Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Vet Comp Oncol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984644

RESUMEN

Sarcoids are the most frequently diagnosed dermatological tumour in horses. It is a disease that can affect various species of equids, such as donkeys, mules and zebras. This type of tumour can develop in all horse breeds, regardless of age and gender. Treatment options depend on many factors, such as the type of lesion, location, extent, owner preference and financial considerations. In the present study, we investigated the TRIM29 expression, the methylation status of its first exon and its involvement in the formation of equine sarcoids. Bisulfite sequencing PCR (BSP) was used to determine DNA methylation at CpG sites and real-time quantitative polymerase chain reaction (qPCR) was used to detect TRIM29 expression level. Our results showed that TRIM29 is significantly downregulated in lesional samples (FC = -3.72; p < 0.001). Furthermore, TRIM29 expression was significantly correlated (R = -0.73; p < 0.001) with hypermethylation of its specific CpG sites in the first exon of this gene. Our research has demonstrated that the identification of increased methylation of CpG sequences in horse sarcoids, along with the decreased expression of the TRIM29 gene, is an important step towards understanding the molecular mechanisms underlying the disease. These findings can serve in the future as a diagnostic biomarker for horse sarcoids and help in detecting the disease.

2.
Cancer Rep (Hoboken) ; 7(6): e2085, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837682

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide. Long noncoding RNA (lncRNA) is involved in many malignant tumors. This study aimed to clarify the role of the lncRNA plasmacytoma variant translocation 1 (PVT1) in CRC growth and metastasis. METHODS: Differentially expressed lncRNAs in CRC were analyzed using the Cancer Genome Atlas. Gene expression profiling interactive analysis and a comprehensive resource for lncRNAs from cancer arrays databases were used to analyze lncRNA PVT1 expression and CRC prognosis, respectively. Cell counting kit-8, wound healing, colony formation, Transwell, and immunofluorescence assays were used to evaluate CRC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), respectively. Tumor growth and metastasis models were used to explore the PVT1 effect on the growth and metastasis of CRC in vivo. RESULTS: PVT1 was highly expressed in CRC, associated with a poor prognosis of CRC, and showed good diagnostic value. Transfection of sh-PVT1 or pcDNA3.1-PVT1 reduced or increased the proliferation, wound healing rate, colony formation, invasion, and EMT of CRC cells. PVT1 and miR-3619-5p were co-expressed in CRC cytoplasm, and PVT1 acted as a competitive endogenous RNA (ceRNA) by sponging miR-3619-5p to up-regulate tripartite motif containing 29 (TRIM29) expression. MiR-3619-5p overexpression and TRIM29 knockdown reduced proliferation, wound healing rate, invasion, and EMT of CRC cells. However, simultaneous PVT1 and miR-3619-5p overexpression or knockdown of miR-3619-5p and TRIM29 knockdown rescued the malignant phenotype of CRC cells. CONCLUSIONS: We first clarified the ceRNA mechanism of PVT1 in CRC, which induced growth and metastasis by sponging with miR-3619-5p to regulate TRIM29.


Asunto(s)
Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , MicroARNs , ARN Largo no Codificante , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , ARN Largo no Codificante/genética , MicroARNs/genética , Proliferación Celular/genética , Ratones , Animales , Pronóstico , Transición Epitelial-Mesenquimal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Masculino , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones Desnudos , Femenino , Línea Celular Tumoral , Metástasis de la Neoplasia , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Epigenetics Chromatin ; 17(1): 6, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481282

RESUMEN

BACKGROUND: Prostate adenocarcinoma (PRAD) is the second leading cause of cancer-related deaths in men. High variability in DNA methylation and a high rate of large genomic rearrangements are often observed in PRAD. RESULTS: To investigate the reasons for such high variance, we integrated DNA methylation, RNA-seq, and copy number alterations datasets from The Cancer Genome Atlas (TCGA), focusing on PRAD, and employed weighted gene co-expression network analysis (WGCNA). Our results show that only single cluster of co-expressed genes is associated with genomic and epigenomic instability. Within this cluster, TP63 and TRIM29 are key transcription regulators and are downregulated in PRAD. We discovered that TP63 regulates the level of enhancer methylation in prostate basal epithelial cells. TRIM29 forms a complex with TP63 and together regulates the expression of genes specific to the prostate basal epithelium. In addition, TRIM29 binds DNA repair proteins and prevents the formation of the TMPRSS2:ERG gene fusion typically observed in PRAD. CONCLUSION: Our study demonstrates that TRIM29 and TP63 are important regulators in maintaining the identity of the basal epithelium under physiological conditions. Furthermore, we uncover the role of TRIM29 in PRAD development.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Metilación de ADN , Secuencias Reguladoras de Ácidos Nucleicos , Inestabilidad Cromosómica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética
4.
Drug Resist Updat ; 74: 101079, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518727

