Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
EMBO J ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152265

RESUMEN

While immune checkpoint blockade (ICB) has shown promise for clinical cancer therapy, its efficacy has only been observed in a limited subset of patients and the underlying mechanisms regulating innate and acquired resistance to ICB of tumor cells remain poorly understood. Here, we identified ependymin-related protein 1 (EPDR1) as an important tumor-intrinsic regulator of PD-L1 expression and tumor immune evasion. Aberrant expression of EPDR1 in hepatocellular carcinoma is associated with immunosuppression. Mechanistically, EPDR1 binds to E3 ligase TRIM21 and disrupts its interaction with IkappaB kinase-b, suppressing its ubiquitylation and autophagosomal degradation and enhancing NF-κB-mediated transcriptional activation of PD-L1. Further, we validated through a mouse liver cancer model that EPDR1 mediates exhaustion of CD8+ T cells and promotes tumor progression. In addition, we observed a positive correlation between EPDR1 and PD-L1 expression in both human and mouse liver cancer samples. Collectively, our study reveals a previously unappreciated role of EPDR1 in orchestrating tumor immune evasion and cancer progression.

2.
Exp Neurol ; : 114916, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122166

RESUMEN

To investigate the changes in neuronal lipid droplet (LD) accumulation and lipid metabolism after acute spinal cord injury (SCI), we established a rat model of compressive SCI. Oil Red O staining, BODIPY 493/503 staining, and 4-hydroxynonenal immunofluorescence staining were performed to determine overall LD accumulation, neuronal LD accumulation, and lipid peroxidation. Lipidomics was conducted to identify the lipid components in the local SCI microenvironment. We focused on the expression and regulation of perilipin 2 (PLIN2) and knocked down PLIN2 in vivo by intrathecal injection of adeno-associated virus 9-synapsin-short-hairpin RNA-PLIN2 (AAV9-SYN-shPlin2). Motor function was assessed using the Basso-Beattie-Bresnahan score. Proteins that interacted with PLIN2 were screened by immunoprecipitation (IP) and qualitative shotgun proteomics, and confirmed by co-IP. A ubiquitination assay was performed to validate whether ubiquitination was involved in PLIN2 degradation. Oil Red O staining indicated that LDs steadily accumulated after SCI. Fluorescent staining indicated the accumulation of LDs in neurons with increased lipid peroxidation. Lipidomics revealed significant changes in lipid components after SCI. PLIN2 expression significantly increased following SCI, and knockdown of PLIN2 using AAV9-SYN-Plin2 reduced neuronal LD accumulation. This intervention improved the neuronal survival and motor function of injured rats. IP and qualitative shotgun proteomics identified tripartite motif-containing protein 21 (TRIM21) as a direct binding protein of PLIN2, and this interaction was confirmed by co-IP in vitro and immunofluorescence staining in vivo. By manipulating TRIM21 expression, we found it was negatively correlated with PLIN2 expression. In conclusion, PLIN2 is involved in neuronal LD accumulation following SCI. TRIM21 mediated the ubiquitination and degradation of PLIN2 in neurons. Inhibition of PLIN2 enhanced the recovery of motor function after SCI.

3.
Front Immunol ; 15: 1435525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165359

RESUMEN

Multiple factors contribute to the development of connective tissue diseases (CTD), often alongside a range of interstitial lung diseases (ILD), including Sjögren's syndrome-associated ILD, systemic sclerosis-associated ILD, systemic lupus erythematosus-associated ILD, idiopathic inflammatory myositis-associated ILD. TRIM21(or Ro52), an E3 ubiquitin ligase, plays a vital role in managing innate and adaptive immunity, and maintaining cellular homeostasis, and is a focal target for autoantibodies in various rheumatic autoimmune diseases. However, the effectiveness of anti-TRIM21 antibodies in diagnosing CTD remains a matter of debate because of their non-specific nature. Recent studies indicate that TRIM21 and its autoantibody are involved in the pathogenesis of CTD-ILD and play an important role in diagnosis and prognosis. In this review, we focus on the contribution of TRIM21 in the pathogenesis of CTD-ILD, as well as the potential diagnostic value of its autoantibodies in different types of CTD-ILD for disease progression and potential as a novel therapeutic target.


