Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
Cell Signal ; 122: 111333, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39102928

RESUMEN

PIWI-interacting RNAs (piRNAs) are involved in the regulation of hypertrophic cardiomyopathy, heart failure and myocardial methylation. However, their functions and the underlying molecular mechanisms in diabetic cardiomyopathy (DCM) have yet to be fully elucidated. In the present study, a pyroptosis-associated piRNA (piR112710) was identified that ameliorates cardiac remodeling through targeting the activation of inflammasomes and mitochondrial dysfunction that are mediated via the thioredoxin-interacting protein (Txnip)/NLRP3 signaling axis. Subsequently, the cardioprotective effects of piR112710 on both the myocardium from db/db mice and cardiomyocytes from neonatal mice that were incubated with a high concentration of glucose combined with palmitate were examined. piR112710 was found to significantly improve cardiac dysfunction in db/db mice, characterized by improved echocardiography, lower levels of fibrosis, attenuated expression levels of inflammatory factors and pyroptosis-associated proteins (namely, Txnip, ASC, NLRP3, caspase-1 and GSDMD-N), and enhanced myocardial mitochondrial respiratory functions. In cultured neonatal mice cardiomyocytes, piR112710 deficiency and high glucose along with palmitate treatment led to significantly upregulated expression levels of pyroptosis associated proteins and collagens, oxidative stress, mitochondrial dysfunction and increased levels of inflammatory factors. Supplementation with piR112710, however, led to a reversal of the aforementioned changes induced by high glucose and palmitate. Mechanistically, the cardioprotective effect of piR112710 appears to be dependent upon effective elimination of reactive oxygen species and inactivation of the Txnip/NLRP3 signaling axis. Taken together, the findings of the present study have revealed that the piRNA-mediated inhibitory mechanism involving the Txnip/NLRP3 axis may participate in the regulation of pyroptosis, which protects against DCM both in vivo and in vitro. piR112710 may therefore be a potential therapeutic target for the reduction of myocardial injury caused by cardiomyocyte pyroptosis in DCM.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39102034

RESUMEN

Nobiletin is an active compound extracted from citrus fruits. Research has indicated that nobiletin has a potential inhibitory effect on ovarian cancer (OV). However, the mechanism of action remains unclear. The OV A2780 cells were treated using nobiletin, cell viability was examined using a cell counting kit-8 experiment, and cell migration was examined with a wound healing experiment. Nobiletin targets were retrieved from target databases. Differentially expressed genes (DEG) and weighted gene co-expression network analysis (WGCNA) were conducted on GSE26712 (OV). The intersection of the critical genes for nobiletin's action on OV and gene enrichment and immune infiltration analyses were performed. The Cancer Genome Atlas-OV data and molecular docking helped validate the findings. After adding nobiletin, cell viability and migration significantly decreased (P < 0.01). A total of 88 nobiletin targets and 1288 DEG were identified. The intersection genes were enriched inflammatory response and response to hypoxia. The most related module obtained from WGCNA contained 414 genes (correlation coefficient = 0.77, P < 0.01). DPP4 and TXNIP were recognized as the hub genes. The abundance of macrophages M2 and mast cells activated significantly enhanced with increased DPP4 expression (P < 0.05). The binding energy between DPP4/TXNIP and nobiletin was - 7.012/ - 7.184 kcal/mol, forming 5/2 hydrogen bonds. Nobiletin effectively suppresses the viability and migration of OV A2780 cells. In this process, DPP4 and TXNIP are the key target, immune regulation, and oxidative stress playing significant roles.