RESUMEN

AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Chemotherapy based on gemcitabine (GEM) remains the first-line drug for patients with advanced PDAC. However, GEM resistance impairs its therapeutic effectiveness. Therefore, identifying effective therapeutic targets are urgently needed to overcome GEM resistance. METHODS: The clinical significance of Tripartite Motif Containing 29 (TRIM29) was identified by exploring GEO datasets and TCGA database and its potential biological functions were predicted by GSEA analysis. The regulatory axis was established by bioinformatics analysis and validated by mechanical experiments. Then, in vitro and in vivo assays were performed to validate the roles of TRIM29 in PDAC GEM resistance. RESULTS: High TRIM29 expression was associated with poor prognosis of PDAC and functional experiments demonstrated that TRIM29 promoted GEM resistance in PDAC GEM-resistant (GR) cells. Furthermore, we revealed that circRPS29 promoted TRIM29 expression via competitive interaction with miR-770-5p and then activated MEK/ERK signaling pathway. Additionally, both in vitro and in vivo functional experiments demonstrated that circRPS29/miR-770-5p/TRIM29 axis promoted PDAC GEM resistance via activating MEK/ERK signaling pathway. CONCLUSION: Our results identify the significance of the signaling axis, circRPS29/miR-770-5p/TRIM29-MEK/ERK, in PDAC GEM resistance, which will provide novel therapeutic targets for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Resistencia a Antineoplásicos , Gemcitabina , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas , Factores de Transcripción , Animales , Humanos , Ratones , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pronóstico , ARN Circular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Med Oncol ; 41(3): 79, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393440

RESUMEN

Tripartite motif-containing 29 (TRIM29), also known as the ataxia telangiectasia group D-complementing (ATDC) gene, has been reported to play an oncogenic or tumor suppressive role in developing different tumors. So far, its expression and biological functions in hepatocellular carcinoma (HCC) remain unclear. We investigated TRIM29 expression pattern in human HCC samples using quantitative RT-PCR and immunohistochemistry. Relationships between TRIM29 expression level, clinical prognostic indicators, overall survival (OS), and disease-free survival (DFS) were evaluated by Kaplan-Meier analysis and Cox proportional hazards model. A series of in vitro experiments and a xenograft tumor model were conducted to detect the functions of TRIM29 in HCC cells. RNA sequencing, western blotting, and immunochemical staining were performed to assess the molecular regulation of TRIM29 in HCC. We found that the mRNA and protein levels of TRIM29 were significantly reduced in HCC samples, compared with adjacent noncancerous tissues, and were negatively correlated with poor differentiation of HCC tissues. Survival analysis confirmed that lower TRIM29 expression significantly correlated with shorter OS and DFS of HCC patients. TRIM29 overexpression remarkably inhibited cell proliferation, migration, and EMT in HCC cells, whereas knockdown of TRIM29 reversed these effects. Moreover, deactivation of the PTEN/AKT/mTOR and JAK2/STAT3 pathways might be involved in the tumor suppressive role of TRIM29 in HCC. Our findings indicate that TRIM29 in HCC exerts its tumor suppressive effects through inhibition of the PTEN/AKT/mTOR and JAK2/STAT3 signaling pathways and may be used as a potential biomarker for survival in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Unión al ADN , Janus Quinasa 2 , Neoplasias Hepáticas , Factor de Transcripción STAT3 , Factores de Transcripción , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/genética , Animales
6.
Cell Oncol (Dordr) ; 47(3): 1025-1041, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38345749