Asunto(s)
Autoanticuerpos , Enfermedades del Tejido Conjuntivo , Enfermedades Pulmonares Intersticiales , Ribonucleoproteínas , Humanos , Enfermedades Pulmonares Intersticiales/inmunología , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/diagnóstico , Ribonucleoproteínas/inmunología , Enfermedades del Tejido Conjuntivo/inmunología , Enfermedades del Tejido Conjuntivo/complicaciones , Autoanticuerpos/inmunología , Animales , Biomarcadores
4.
EXCLI J ; 23: 888-903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983778

RESUMEN

The coexistence within a subcellular complex of inter-cellular proteins Ro60, responsible for preserving ncRNA quality, and Ro52, involved in intracellular proteolysis, has been a subject of ongoing debate. Employing molecular docking in tandem with experimental methods like Quartz Crystal Microbalance with Dissipation (QCM-D), Proximity Ligation Assay (PLA), and Indirect Immunofluorescence (IIF), we reveal the presence of Ro60 associating with Ro52 within the cytoplasm. This result unveils the formation of a weak transient complex with a Ka ≈ (3.7 ± 0.3) x 106 M-1, where the toroid-shaped Ro60 structure interacts with the Ro52's Fc receptor, aligning horizontally within the PRY-SPRY domains of the Ro52's homodimer. The stability of this complex relies on the interaction between Ro52 chain A and specific Ro60 residues, such as K133, W177, or L185, vital in the Ro60-YRNA bond. These findings bridge the role of Ro60 in YRNA management with Ro52's function in intracellular proteolysis, emphasizing the potential impact of transient complexes on cellular pathways. See also the graphical abstract(Fig. 1).

5.
Front Immunol ; 15: 1403070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015575

RESUMEN

Background: The cGAS-STING axis-mediated type I interferon pathway is a crucial strategy for host defense against DNA virus infection. Numerous evasion strategies developed by the pseudorabies virus (PRV) counteract host antiviral immunity. To what extent PRV-encoded proteins evade the cGAS-STING signaling pathway is unknown. Methods: Using US2 stably expressing cell lines and US2-deficient PRV model, we revealed that the PRV tegument protein US2 reduces STING protein stability and downregulates STING-mediated antiviral signaling. Results: To promote K48-linked ubiquitination and STING degradation, US2 interacts with the LBD structural domain of STING and recruits the E3 ligase TRIM21. TRIM21 deficiency consistently strengthens the host antiviral immune response brought on by PRV infection. Additionally, US2-deficient PRV is less harmful in mice. Conclusions: Our study implies that PRV US2 inhibits IFN signaling by a new mechanism that selectively targets STING while successfully evading the host antiviral response. As a result, the present study reveals a novel strategy by which PRV evades host defense and offers explanations for why the Bartha-K61 classical vaccine strain failed to offer effective defense against PRV variant strains in China, indicating that US2 may be a key target for developing gene-deficient PRV vaccines.


Asunto(s)
Herpesvirus Suido 1 , Inmunidad Innata , Seudorrabia , Transducción de Señal , Proteínas del Envoltorio Viral , Animales , Humanos , Ratones , Células HEK293 , Herpesvirus Suido 1/inmunología , Herpesvirus Suido 1/fisiología , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Seudorrabia/inmunología , Seudorrabia/virología , Ribonucleoproteínas/inmunología , Ribonucleoproteínas/metabolismo , Ubiquitinación , Proteínas del Envoltorio Viral/metabolismo
6.
Front Immunol ; 15: 1401471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938560