3.
Cell Mol Biol Lett ; 29(1): 110, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153986

RESUMEN

BACKGROUND: Gastric cancer (GC) is a prevalent malignant tumor, and the RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) has been identified as a crucial factor in various tumor types. Moreover, abnormal autophagy levels have been shown to significantly impact tumorigenesis and progression. Despite this, the precise regulatory mechanism of PTBP1 in autophagy regulation in GC remains poorly understood. METHODS: To assess the expression of PTBP1 in GC, we employed a comprehensive approach utilizing western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and bioinformatics analysis. To further identify the downstream target genes that bind to PTBP1 in GC cells, we utilized RNA immunoprecipitation coupled with sequencing (si-PTBP1 RNA-seq). To evaluate the impact of PTBP1 on gastric carcinogenesis, we conducted CCK-8 assays, colony formation assays, and GC xenograft mouse model assays. Additionally, we utilized a transmission electron microscope, immunofluorescence, flow cytometry, western blot, RT-qPCR, and GC xenograft mouse model experiments to elucidate the specific mechanism underlying PTBP1's regulation of autophagy in GC. RESULTS: Our findings indicated that PTBP1 was significantly overexpressed in GC tissues compared with adjacent normal tissues. Silencing PTBP1 resulted in abnormal accumulation of autophagosomes, thereby inhibiting GC cell viability both in vitro and in vivo. Mechanistically, interference with PTBP1 promoted the stability of thioredoxin-interacting protein (TXNIP) mRNA, leading to increased TXNIP-mediated oxidative stress. Consequently, this impaired lysosomal function, ultimately resulting in blockage of autophagic flux. Furthermore, our results suggested that interference with PTBP1 enhanced the antitumor effects of chloroquine, both in vitro and in vivo. CONCLUSION: PTBP1 knockdown impairs GC progression by directly binding to TXNIP mRNA and promoting its expression. Based on these results, PTBP1 emerges as a promising therapeutic target for GC.


Asunto(s)
Autofagia , Proteínas Portadoras , Ribonucleoproteínas Nucleares Heterogéneas , Estrés Oxidativo , Proteína de Unión al Tracto de Polipirimidina , Neoplasias Gástricas , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Autofagia/genética , Humanos , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Animales , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Estrés Oxidativo/genética , Línea Celular Tumoral , Ratones , Progresión de la Enfermedad , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Ratones Endogámicos BALB C , Masculino
4.
EMBO Mol Med ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103698

RESUMEN

Chemotherapy, the standard of care treatment for cancer patients with advanced disease, has been increasingly recognized to activate host immune responses to produce durable outcomes. Here, in colorectal adenocarcinoma (CRC) we identify oxaliplatin-induced Thioredoxin-Interacting Protein (TXNIP), a MondoA-dependent tumor suppressor gene, as a negative regulator of Growth/Differentiation Factor 15 (GDF15). GDF15 is a negative prognostic factor in CRC and promotes the differentiation of regulatory T cells (Tregs), which inhibit CD8 T-cell activation. Intriguingly, multiple models including patient-derived tumor organoids demonstrate that the loss of TXNIP and GDF15 responsiveness to oxaliplatin is associated with advanced disease or chemotherapeutic resistance, with transcriptomic or proteomic GDF15/TXNIP ratios showing potential as a prognostic biomarker. These findings illustrate a potentially common pathway where chemotherapy-induced epithelial oxidative stress drives local immune remodeling for patient benefit, with disruption of this pathway seen in refractory or advanced cases.

5.
J Ethnopharmacol ; 335: 118680, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117021

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a disease involving the enteric canal which is characterised by chronisch inflammatory reaction. Coptisine (COP), the distinctive component of Coptis chinensis Franch., is famous for its anti-inflammation, antioxidation, anti-bacteria, and anti-cancer. Earlier researches certified that COP is a prospective remedy for colitis, but the mechanism of colitis and the therapeutical target of COP are deficiently elucidated. AIM OF THIS STUDY: In this follow-up study, we adopted dextran sulfate sodium (DSS)-elicited UC model to further elucidate the possible mechanism of COP on UC in mice. MATERIALS AND METHODS: COP and the positive drug sulfasalazine (SASP) were administered by oral gavage in DSS-induced colitis mouse model. Oxidative stress, inflammatory cytokines, intestinal barrier permeability, protein expression of the TXNIP/NLRP3 inflammasome pathway and intestinal microbiome structure were assessed. RESULTS: Among this investigation, our team discovered that COP could mitigate DSS-elicited UC in murines, with prominent amelioration in weight loss, disease activity index, intestinal permeability (serum diamine oxidase and D-lactate), contracted colonal length and histologic alterations. Furthermore, COP greatly lowered the generation of pro-inflammatory factors, malondialdehyde (MDA) activity and reactive oxygen species (ROS) level, while increased superoxide dismutase (SOD) activity in colonal tissues. Additionally, COP downmodulated the proteic expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, IL-1ß and IL-18. Enteric microbiome sequencing displayed that DSS and COP tremendously influenced the constitution and diversity of enteric microbes in DSS-elicited UC murines. Besides, COP elevated the abundance of probiotic bacteria Bacteroidota, Akkermansia_muciniphila and Bacteroides_acidifaciens, lowered the proportions of potential pathogenic bacteria, such as Lachnospiraceae, Acetatifactor_muris, Clostridium_XlVa, Alistipes and Oscillibacter, and reduced the ratio of Bacillota/Bacteroidota, which vastly helped to reverse the enteric microbiome to a balanceable condition. Alterations in these bacteria were strongly correlated with the colitis relative index. CONCLUSION: The mechanism of COP against UC is connected with the suppression of TXNIP/NLRP3 inflammasome signalling pathway and the adjustment of the enteric microbiome profiles. The proofs offer new understandings upon the anti-UC function of COP, which might be a prospective candidate against UC.

