificially contaminated (192 samples) and natural water samples (25) were processed using two methods. Both methods accurately detected high, medium and low counts of HPC, producing average Z scores between -2 and +2. Paired-wise student t-test and correlation coefficient showed nonsignificant differences between the results of two methods. Acceptable repeatability and reproducibility was obtained using both the methods. Uncertainty of measurement for PetrifilmTM AC and pour plate method was found to be 2.9% and 5.4%, respectively. PetrifilmTM AC proved to be robust at 33°C and 37°C. In conclusion, PetrifimTM AC, which is easy to process, read, and less time consuming, proved to be comparable to the conventional pour plate method in establishing HPC in water. In addition, PetrifimTM AC requires less space for the processing and incubation, generate small volume of waste for disposal, and requires no equipment, except for the incubator.


Asunto(s)
Carga Bacteriana , Microbiología del Agua , Carga Bacteriana/métodos , Bacterias Aerobias/aislamiento & purificación , Reproducibilidad de los Resultados , Recuento de Colonia Microbiana/métodos , Procesos Heterotróficos
19.
Molecules ; 29(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543013

RESUMEN

Phytochemicals from waste materials generated by agricultural and industrial processes have become globally significant due to their accessibility and potential effectiveness with few side effects. These compounds have essential implications in both medicine and the economy. Therefore, a quantitative analysis of the phytochemical profile, sugar types, and water-soluble vitamins of dried Corchorus olitorius L."DJMS" extract (dried Jew's mallow stem) was carried out with HPLC. In addition, the chemical composition, TPC, chlorophyll a and b, beta-carotene, and antioxidant effect using DPPH were investigated. Furthermore, the anticancer activity of the DJMS was evaluated by SRB assay using Huh-7 and MDA-MB-231 cell lines. In the quantitative study, DJMS extract showed a high antioxidant potential (67%) due to its content of bioactive compounds such as TPC (276.37 mg 100 g-1) and chlorophyll a and b (20.31, 12.02 mg 100 g-1, respectively), as well as some vitamins and minerals such as B-complex (B12; 146.8 mg 100 g-1 and vitamin C 6.49 mg 100 g-1) and selenium (<0.2 µg kg-1). Moreover, the main sugar types found were sucrose and stachyose, which recorded 9.23 and 6.25 mg 100 g-1, respectively. Identifying phenolic and flavonoids showed that the major components were ellagic acid (4905.26 µg kg-1), ferulic acid (3628.29 µg kg-1), chlorogenic acid (3757.08 µg kg-1), luteolin-7-O-glucoside (4314.48 µg kg-1), naringin (4296.94 µg kg-1) and apigenin-6-rhamnose-8 glucoside (3078.87 µg kg-1). The dried stem extract showed significant MDA-MB-231 inhibition activity and reached 80% at a concentration of 1000 µg/mL of DJMS extract, related to the content of phytochemical components such as isoflavones like genistein (34.96 µg kg-1), which had a tremendous anticancer effect. Hence, the stem of Jew's mallow (which is edible and characterized by its viability and low production cost) possesses the capacity to serve as a pharmaceutical agent for combating cancer owing to its abundance of bioactive components.


Asunto(s)
Antineoplásicos , Antioxidantes , Humanos , Antioxidantes/análisis , Clorofila A , Egipto , Judíos , Flavonoides/farmacología , Antineoplásicos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Vitaminas , Azúcares
20.
J Plant Physiol ; 295: 154189, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432037

RESUMEN

Clathrin-mediated endocytosis (CME) is a highly conserved pathway that plays a crucial role in the endocytosis of plasma membrane proteins in eukaryotic cells. The pathway is initiated when the adaptor protein complex 2 (AP2) and TPLATE complex (TPC) work together to recognize cargo proteins and recruit clathrin. This review provides a concise overview of the functions of each subunit of AP2 and TPC, and highlights the involvement of CME in various biological processes, such as pollen development, root development, nutrient transport, extracellular signal transduction, auxin polar transport, hyperosmotic stress, salinity stress, high ammonium stress, and disease resistance. Additionally, the review explores the regulation of CME by phytohormones, clathrin-mediated exocytosis (CMX), and AP2M phosphorylation. It also suggests potential future research directions for CME.


Asunto(s)
Fenómenos Biológicos , Endocitosis , Endocitosis/fisiología , Clatrina/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Desarrollo de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...