RESUMEN

TRIM21 is a pivotal effector in the immune system, orchestrating antibody-mediated responses and modulating immune signaling. In this comprehensive study, we focus on the interaction of TRIM21 with Fc engineered antibodies and subsequent implications for viral neutralization. Through a series of analytical techniques, including biosensor assays, mass photometry, and electron microscopy, along with structure predictions, we unravel the intricate mechanisms governing the interplay between TRIM21 and antibodies. Our investigations reveal that the TRIM21 capacity to recognize, bind, and facilitate the proteasomal degradation of antibody-coated viruses is critically dependent on the affinity and avidity interplay of its interactions with antibody Fc regions. We suggest a novel binding mechanism, where TRIM21 binding to one Fc site results in the detachment of PRYSPRY from the coiled-coil domain, enhancing mobility due to its flexible linker, thereby facilitating the engagement of the second site, resulting in avidity due to bivalent engagement. These findings shed light on the dual role of TRIM21 in antiviral immunity, both in recognizing and directing viruses for intracellular degradation, and demonstrate its potential for therapeutic exploitation. The study advances our understanding of intracellular immune responses and opens new avenues for the development of antiviral strategies and innovation in tailored effector functions designed to leverage TRIM21s unique binding mode.


Asunto(s)
Anticuerpos Neutralizantes , Fragmentos Fc de Inmunoglobulinas , Unión Proteica , Ribonucleoproteínas , Humanos , Ribonucleoproteínas/inmunología , Ribonucleoproteínas/metabolismo , Anticuerpos Neutralizantes/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/metabolismo , Ingeniería de Proteínas , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Afinidad de Anticuerpos/inmunología , Animales
7.
Viruses ; 16(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38932241

RESUMEN

African swine fever (ASF) is an acute, hemorrhagic, highly contagious disease in pigs caused by African swine fever virus (ASFV). Our previous study identified that the ASFV MGF300-2R protein functions as a virulence factor and found that MGF300-2R degrades IKKß via selective autophagy. However, the E3 ubiquitin ligase responsible for IKKß ubiquitination during autophagic degradation still remains unknown. In order to solve this problem, we first pulled down 328 proteins interacting with MGF300-2R through immunoprecipitation-mass spectrometry. Next, we analyzed and confirmed the interaction between the E3 ubiquitin ligase TRIM21 and MGF300-2R and demonstrated the catalytic role of TRIM21 in IKKß ubiquitination. Finally, we indicated that the degradation of IKKß by MGF300-2R was dependent on TRIM21. In summary, our results indicate TRIM21 is the E3 ubiquitin ligase involved in the degradation of IKKß by MGF300-2R, thereby augmenting our understanding of the functions of MGF300-2R and offering insights into the rational design of live attenuated vaccines and antiviral strategies against ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Quinasa I-kappa B , Ribonucleoproteínas , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteínas Virales , Animales , Virus de la Fiebre Porcina Africana/metabolismo , Virus de la Fiebre Porcina Africana/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Porcinos , Quinasa I-kappa B/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Humanos , Células HEK293 , Interacciones Huésped-Patógeno , Factores de Virulencia/metabolismo , Autofagia , Unión Proteica
8.
Cancer Lett ; 596: 217004, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838765

RESUMEN

Long non-coding RNA (lncRNA) is closely related to a variety of human cancers, which may provide huge potential biomarkers for cancer diagnosis and treatment. However, the aberrant expression of most lncRNAs in colorectal cancer (CRC) remains elusive. This study aims to explore the clinical significance and potential mechanism of lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) in the colorectal cancer. Here, we demonstrated that lncRNA ABHD11-AS1 is high-expressed in colorectal cancer (CRC) patients, and strongly related with poor prognosis. Functionally, ABHD11-AS1 suppresses ferroptosis and promotes proliferation and migration in CRC both in vitro and in vivo. Mechanically, lncRNA ABHD11-AS1 interacted with insulin-like growing factor 2 mRNA-binding protein 2 (IGF2BP2) to enhance FOXM1 stability, forming an ABHD11-AS1/FOXM1 positive feedback loop. E3 ligase tripartite motif containing 21 (TRIM21) promotes the degradation of IGF2BP2 via the K48-ubiquitin-lysosome pathway and ABHD11-AS1 promotes the interaction between IGF2BP2 and TRIM21 as scaffold platform. Furthermore, N6 -adenosine-methyltransferase-like 3 (METTL3) upregulated the stabilization of ABHD11-AS1 through the m6A reader IGF2BP2. Our study highlights ABHD11-AS1 as a significant regulator in CRC and it may become a potential target in future CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Proteína Forkhead Box M1 , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , Proteínas de Unión al ARN , Ribonucleoproteínas , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Ferroptosis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proliferación Celular , Animales , Ratones , Retroalimentación Fisiológica , Progresión de la Enfermedad , Línea Celular Tumoral , Masculino , Movimiento Celular/genética , Femenino , Ratones Desnudos , Pronóstico , Adenosina/análogos & derivados , Serina Proteasas
9.
Zhongguo Fei Ai Za Zhi ; 27(5): 337-344, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38880921