6.
Biomed Pharmacother ; 178: 117269, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137654

RESUMEN

Excessive neutrophil infiltration into the tumor microenvironment (TME) is an important factor that contributes to tumor overgrowth and limited immunotherapy efficacy. Neutrophils activate various receptors involved in tumor progression, while suppressing the infiltration and activity of cytotoxic T cells and creating optimal conditions for tumor growth. Therefore, the appropriate control of neutrophil infiltration is an effective strategy for tumor treatment. In the present study, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) inhibited tumor overgrowth by suppressing excessive neutrophil infiltration, resulting in >74.97 % reduction in tumor size in a Lewis lung carcinoma (LLC-1) mouse model. All subjects in the positive control group died during the 90-day survival period, whereas only four subjects in the PLAG treatment group survived. PLAG had a significantly higher tumor growth inhibitory effect and survival rate than other neutrophil infiltration-targeting inhibitors (e.g., Navarixin, lymphocyte antigen 6 complex locus G6D antibody [aLy6G]). The ability of PLAG to regulate neutrophil infiltration and inhibit tumor growth depends on thioredoxin-interacting protein (TXNIP). In tumors lacking TXNIP expression, PLAG failed to control neutrophil infiltration and infiltration-related factor release, and the inhibitory effect of PLAG on tumor growth was reduced. PLAG-mediated inhibition of neutrophil infiltration enhances the efficacy of immune checkpoint inhibitors (ICIs), increasing the antitumor efficacy and survival rate by 30 %. In conclusion, PLAG could be a novel alternative to anti-tumor drugs that effectively targets excessive neutrophil infiltration into cancer tissues.

7.
Stem Cell Res Ther ; 15(1): 225, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075518

RESUMEN

BACKGROUND: This study explores the potential role of Thioredoxin-interacting protein (TXNIP) silencing in endothelial colony-forming cells (ECFCs) within the scope of age-related comorbidities and impaired vascular repair. We aim to elucidate the effects of TXNIP silencing on vasculogenic properties, paracrine secretion, and neutrophil recruitment under conditions of metabolic stress. METHODS: ECFCs, isolated from human blood cord, were transfected with TXNIP siRNA and exposed to a high glucose and ß-hydroxybutyrate (BHB) medium to simulate metabolic stress. We evaluated the effects of TXNIP silencing on ECFCs' functional and secretory responses under these conditions. Assessments included analyses of gene and protein expression profiles, vasculogenic properties, cytokine secretion and neutrophil recruitment both in vitro and in vivo. The in vivo effects were examined using a murine model of hindlimb ischemia to observe the physiological relevance of TXNIP modulation under metabolic disorders. RESULTS: TXNIP silencing did not mitigate the adverse effects on cell recruitment, vasculogenic properties, or senescence induced by metabolic stress in ECFCs. However, it significantly reduced IL-8 secretion and consequent neutrophil recruitment under these conditions. In a mouse model of hindlimb ischemia, endothelial deletion of TXNIP reduced MIP-2 secretion and prevented increased neutrophil recruitment induced by age-related comorbidities. CONCLUSIONS: Our findings suggest that targeting TXNIP in ECFCs may alleviate ischemic complications exacerbated by metabolic stress, offering potential clinical benefits for patients suffering from age-related comorbidities.