RESUMEN

PURPOSE: Glucose not only provides energy for tumor cells, but also provides various biomolecules that are essential for their survival, proliferation and invasion. Therefore, it is of great clinical significance to understand the mechanism of how tumor cells adapt to metabolic stress and maintain their survival. The aim of this research was to study the critical role of OGT and TRIM29 O-GlcNAc modification driven adaptability of PDAC cells to low glucose stress, which might have important medical implications for PDAC therapy. METHODS: Western blotting, mass spectrometry and WGA-immunoprecipitation were used to examined the levels of OGT and O-GlcNAc glycosylated proteins in BxPC3 and SW1990 cells in normal culture and under glucose deprivation conditions. Crystal violet assay, flow cytometry, RIP, RT-qPCR, protein stability assay, biotin pull down were used to investigate the mechanism of OGT and TRIM29-mediated adaptive response to glucose deficiency in PDAC cells. RESULTS: The current study found that under the condition of low glucose culture, the levels of OGT and O-GlcNAc glycosylation in PDAC cells were significantly higher than those in normal culture. Moreover, the high expression of OGT has a protective effect on PDAC cells under low glucose stress. This study confirmed that there was no significant change in mRNA level and protein degradation of OGT under low glucose stress, which was mainly reflected in the increase of protein synthesis. In addition, O-GlcNAc modification at T120 site plays a critical role in the metabolic adaptive responses mediated by TRIM29. CONCLUSIONS: Taken together, our study indicated that O-GlcNAcylation of TRIM29 at T120 site and OGT translation forms a loop feedback to facilitate survival of PDAC under glucose deficiency.


Asunto(s)
Glucosa , N-Acetilglucosaminiltransferasas , Neoplasias Pancreáticas , Factores de Transcripción , Humanos , Glucosa/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Línea Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Glicosilación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Biosíntesis de Proteínas , Retroalimentación Fisiológica , Acetilglucosamina/metabolismo , Adaptación Fisiológica/genética , Acilación
7.
Cancer Lett ; 581: 216510, 2024 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-38029830

RESUMEN

Tripartite motif-containing protein 29 (TRIM29) is a member of TRIM family protein which has been reported to play a role in the progress of inflammatory and cancer diseases. However, its specific role in gastric cancer (GC) has yet to be fully understood. Here, we investigated the expression of TRIM29 in gastric cancer and its functions in the antitumor immunity. TRIM29 expression was lower in tumor tissues than that in paired normal tissues. Lower expression of TRIM29 was related to aberrant hypermethylation of CpG islands in TRIM29 gene. Comprehensive proteomics and immunoprecipitation analyses identified IGF2BP1 as TRIM29 interactors. TRIM29 interacted with IGF2BP1 and induced its ubiquitination at Lys440 and Lys450 site by K48-mediated linkage for protein degradation. IGF2BP1 promoted PD-L1 mRNA stability and expression in a 3'UTR and m6A-dependent manner. Functionally, TRIM29 enhanced antitumor T-cell immunity in gastric cancer dependent on the IGF2BP1/PD-L1 axis in vivo and in vitro. Clinical correlation analysis revealed that TRIM29 expression in patient samples was associated with CD8+ immune cell infiltration in the GC microenvironment and the overall survival rates of GC patients. Our findings revealed a crucial role of TRIM29 in regulating the antitumor T-cell immunity in GC. We also suggested that the TRIM29/IGF2BP1/PD-L1 axis could be used as a diagnostic and prognostic marker of gastric cancer and a promising target for GC immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias Gástricas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Neoplasias Gástricas/patología , Linfocitos T/metabolismo , Factores de Transcripción/genética , Microambiente Tumoral
8.
Exp Biol Med (Maywood) ; 248(18): 1527-1536, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37837384