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is a highly morbid and fatal cancer. Despite advancements in modern medical treatment, the 5-year survival rate of patients remains suboptimal. Our previous study revealed that zinc finger SWIM-type containing 1 (ZSWIM1), a novel protein, promotes the proliferation, migration, and invasion of LUAD cells. The aim of this study is to investigate the impact of E3 ubiquitin ligase tripartite motif protein 21 (TRIM21) on ZSWIM1-mediated cell proliferation and migration. METHODS: The interaction and co-localization between TRIM21 and ZSWIM1 were verified using co-immunoprecipitation (Co-IP) and immunofluorescence (IF). The effects of TRIM21 and ZSWIM1 on the proliferation and migration of LUAD cells were assessed through MTT and Transwell assays, respectively. Western blot (WB) analysis was conducted to evaluate the impact of TRIM21 and ZSWIM1 on the expression of epithelial-mesenchymal transition (EMT) markers in LUAD cells. The influence of TRIM21 on the ubiquitination of ZSWIM1 was examined using Co-IP combined with WB. RESULTS: TRIM21 was found to interact and co-localize with ZSWIM1. Overexpression of TRIM21 inhibited the proliferation and migration of LUAD cells. Overexpression of TRIM21 reduced the promoting effect of ZSWIM1 on the proliferation, migration, and invasion of lung adenocarcinoma cells, and reversed the impact of ZSWIM1 on the expression of E-cadherin and Vimentin. Conversely, knockdown of TRIM21 further enhanced the promoting effect of ZSWIM1 on the proliferation and migration of LUAD cells. Mechanistically, we observed that overexpression of TRIM21 significantly enhanced the ubiquitination level of ZSWIM1, leading to a decrease in ZSWIM1 protein expression. CONCLUSIONS: TRIM21 binds to and promotes the ubiquitination of ZSWIM1, resulting in reduced protein expression of ZSWIM1, which leads to the inhibition of ZSWIM1-mediated promotion of proliferation, migration, and invasion in LUAD cells.


Asunto(s)
Adenocarcinoma del Pulmón , Movimiento Celular , Proliferación Celular , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Ubiquitinación , Unión Proteica , Células A549
10.
Cells ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727267

RESUMEN

The unique prolyl isomerase Pin1 binds to and catalyzes cis-trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and coordinating their activities after phosphorylation in both physiological and disease states. In this review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Meanwhile, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin-proteasome system can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent degradation using stereospecific antibodies.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA , Proteolisis , Ubiquitinación , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Conformación Proteica , Animales , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Ubiquitina-Proteína Ligasas/metabolismo
11.
Cancer Cell Int ; 24(1): 179, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783335