Asunto(s)
Proteínas Portadoras , Interleucina-8 , Infiltración Neutrófila , Estrés Fisiológico , Animales , Interleucina-8/metabolismo , Interleucina-8/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Humanos , Ratones , Infiltración Neutrófila/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/efectos de los fármacos , Isquemia/metabolismo , Isquemia/patología , ARN Interferente Pequeño/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Miembro Posterior/irrigación sanguínea , Ratones Endogámicos C57BL , Glucosa/metabolismo
8.
Toxicol Res (Camb) ; 13(4): tfae106, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39015793

RESUMEN

As emerging environmental contaminants, nanoplastics (NPs) are progressively accumulating in terrestrial and aquatic ecosystems worldwide, posing a potential threat to human health. The liver is considered as one of the primary organs targeted by NPs accumulation in living organisms. However, there remains a large knowledge gap concerning NPs-induced hepatotoxicity. In this study, we examined the impact of chronic exposure to environmentally relevant doses of polystyrene (PS) NPs on hepatic pyroptosis in mice. The results demonstrated that both particle sizes of PS-NPs (100 nm and 500 nm) significantly triggered pyroptosis in the mouse liver, as evidenced by the upregulation of GSDMD-N protein levels; moreover, this pyroptotic effect induced by 100 nm PS-NPs was more pronounced compared to that of 500 nm PS-NPs. Mechanistically, exposure to 100 nm and 500 nm PS-NPs resulted in an upregulation of TXNIP protein expression, thereby activating NLRP3 inflammasome and subsequently inducing inflammatory responses and pyroptosis. Notably, following the termination of PS-NPs exposure and a subsequent recovery period of 50 days, PS-NPs-mediated inflammation and pyroptosis via TXNIP/NLRP3 pathway were effectively ameliorated, even returning to levels close to the baseline. Collectively, our findings provide novel evidence for the size-dependence and reversibility of NPs-induced hepatic pyroptosis through TXNIP/NLRP3/GSDMD pathway in vivo.

9.
Mech Ageing Dev ; 221: 111962, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004152

RESUMEN

Endothelial cell senescence characterized by reactive oxygen species (ROS) accumulation and chronic inflammation is widely recognized as a key contributor to atherosclerosis (AS). Regulated in development and DNA damage response 1 (REDD1), a conserved stress-response protein that regulates ROS production, is involved in the pathogenesis of various age-related diseases. However, the role of REDD1 in endothelial cell senescence is still unclear. Here, we screened REDD1 as a differentially expressed senescence-related gene in the AS progression using bioinformatics methods, and validated the upregulation of REDD1 expression in AS plaques, senescent endothelial cells, and aging aorta by constructing AS mice, D-galactose (DG)-induced senescent endothelial cells and DG-induced accelerated aging mice, respectively. siRNA against REDD1 could improve DG-induced premature senescence of endothelial cells and inhibit ROS accumulation, similar to antioxidant N-Acetylcysteine (NAC) treatment. Meanwhile, NAC reduced the upregulation of REDD1 induced by DG, supporting the positive feedback loop between REDD1 and ROS contributes to endothelial cell senescence. Mechanistically, the regulatory effect of REDD1 on ROS might be related to the TXNIP-REDD1 interaction in DG-induced endothelial cell senescence. Collectively, experiments above provide evidence that REDD1 participates in endothelial cell senescence through repressing TXNIP-mediated oxidative stress, which may be involved in the progression of atherosclerosis.

10.
BMC Nephrol ; 25(1): 227, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020292

RESUMEN

BACKGROUND: End-stage and acquired cystic renal disease (ESRD/ACRD) kidneys are characterized by inflammatory remodelling and multiplex renal cell carcinomas (RCC). Eosinophilic vacuolated tumour (EVT) occurs exclusively in ACRD. The aim of this study was to identify the involvement of thioredoxin-interacting protein (TXNIP) and thioredoxin (TXN) in ESRD/ACRD pathology. METHODS: Expression of TXNIP and TXN was examined in histological slides of 6 ESRD and 6 ACRD kidneys, precursor lesions and associated tumours as well as of RCCs from the general population by immunohistochemistry. RESULTS: Strong TXNIP expression was seen in epithelial cells, myo-fibroblasts and endothelial cells and weak TXN expression in ESRD/ACRD kidneys and tumours. In ACRD specific EVT and its precursors TXN were translocated into nuclei. CONCLUSION: The impaired TXNIP/TXN redox homeostasis might be associated with development of multiplex cancer especially of EVT in ESRD/ACRD kidney.