RESUMEN

Colorectal cancer (CRC) is commonly diagnosed at the advanced stage and has a high mortality rate. Tripartite Motif Containing 29 (TRIM29) is an oncogene in numerous malignancies including CRC. However, the molecular mechanism of TRIM29 is largely unknown. In this study, we investigated the biological functions of TRIM29 and the underlying mechanisms. The expression of TRIM29 and Enhancer of Zeste Homolog 2 (EZH2) was predicted using the bioinformatic analysis and measured using a quantitative real-time polymerase chain reaction (PCR) and immunohistochemical assay. The biological functions of TRIM29 were analyzed using a cell counting kit-8, EdU and transwell assays, scratch test, and flow cytometry. The interaction between TRIM29 and EZH2 was assessed using protein immunoprecipitation. The stability of EZH2 was evaluated by treating it with cycloheximide. Our results indicated that TRIM29 levels were upregulated in CRC. Overexpression of TRIM29 promoted CRC cell proliferation and migration and suppressed apoptosis. The opposite result was obtained when TRIM29 was silenced. TRIM29 interacted with EZH2 mechanically and enhanced the protein stability of EZH2. Depletion of EZH2 reversed the effects of TRIM29, regarding its biological behaviors. Moreover, downregulation of TRIM29 inhibited tumor growth and improved the histopathological prognosis. In conclusion, EZH2 interacted with silenced TRIM29 to suppress its stability, thereby inhibiting cell proliferation, migration, and tumor growth, and promoting apoptosis in CRC. Our findings suggested that TRIM29 is a promising target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Proliferación Celular/genética , Regulación hacia Abajo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Biochem Pharmacol ; 217: 115811, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37717692

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most aggressive solid tumours in humans. Despite its high mortality rate, effective targeted therapeutic strategies remain limited due to incomplete understanding of the underlying biological mechanisms. The NAP1L gene family has been implicated in the development and progression of various human tumours. However, the specific function and role of NAP1L5 (nucleosome assembly protein-like 5) in PDAC have not been fully elucidated. Therefore, in this study, we aimed to investigate the role of NAP1L5 in PDAC and explore the regulatory relationship between NAP1L5 and its potential downstream molecule PHLPP1 (PH domain Leucine-rich repeat Protein Phosphatase 1) in PDAC. Our study revealed that NAP1L5 is notably upregulated in PDAC. Moreover, both in vivo and in vitro experiments demonstrated that knockdown of NAP1L5 suppressed the proliferation of PDAC cells. Mechanistically, NAP1L5 was found to promote PDAC progression by activating the AKT/mTOR signalling pathway in a PHLPP1-dependent manner. Specifically, NAP1L5 binds to PHLPP1 and facilitates the ubiquitination-mediated degradation of PHLPP1, ultimately resulting in reduced PHLPP1 expression. Notably, TRIM29, recruited by NAP1L5, was found to be involved in facilitating K48-linked ubiquitination of PHLPP1. Our findings indicate that NAP1L5 overexpression promotes the proliferation of PDAC cells by inhibiting PHLPP1 expression. These novel insights suggest that NAP1L5 may serve as a potential therapeutic target for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transducción de Señal , Ubiquitinación , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Pancreáticas
10.
Open Life Sci ; 18(1): 20220711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671092

RESUMEN

To investigate the specific role of TRIM29 in colon cancer progression, bioinformatic analysis was performed on TRIM29. Colon cancer tissues were collected and colon cancer cells were cultured for further experiments. Cell viability and proliferation were determined using CCK-8, colony formation, and EDU staining assays. The mRNA and protein levels of TRIM29 and KRT5 were determined using quantitative real-time PCR and western blotting, respectively. The interaction between TRIM29 and KRT5 was detected using a co-immunoprecipitation (CO-IP) assay. Cycloheximide treatment was performed to analyse the stability of KRT5. TRIM29 was upregulated in colon cancer tissues and cells. TRIM29 knockdown decreased the cell viability and proliferation and ubiquitination levels of KRT5 and enhanced the protein stability and expression of KRT5. The CO-IP assay confirmed that TRIM29 and KRT5 binded to each other. KRT5 knockdown neutralises the inhibitory effect of sh-TRIM29 on colon cancer cell growth and TRIM29 knockdown prevented the proliferation of colon cancer cells by decreasing ubiquitination of KRT5, which enhanced the protein stability and expression of KRT5 in cancer cells. Thus, targeting TRIM29-mediated ubiquitination levels of KRT5 might be a new direction for colon cancer therapy.