RESUMEN

BACKGROUND: Radiotherapy (RT) has been identified as a vital treatment for esophageal squamous cell carcinoma (ESCC), while the development of radioresistance remains a major obstacle in ESCC management. The aim of this study was to investigate the effect of NIMA-related kinase 2 (NEK2) on radioresistance in ESCC cells and to reveal potential molecular mechanisms. METHODS: Human esophageal epithelial cells (HEEC) and human ESCC cell lines were obtained from the Research Center of the Fourth Hospital of Hebei Medical University (Shijiazhuang, China). Cell Counting Kit-8 (CCK-8) and flow cytometry assays were applied to assess the proliferation ability, cell cycle, apoptosis rates, and ROS production of ESCC cells. The colony-forming assay was used to estimate the effect of NEK2 on radiosensitivity. Autophagy was investigated by western blotting analysis, GFP-mRFP-LC3 fluorescence assay, and transmission electron microscopy (TEM). RESULTS: In the present study, our results showed that NEK2 was associated with radioresistance, cell cycle arrest, apoptosis, ROS production, and survival of ESCC. NEK2 knockdown could significantly inhibit growth while enhancing radiosensitivity and ROS production in ESCC cells. Interestingly, NEK2 knockdown inhibited ESCC cell autophagy and reduced autophagic flux, ultimately reversing NEK2-induced radioresistance. Mechanistically, NEK2 bound to and regulated the stability of tripartite motif-containing protein 21 (TRIM21). The accumulation of NEK2-induced light chain 3 beta 2 (LC3B II) can be reversed by the knockdown of TRIM21. CONCLUSION: These results demonstrated that NEK2 activated autophagy through TRIM21, which may provide a promising therapeutic strategy for elucidating NEK2-mediated radioresistance in ESCC.

12.
Cancer Lett ; 592: 216923, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38697462

RESUMEN

Liver metastasis is common in patients with gallbladder cancer (GBC), imposing a significant challenge in clinical management and serving as a poor prognostic indicator. However, the mechanisms underlying liver metastasis remain largely unknown. Here, we report a crucial role of tyrosine aminotransferase (TAT) in liver metastasis of GBC. TAT is frequently up-regulated in GBC tissues. Increased TAT expression is associated with frequent liver metastasis and poor prognosis of GBC patients. Overexpression of TAT promotes GBC cell migration and invasion in vitro, as well as liver metastasis in vivo. TAT knockdown has the opposite effects. Intriguingly, TAT promotes liver metastasis of GBC by potentiating cardiolipin-dependent mitophagy. Mechanistically, TAT directly binds to cardiolipin and leads to cardiolipin externalization and subsequent mitophagy. Moreover, TRIM21 (Tripartite Motif Containing 21), an E3 ubiquitin ligase, interacts with TAT. The histine residues 336 and 338 at TRIM21 are essential for this binding. TRIM21 preferentially adds the lysine 63 (K63)-linked ubiquitin chains on TAT principally at K136. TRIM21-mediated TAT ubiquitination impairs its dimerization and mitochondrial location, subsequently inhibiting tumor invasion and migration of GBC cells. Therefore, our study identifies TAT as a novel driver of GBC liver metastasis, emphasizing its potential as a therapeutic target.


Asunto(s)
Movimiento Celular , Neoplasias de la Vesícula Biliar , Neoplasias Hepáticas , Ribonucleoproteínas , Ubiquitinación , Animales , Humanos , Ratones , Línea Celular Tumoral , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Mitofagia , Invasividad Neoplásica , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Tirosina Transaminasa
13.
J Exp Clin Cancer Res ; 43(1): 135, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702792