Asunto(s)
Proteínas Portadoras , Fallo Renal Crónico , Neoplasias Renales , Tiorredoxinas , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Proteínas Portadoras/metabolismo , Tiorredoxinas/metabolismo , Fallo Renal Crónico/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Anciano , Núcleo Celular/metabolismo , Adulto , Transporte Activo de Núcleo Celular
11.
Cytokine ; 181: 156677, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38896955

RESUMEN

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction activated by microglia. The potential pathological changes of SAE are complex, and the cellular pathophysiological characteristics remains unclear. This study aims to explore the ROS/TXNIP/NLRP3 pathway mediated lipopolysaccharide (LPS)-induced inflammatory response in microglia. METHODS: BV-2 cells were pre-incubated with 10 µM N-acetyl-L-cysteine (NAC) for 2 h, which were then reacted with 1 µg/mL LPS for 24 h. Western blot assay examined the protein levels of IBA1, CD68, TXNIP, NLRP3, ASC, and Cleaved Caspase-1 in BV-2 cells. The contents of inflammatory factor were detected by ELISA assay. The co-immunoprecipitation assay examined the interaction between TXNIP and NLRP3. RESULTS: LPS was confirmed to promote the positive expressions of IBA1 and CD68 in BV-2 cells. The further experiments indicated that LPS enhanced ROS production and NLRP3 inflammasome activation in BV-2 cells. Moreover, we also found that NAC partially reversed the facilitation of LPS on the levels of ROS, IL-1ß, IL-18, TXNIP, NLRP3, ASC, and Cleaved Caspase-1 in BV-2 cells. NAC treatment also notably alleviated the interaction between TXNIP and NLRP3 in BV-2 cells. CONCLUSION: ROS inhibition mediated NLRP3 signaling inactivation by decreasing TXNIP expression.


Asunto(s)
Proteínas Portadoras , Caspasa 1 , Inflamasomas , Inflamación , Lipopolisacáridos , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno , Transducción de Señal , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Lipopolisacáridos/farmacología , Proteínas Portadoras/metabolismo , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Caspasa 1/metabolismo , Transducción de Señal/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Línea Celular , Acetilcisteína/farmacología , Proteínas de Unión al Calcio/metabolismo , Interleucina-1beta/metabolismo , Interleucina-18/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Proteínas de Microfilamentos/metabolismo , Tiorredoxinas/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Encefalopatía Asociada a la Sepsis/metabolismo , Encefalopatía Asociada a la Sepsis/patología , Molécula CD68
12.
Cells ; 13(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38920655

RESUMEN

We have designed cell-penetrating peptides that target the leucine zipper transcription factors ATF5, CEBPB and CEBPD and that promote apoptotic death of a wide range of cancer cell types, but not normal cells, in vitro and in vivo. Though such peptides have the potential for clinical application, their mechanisms of action are not fully understood. Here, we show that one such peptide, Dpep, compromises glucose uptake and glycolysis in a cell context-dependent manner (in about two-thirds of cancer lines assessed). These actions are dependent on induction of tumor suppressor TXNIP (thioredoxin-interacting protein) mRNA and protein. Knockdown studies show that TXNIP significantly contributes to apoptotic death in those cancer cells in which it is induced by Dpep. The metabolic actions of Dpep on glycolysis led us to explore combinations of Dpep with clinically approved drugs metformin and atovaquone that inhibit oxidative phosphorylation and that are in trials for cancer treatment. Dpep showed additive to synergistic activities in all lines tested. In summary, we find that Dpep induces TXNIP in a cell context-dependent manner that in turn suppresses glucose uptake and glycolysis and contributes to apoptotic death of a range of cancer cells.


Asunto(s)
Proteínas Portadoras , Supervivencia Celular , Glucosa , Glucólisis , Regulación hacia Arriba , Humanos , Glucólisis/efectos de los fármacos , Proteínas Portadoras/metabolismo , Glucosa/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Péptidos/farmacología
13.
J Neuroimmune Pharmacol ; 19(1): 31, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886223