11.
Artículo en Inglés | MEDLINE | ID: mdl-37644752

RESUMEN

BACKGROUND: Previous studies have proposed that the transcriptional regulatory factor tripartite motif containing 29 (TRIM29) is involved in carcinogenesis via binding with nucleic acid. TRIM29 is confirmed to be highly expressed when the cancer cells acquire therapy-resistant properties. We noticed that TRIM29 levels were significantly increased in anlotinib-resistant NCI-H1975 (NCI-H1975/AR) cells via mining data information from gene expression omnibus (GEO) gene microarray (GSE142031; log2 fold change > 1, p < 0.05). OBJECTIVE: Our study aimed to investigate the function of TRIM29 on the resistance to anlotinib in non-small cell lung cancer (NSCLC) cells, including NCI-H1975 and A549 cells. METHODS: Real-time RT-PCR and western blot were used to detect TRIM29 expression in anlotinib-resistant NSCLC (NSCLC/AR) cells. Apoptosis were determined through flow cytometry, acridine orange/ethidium bromide staining as well as western blot. ELISA was used to measure the content of C-X3-C motif chemokine ligand 1. Co-Immunoprecipitation assay was performed to verify the interaction between TRIM29 and RAD50 double-strand break repair protein (RAD50). RESULTS: TRIM29 expression was shown to be elevated in the cytoplasm and nucleus of NSCLC/AR cells compared to normal NSCLC cells. Next, we demonstrated that TRIM29 knockdown facilitated apoptosis and enhanced the sensitivity to anlotinib in NSCLC/AR cells. Based on the refined results citing from the database BioGRID, it was proved that TRIM29 interacted with RAD50. Herein, RAD50 overexpression diminished the pro-apoptotic effect induced by silencing TRIM29 in anlotinib-resistant A549 (A549/AR) cells. CONCLUSION: Finally, we concluded that the increased sensitivity to anlotinib in NSCLC/AR cells was achieved by knocking down TRIM29, besides, the positive effects of TRIM29 knockdown were attributed to the promotion of apoptosis via binding to RAD50 in NSCLC/AR cell nucleus. Therefore, TRIM29 might become a potential target for overcoming anlotinib resistance in NSCLC treatment.

12.
Cancer Commun (Lond) ; 43(9): 981-1002, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37405956

RESUMEN

BACKGROUND: The mechanism of hepatitis B virus (HBV)-induced carcinogenesis remains an area of interest. The accumulation of hepatitis B surface antigen in the endoplasmic reticulum (ER) of hepatocytes stimulates persistent ER stress. Activity of the unfolded protein response (UPR) pathway of ER stress may play an important role in inflammatory cancer transformation. How the protective UPR pathway is hijacked by cells as a tool for malignant transformation in HBV-related hepatocellular carcinoma (HCC) is still unclear. Here, we aimed to define the key molecule hyaluronan-mediated motility receptor (HMMR) in this process and explore its role under ER stress in HCC development. METHODS: An HBV-transgenic mouse model was used to characterize the pathological changes during the tumor progression. Proteomics and transcriptomics analyses were performed to identify the potential key molecule, screen the E3 ligase, and define the activation pathway. Quantitative real-time PCR and Western blotting were conducted to detect the expression of genes in tissues and cell lines. Luciferase reporter assay, chromatin immunoprecipitation, coimmunoprecipitation, immunoprecipitation, and immunofluorescence were employed to investigate the molecular mechanisms of HMMR under ER stress. Immunohistochemistry was used to clarify the expression patterns of HMMR and related molecules in human tissues. RESULTS: We found sustained activation of ER stress in the HBV-transgenic mouse model of hepatitis-fibrosis-HCC. HMMR was transcribed by c/EBP homologous protein (CHOP) and degraded by tripartite motif containing 29 (TRIM29) after ubiquitination under ER stress, which caused the inconsistent expression of mRNA and protein. Dynamic expression of TRIM29 in the HCC progression regulated the dynamic expression of HMMR. HMMR could alleviate ER stress by increasing autophagic lysosome activity. The negative correlation between HMMR and ER stress, positive correlation between HMMR and autophagy, and negative correlation between ER stress and autophagy were verified in human tissues. CONCLUSIONS: This study identified the complicated role of HMMR in autophagy and ER stress, that HMMR controls the intensity of ER stress by regulating autophagy in HCC progression, which could be a novel explanation for HBV-related carcinogenesis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Estrés del Retículo Endoplásmico/genética , Virus de la Hepatitis B/genética , Ratones Transgénicos , Carcinogénesis , Proteínas de Unión al ADN , Factores de Transcripción
13.
Curr Mol Med ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37218209