RESUMEN

BACKGROUND: Rhabdomyosarcoma (RMS) is a rare malignancy and the most common soft tissue sarcoma in children. Vasculogenic mimicry (VM) is a novel tumor microcirculation model different from traditional tumor angiogenesis, which does not rely on endothelial cells to provide sufficient blood supply for tumor growth. In recent years, VM has been confirmed to be closely associated with tumor progression. However, the ability of RMS to form VM has not yet been reported. METHODS: Immunohistochemistry, RT-qPCR and western blot were used to test the expression level of SNAI2 and its clinical significance. The biological function in regulating vasculogenic mimicry and malignant progression of SNAI2 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of SNAI2. RESULTS: Our study indicated that SNAI2 was abnormally expressed in patients with RMS and RMS cell lines and promoted the proliferation and metastasis of RMS. Through cell tubule formation experiments, nude mice Matrigel plug experiments, and immunohistochemistry (IHC), we confirmed that RMS can form VM and that SNAI2 promotes the formation of VM. Due to SNAI2 is a transcription factor that is not easily drugged, we used Co-IP combined with mass spectrometry to screen for the SNAI2-binding protein USP7 and TRIM21. USP7 depletion inhibited RMS VM formation, proliferation and metastasis by promoting SNAI2 degradation. We further demonstrated that TRIM21 is expressed at low levels in human RMS tissues and inhibits VM in RMS cells. TRIM21 promotes SNAI2 protein degradation through ubiquitination in the RMS. The deubiquitinase USP7 and E3 ligase TRIM21 function in an antagonistic rather than competitive mode and play a key role in controlling the stability of SNAI2 to determine the VM formation and progression of RMS. CONCLUSION: Our findings reveal a previously unknown mechanism by which USP7 and TRIM21 balance the level of SNAI2 ubiquitination, determining RMS vasculogenic mimicry, proliferation, and migration. This new mechanism may provide new targeted therapies to inhibit the development of RMS by restoring TRIM21 expression or inhibiting USP7 expression in RMS patients with high SNAI2 protein levels.


Asunto(s)
Neovascularización Patológica , Rabdomiosarcoma , Ribonucleoproteínas , Factores de Transcripción de la Familia Snail , Peptidasa Específica de Ubiquitina 7 , Humanos , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Animales , Ratones , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Rabdomiosarcoma/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Femenino , Progresión de la Enfermedad , Proliferación Celular , Masculino , Homeostasis , Línea Celular Tumoral , Ratones Desnudos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
14.
Mol Cell Biochem ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720056

RESUMEN

Gastric cancer (GC) stands as one of the most formidable malignancies worldwide. It is well-established that miRNAs play a crucial role in the initiation and progression of various human cancers. Among these, miR-99a-3p has been implicated in the pathogenesis of GC. In the context of our study, we embarked on the comprehensive examination of miR-99a-3p expression in GC cells. Additionally, we sought to establish a correlation between miR-99a-3p expression levels and the overall survival (OS) of GC patients, and our findings hinted at its potential role in predicting an unfavorable prognosis. To further investigate the functional implications of miR-99a-3p in GC, we conducted a series of cell-based experiments after successfully knocking down miR-99a-3p. These investigations uncovered a substantial inhibition of cellular events associated with tumor progression. Moreover, employing TargetScan, we identified Tripartite motif-containing protein 21 (TRIM21) as a putative target with a binding site for miR-99a-3p. Subsequent dual-luciferase reporter gene assay confirmed the direct interaction between miR-99a-3p and TRIM21. Western blot analysis validated the alteration in TRIM21 expression levels, revealing an upregulation upon miR-99a-3p knockdown. Building on these molecular findings, we extended our investigations to human GC tissues, where we observed a downregulation of TRIM21, which, notably, correlated with shorter overall survival. Lastly, to further solidify our conclusions, we conducted a series of in vitro and in vivo rescue experiments, collectively suggesting that miR-99a-3p promoted the progression of GC cells through the downregulation of TRIM21. In summary, our study comprehensively explored the role of miR-99a-3p in GC, revealing its association with unfavorable patient outcomes, functional implications in tumor progression, and a direct regulatory relationship with TRIM21. These findings collectively underscore the significance of miR-99a-3p in the pathogenesis of GC and present a potential therapeutic avenue for further investigation.

15.
Biol Futur ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717710

RESUMEN

Tripartite motif (TRIM) family members participate in a variety of cellular activities, such as intracellular signaling, development, cellular death, protein quality control, immunological defense, waste degradation, and the emergence of cancer. These proteins usually act as E3 ubiquitin ligase. The final line of resistance against infectious viruses is a cytosolic ubiquitin ligase and antibody receptor called TRIM containing 21. TRIM21, a protein with a tripartite structure, has been linked to autoimmune erythematosus, Sjogren's disorder, and innate immunity. TRIM21 may either promote the formation of specific cancer-activating proteins, resulting in their proteasomal degradation, or it may do neither, depending on the kind of cancer and cancer-causing trigger. The current research has shown that the antiviral action of TRIM mostly depends on their role as E3-ubiquitin ligases and a significant portion of the TRIM family mediates the transmission of innate immune cell signals and the subsequent production of cytokines. We highlighted the function of TRIM family members in various inflammatory diseases.

16.
Cell Rep ; 43(4): 114095, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38613787

RESUMEN

Interferon (IFN) contributes to the host's antiviral response by inducing IFN-stimulated genes (ISGs). However, their functional targets and the mechanism of action remain elusive. Here, we report that one such ISG, TRIM21, interacts with and degrades the TRPV2 channel in myeloid cells, reducing its expression and providing host protection against viral infections. Moreover, viral infection upregulates TRIM21 in paracrine and autocrine manners, downregulating TRPV2 in neighboring cells to prevent viral spread to uninfected cells. Consistently, the Trim21-/- mice are more susceptible to HSV-1 and VSV infection than the Trim21+/+ littermates, in which viral susceptibility is rescued by inhibition or deletion of TRPV2. Mechanistically, TRIM21 catalyzes the K48-linked ubiquitination of TRPV2 at Lys295. TRPV2K295R is resistant to viral-infection-induced TRIM21-dependent ubiquitination and degradation, promoting viral infection more profoundly than wild-type TRPV2 when reconstituted into Lyz2-Cre;Trpv2fl/fl myeloid cells. These findings characterize targeting the TRIM21-TRPV2 axis as a conducive strategy to control viral spread to bystander cells.


Asunto(s)
Ribonucleoproteínas , Canales Catiónicos TRPV , Ubiquitinación , Virosis , Animales , Humanos , Ratones , Regulación hacia Abajo , Células HEK293 , Herpesvirus Humano 1/fisiología , Interferones/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Ribonucleoproteínas/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Virosis/metabolismo
17.
Cell Commun Signal ; 22(1): 221, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594674

RESUMEN

VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.


Asunto(s)
Diabetes Mellitus , Preeclampsia , Femenino , Humanos , Recién Nacido , Embarazo , Número de Embarazos , Oxitocina/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Proteómica , Receptores de Oxitocina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542289

RESUMEN

Tripartite motif-containing protein 21 (TRIM21) is involved in signal transduction and antiviral responses through the ubiquitination of protein targets. TRIM21 was reported to be related to the imbalance of host cell homeostasis caused by viral infection. Our studies indicated that H5N1 highly pathogenic avian influenza virus (HPAIV) infection up-regulated TRIM21 expression in A549 cells. Western blot and qPCR results showed that knockdown of TRIM21 alleviated oxidative stress and ferroptosis induced by H5N1 HPAIV and promoted the activation of antioxidant pathways. Co-IP results showed that TRIM21 promoted oxidative stress and ferroptosis by regulating the SQSTM1-NRF2-KEAP1 axis by increasing SQSTM1 K63-linked polyubiquitination under the condition of HPAIV infection. In addition, TRIM21 attenuated the inhibitory effect of antioxidant NAC on HPAIV titers and enhanced the promoting effect of ferroptosis agonist Erastin on HPAIV titers. Our findings provide new insight into the role of TRIM21 in oxidative stress and ferroptosis induced by viral infection.


Asunto(s)
Ferroptosis , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
19.
Autoimmun Rev ; 23(5): 103536, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555075