RESUMEN

Natural killer (NK) cells are among the most important cells in innate immune defense. In contrast to T cells, the effector function of NK cells does not require prior stimulation and is not MHC restricted. Therefore, chimeric antigen receptor (CAR)-NK cells are superior to CAR-T cells. The complexity of the tumor microenvironment (TME) makes it necessary to explore various pathways involved in NK cell negative regulation. CAR-NK cell effector function can be improved by inhibiting the negative regulatory mechanisms. In this respect, the E3 ubiquitin ligase tripartite motif containing 29 (TRIM29) is known to be involved in reducing NK cell cytotoxicity and cytokine production. Also, targeting TRIM29 may enhance the antitumor efficacy of CAR-NK cells. The present study discusses the negative effects of TRIM29 on NK cell activity and genomic deletion or suppression of the expression of TRIM29 as a novel approach to optimize CAR-NK cell-based immunotherapy.

14.
Cancer Sci ; 114(8): 3176-3189, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37248790

RESUMEN

Epigenetic alterations marked by DNA methylation are frequent events during the early development of nasopharyngeal carcinoma (NPC). We identified that TRIM29 is hypomethylated and overexpressed in NPC cell lines and tissues. TRIM29 silencing not only limited the growth of NPC cells in vitro and in vivo, but also induced cellular senescence, along with reactive oxygen species (ROS) accumulation. Mechanistically, we found that TRIM29 interacted with voltage-dependent anion-selective channel 1 (VDAC1) to activate mitophagy clearing up damaged mitochondria, which are the major source of ROS. In patients with NPC, high levels of TRIM29 expression are associated with an advanced clinical stage. Moreover, we detected hypomethylation of TRIM29 in patient nasopharyngeal swab DNA. Our findings indicate that TRIM29 depends on VDAC1 to induce mitophagy and prevents cellular senescence by decreasing ROS. Detection of aberrantly methylated TRIM29 in the nasopharyngeal swab DNA could be a promising strategy for the early detection of NPC.


Asunto(s)
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/patología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Metilación de ADN , Epigénesis Genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética
15.
Environ Toxicol ; 38(8): 2002-2010, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37219039

RESUMEN

BACKGROUND: Tripartite motif-containing 29 (TRIM29) has been found to be involved in the regulation of cancer progression and its function varies depending on the type of cancer. However, the role of TRIM29 in cholangiocarcinoma has yet to be revealed. PURPOSE: This study initially explored the role of TRIM29 in cholangiocarcinoma. METHODS: TRIM29 expression in cholangiocarcinoma cells were scrutinized by quantitative real-time reverse transcription polymerase chain reaction and Western blot. The function of TRIM29 on cholangiocarcinoma cell viability, proliferation, migration and sphere formation abilities were studied by cell count kit-8, clone formation, Transwell and sphere formation assays. TRIM29 effect on the expression of proteins associated with epithelial-mesenchymal transition and cancer stem cell characteristics were researched by Western blot. TRIM29 effect on MAPK and ß-catenin pathway activity was researched through Western blot. RESULTS: TRIM29 was overexpressed in cholangiocarcinoma cells. TRIM29 silencing mitigated the viability, proliferation, migration and sphere formation abilities of cholangiocarcinoma cells, increased E-cadherin expression and decreased the expression of N-cadherin, Vimentin, CD33, Sox2 and Nanog proteins in cholangiocarcinoma cells. The loss of TRIM29 suppressed the expression of p-MEK1/2/MEK1/2 and p-ERK1/2/ERK1/2 in cholangiocarcinoma cells. The inhibition of the MAPK and ß-catenin signaling pathways abrogated the promotion of TRIM29 on cholangiocarcinoma cell viability, proliferation, migration, EMT, and cancer stem cell characteristics. CONCLUSION: TRIM29 plays an oncogenic role in cholangiocarcinoma. It may promote the malignancy of cholangiocarcinoma via inducing the activation of the MAPK and ß-catenin pathways. Thus, TRIM29 may aid in the creation of innovative treatment strategies for cholangiocarcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Proliferación Celular , Cadherinas/genética , Línea Celular Tumoral , Colangiocarcinoma/genética , Transición Epitelial-Mesenquimal , Movimiento Celular , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/metabolismo , Regulación Neoplásica de la Expresión Génica
16.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 484-497, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36876422