RESUMEN

OBJECTIVES: Estimate the global prevalence of anti-Ro52-kDa/SSA (TRIM21) autoantibodies in systemic sclerosis (SSc), and describe the associated clinical phenotype, through a systematic review and meta-analysis of published reports and new data from our French cohort. METHODS: Anti-TRIM21 seropositivity and associated SSc characteristics were assessed in a cross-sectional study including 300 patients of Lille University Hospital. A systematic review of the literature was performed in Pubmed and Embase, followed by a meta-analysis, using data on prevalence, clinical/demographical/biological characteristics of SSc patients and the type of assay used for anti-TRIM21 antibodies detection (PROSPERO n° CRD42021223719). FINDINGS: In the cross-sectional study, anti-TRIM21 antibodies prevalence was 26% [95%CI: 21; 31]. Anti-centromere antibodies were the most frequent SSc specific autoantibodies coexisting with anti-TRIM21. Patients with anti-TRIM21 antibodies were more frequently women (91% vs 77%, p = 0.006), more likely to present an associated Sjögren's syndrome (19% vs 7%, p < 0.001), had a higher rate of pulmonary arterial hypertension (PAH) (15% vs 6%, p = 0.017) and a greater frequency of digestive complications such as dysphagia (12% vs 5%, p = 0.038) or nausea/vomiting (10% vs 3%, p = 0.009) than anti-TRIM21 negative patients. Thirty-five articles corresponding to a total of 11,751 SSc patients were included in the meta-analysis. In this population, the overall seroprevalence of anti-TRIM21 antibodies was 23% [95%CI: 21; 27] with a high degree of heterogeneity (I2: 93% Phet: <0.0001), partly explained by the methods of detection. Anti-TRIM21 seropositivity was positively associated with female sex (OR: 1.60 [95%CI: 1.25, 2.06]), limited cutaneous subset (OR: 1.29 [1.04, 1.61]), joint manifestations (OR: 1.33 [1.05, 1.68]), pulmonary hypertension (PH) (OR: 1.82 [1.42, 2.33]), and interstitial lung disease (ILD) (OR: 1.31 [1.07, 1.60]). INTERPRETATION: Anti-TRIM21 antibodies frequently co-exist with usual SSc antibodies, but are independently associated to a higher risk of cardio-pulmonary complications. The presence of these autoantibodies should therefore be considered when assessing the risk of developing PH and ILD, and deserves further studies on appropriate screening and follow-up of patients.


Asunto(s)
Autoanticuerpos , Ribonucleoproteínas , Esclerodermia Sistémica , Humanos , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/epidemiología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Ribonucleoproteínas/inmunología , Francia/epidemiología , Fenotipo , Anticuerpos Antinucleares/inmunología , Anticuerpos Antinucleares/sangre , Prevalencia , Femenino , Estudios Transversales , Masculino
20.
Int J Cancer ; 154(11): 1999-2013, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38308587

RESUMEN

The global pandemic of metabolic diseases has increased the incidence of hepatocellular carcinoma (HCC) in the context of non-alcoholic steatohepatitis (NASH). The downregulation of the E3 ubiquitin ligase TRIM21 has been linked to poor prognosis in different cancers including HCC. In order to investigate the role of TRIM21 in liver cancer progression on NASH, Trim21+/+ and Trim21-/- male mice were injected with streptozotocin at the neonatal stage. The hypoinsulinemic mice were then fed with a high-fat high-cholesterol diet (HFHCD) for 4, 8 or 12 weeks. All mice developed NASH which systematically resulted in HCC progression. Interestingly, compared to the Trim21+/+ control mice, liver damage was worsened in Trim21-/- mice, with more HCC nodules found after 12 weeks on HFHCD. Immune population analysis in the spleen and liver revealed a higher proportion of CD4+PD-1+ and CD8+PD-1+ T cells in Trim21-/- mice. The liver and HCC tumors of Trim21-/- mice also exhibited an increase in the number of PD-L1+ and CD68+ PD-L1+ cells. Thus, TRIM21 limits the emergence of HCC nodules in mice with NASH by potentially restricting the expression of PD-1 in lymphocytes and PD-L1 in tumors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ribonucleoproteínas , Animales , Masculino , Ratones , Antígeno B7-H1/metabolismo , Carcinogénesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/complicaciones , Modelos Animales de Enfermedad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/complicaciones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Receptor de Muerte Celular Programada 1/metabolismo , Regulación hacia Arriba , Ribonucleoproteínas/deficiencia , Ribonucleoproteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...