RESUMEN

Long noncoding RNA (lncRNA) extracellular leucine rich repeat and fibronectin type III domain containing 1-antisense RNA 1 (ELFN1-AS1) has been found to be upregulated in various tumors. However, the biological functions of ELFN1-AS1 in gastric cancer (GC) are not entirely understood. In the present study, the expression levels of ELFN1-AS1, miR-211-3p, and TRIM29 are determined using reverse transcription-quantitative PCR. Subsequently, CCK8, EdU, and colony formation assays are performed to determine GC cell vitality. The migratory and invasive capabilities of GC cells are further evaluated using transwell invasion and cell scratch assays. Western blot analysis is performed to quantify the levels of proteins associated with GC cell apoptosis and epithelialmesenchymal transition (EMT). The competing endogenous RNA (ceRNA) activity of ELFN1-AS1 on TRIM29 through miR-211-3p is confirmed by pull-down, RIP, and luciferase reporter assays. Our study proves that ELFN1-AS1 and TRIM29 are highly expressed in GC tissues. ELFN1-AS1 silencing inhibits GC cell proliferation, migration, invasion and EMT, and induces cell apoptosis. Rescue experiments reveal that the oncogenicity of ELFN1-AS1 is modulated by acting as a sponge for miR-211-3p, thereby increasing the expression of the target gene of miR-211-3p, TRIM29. In summary, ELFN1-AS1 maintains GC cell tumorigenicity via the ELFN1-AS1/miR-211-3p/TRIM29 axis, indicating that this axis can be directed for GC treatment in the future.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/patología , Factores de Transcripción/metabolismo
17.
Cell Biol Int ; 47(6): 1126-1135, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36841942

RESUMEN

Diabetic nephropathy (DN) is one of the most common complications of diabetes. Gradual loss of podocytes is a sign of DN and pyroptosis mechanistically correlates with podocyte injury in DN; however, the mechanism(s) involved remain unknown. Here we reveal that TRIM29 is overexpressed in high glucose (HG)-treated murine podocytes cells and that TRIM29 silencing significantly inhibits podocyte damage due to HG treatment, as evidenced by lower desmin expression and greater nephrin expression. Additionally, flow cytometry analysis showed that TRIM29 silencing significantly inhibited HG treatment-induced pyroptosis, which was confirmed by immunoblotting for NLRP3, active Caspase-1, GSDMD-N, and phosphorylated NF-κB-p65. Conversely, overexpression of TRIM29 could trigger pyroptosis that was attenuated by NF-κB inhibition, indicating that TRIM29 promotes pyroptosis through the NF-κB pathway. Mechanistic studies revealed that TRIM29 interacts with IκBα to mediate its ubiquitination-dependent degradation, which in turn leads to NF-κB activation. Taken together, our data demonstrate that TRIM29 can promote podocyte pyroptosis by activating the NF-κB/NLRP3 pathway. Thus, TRIM29 represents a potentially novel therapeutic target that may also be clinically relevant in the management of DN.


Asunto(s)
Nefropatías Diabéticas , Podocitos , Animales , Ratones , Nefropatías Diabéticas/metabolismo , Proteínas de Unión al ADN/metabolismo , Inflamasomas/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Podocitos/metabolismo , Piroptosis , Factores de Transcripción/metabolismo
18.
Res Sq ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38168254

RESUMEN

Bladder cancer is a common malignancy whose lethality is determined by invasive potential. We have previously shown that TRIM29, also known as ATDC, is transcriptionally regulated by TP63 in basal bladder cancers where it promotes invasive progression and metastasis, but the molecular events which promote invasion and metastasis downstream of TRIM29 remained poorly understood. Here we identify stimulation of bladder cancer migration as the specific role of TRIM29 during invasion. We show that TRIM29 physically interacts with K14 + intermediate filaments which in turn regulates focal adhesion stability. Further, we find that both K14 and the focal adhesion protein, ZYX are required for bladder cancer migration and invasion. Taken together, these results establish a role for TRIM29 in the regulation of cytoskeleton and focal adhesions during invasion and identify a pathway with therapeutic potential.

19.
J Gastrointest Oncol ; 13(3): 1132-1151, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35837175

RESUMEN

Background: In colorectal cancer (CRC) patients, different primary tumor locations caused distinct prognosis and clinicopathological features. It is necessary to identify specific tumor markers according tumor site. Our previous work has identified differentially expressed genes between CRC and adjacent normal tissues, in which only TRIM29 was differently expressed between right colon cancer (RCC) and left colon cancer (LCC) patients. Rectal cancer (RECC) was not included in this latter study and the effects of TRIM29 on the survival with RCC and LCC patients were not investigated. This study further verified TRIM29 expression through Gene Expression Omnibus (GEO) database and our retrospective study. The role of TRIM29 on survival according tumor sites was also explored. Furthermore, the molecular mechanisms of TRIM29 were explored. Methods: The GEO dataset was used to confirm the differential expression of TRIM29 in proximal and distal cancers. Moreover, TRIM29 were assess using immunohistochemistry (IHC) in 227 cases to observe the correlation between TRIM29 and tumor site. The relationship between TRIM29 and the clinicopathologic features was investigated according tumor sites. Furthermore, the disease-free survival (DFS) and overall survival (OS) was analyzed using the Kaplan-Meier method to assess the prognostic value of TRIM29. Finally, bioinformatics analysis was used to explore the molecular mechanisms. The Tumor-Immune System Interactions and Drug Bank database (TISIDB) was used to analyze the correlations between TRIM29 expression and tumor immune functions. The correlation of TRIM29 with tumor infiltrating lymphocytes or mismatch-repair-proficient/mismatch-repair-deficient (pMMR/dMMR) status was also investigated. Results: TRIM29 expression was significantly higher in patients with RCC (P<0.001). RCC patients with high TRIM29 tended to be older, male, in stage III-IV, with N+ staging, and intestinal obstruction (P<0.001, P<0.001, P<0.001, P<0.001, and P=0.010, respectively). High TRIM29 expression was associated with an increased risk of recurrence/metastasis and death, only in RCC patients (P=0.020 and P<0.001). Functional annotations and immune activity analysis showed that TRIM29 is related to tumor infiltrating lymphocytes and immune dysfunction. Conclusions: TRIM29 plays varying roles in patients with different tumor sites. TRIM29 is correlated with the clinicopathological features and prognosis in RCC patients. Indeed, TRIM29 may serve as a new biomarker for RCC patients.

20.
Gastroenterol Hepatol Bed Bench ; 15(2): 131-138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845310

RESUMEN

Aim: The present study aimed to evaluate the expression profile, prognostic value, and possible correlation of TRIM29 with ß-catenin, Cyclin D, and Bcl2 in Iranian patients with GC. Background: Tripartite Motif Containing 29 (TRIM29) has been reported to function as an oncogene or a tumor suppressor depending on the tumor type. This contextual function has created a controversial situation that needs to be fully delineated in various cancers. Although few studies have reported an elevated TRIM29 expression in gastric cancer (GC), its clinicopathological and prognostic values as well as possible molecular mechanisms are yet to be re-evaluated in different populations. Methods: Real-time quantitative PCR was used to detect TRIM29, ß-catenin, Cyclin D, and Bcl-2 expression in 40 GC and their adjacent normal tissues. Patients were further stratified into high and low expression subgroups based on their TRIM29 expression levels. The association of TRIM29 expression level with ß-catenin, Cyclin D, BCL2, some clinicopathological features, and patients' overall survival (OS) was assessed using appropriate statistical analyses. Results: The results showed a significantly higher TRIM29 expression level in GC tissues compared with their corresponding normal tissues (fold change=2.94, p=0.003). Patients with high TRIM29 expression levels exhibited poorer OS (HR=1.25, 95% CI: 1.06-1.47, p=0.007). High expression of TRIM29 was also associated with increased levels of ß-catenin, Cyclin D, and Bcl-2 genes expression. Conclusion: Overexpression of TRIM29 is associated with poor prognosis in patients with GC and is probably mediated through ß-catenin/Cyclin D/Bcl2 pathway and can be considered as a potential independent prognostic marker.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...