RESUMEN

Neuroinflammation is a key factor in cognitive dysfunction and neurodegenerative diseases such as Alzheimer's disease (AD), so inhibiting neuroinflammation is considered as a potential treatment for AD. Epigallocatechin-3-gallate (EGCG), a polyhydroxyphenol of green tea, has been found to exhibit anti-oxidative, anti-inflammatory and neuroprotective effects. The aim of this study was to investigate the inhibitory effect of EGCG on inflammation and its mechanism. In this study, BV2 cells were simultaneously exposed to lipopolysaccharides (LPS) and the amyloid-ß oligomer (AßO) to induce inflammatory microenvironments. Inflammatory cytokines and NLRP3 inflammasome-related molecules were detected by RT-PCR and Western Blot. The results show that EGCG inhibits LPS/AßO-induced inflammation in BV2 cells through regulating IL-1ß, IL-6, and TNF-α. Meanwhile, EGCG reduces the activation of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome and levels of intracellular ROS in BV2 cells treated with LPS/AßO by affecting the mitochondrial membrane potential (MMP). Further research found that EGCG inhibited MMP through regulating thioredoxin-interacting protein (TXNIP) in LPS/AßO-induced neuroinflammation. In conclusion, EGCG may alleviate LPS/AßO-induced microglial neuroinflammation by suppressing the ROS/ TXNIP/ NLRP3 pathway. It may provide a potential mechanism underlying the anti-inflammatory properties of EGCG for alleviating AD.


Asunto(s)
Péptidos beta-Amiloides , Proteínas Portadoras , Catequina , Lipopolisacáridos , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Especies Reactivas de Oxígeno , Transducción de Señal , Catequina/análogos & derivados , Catequina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/toxicidad , Animales , Péptidos beta-Amiloides/toxicidad , Ratones , Especies Reactivas de Oxígeno/metabolismo , Proteínas Portadoras/metabolismo , Transducción de Señal/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Línea Celular , Tiorredoxinas/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo
14.
Eur J Pharmacol ; 977: 176744, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897438

RESUMEN

Approximately 90% of diabetic males have varying degrees of testicular dysfunction. The current study investigates the possible beneficial consequences of ranolazine against T1DM-induced testicular dysfunction in rats. Thirty-two male Sprague Dawley rats were assorted into 4 groups; normal, diabetic (single 50 mg/kg STZ, I.P.) and ranolazine (40 and 80 mg/kg, orally). The present investigation revealed that the hypoglycemic impact of ranolazine significantly improved the testicular weight and body weight of the final rats, as well as the concentration of blood testosterone, sperm count, and viability, all of which were associated with STZ-induced testicular dysfunction. Furthermore, as demonstrated by elevated reduced glutathione (GSH) activity and lowered malondialdehyde (MDA) levels, diabetic rats administered ranolazine showed a noteworthy improvement in the oxidant/antioxidant ratio. Furthermore, a substantial rise in beclin-1 concentration was seen in conjunction with a significant decrease in thioredoxin-interacting protein (TXNIP) and interleukin-18 (IL-18) concentrations when ranolazine was administered. Although ranolazine exhibited a reduction in inflammation as seen by lower expression of nuclear factor-κB (NF-κB) and cluster of differentiation (CD68) in the testicles, these biochemical findings were validated by improvements in the morphological and histopathological outcomes of both the pancreatic and testicular tissues. In conclusion, daily oral administration of ranolazine (40 and 80 mg/kg) for 8 weeks could be a promising therapy for T1DM-induced testicular dysfunction through its dose-dependent anti-oxidant and anti-inflammatory effects.


Asunto(s)
Beclina-1 , Interleucina-18 , FN-kappa B , Ranolazina , Ratas Sprague-Dawley , Transducción de Señal , Testículo , Animales , Masculino , FN-kappa B/metabolismo , Ranolazina/farmacología , Ranolazina/uso terapéutico , Transducción de Señal/efectos de los fármacos , Interleucina-18/metabolismo , Interleucina-18/sangre , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Ratas , Beclina-1/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Proteínas Portadoras/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Estrés Oxidativo/efectos de los fármacos , Enfermedades Testiculares/tratamiento farmacológico , Enfermedades Testiculares/prevención & control , Enfermedades Testiculares/etiología , Enfermedades Testiculares/patología , Testosterona/sangre , Proteínas de Ciclo Celular
15.
Mol Cell Biochem ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872070

RESUMEN

This study aims to investigate whether thioredoxin-interacting protein (TXNIP) regulates cell viability, cell apoptosis and mitochondrial damage in OGD/R-induced hepatocytes and to explore its underlying mechanism. AML12 cells were cultured under oxygen-glucose deprivation/reperfusion (OGD/R) conditions. TXNIP mRNA was detected using qRT-PCR, and the TXNIP protein was analyzed using western blotting. TXNIP-targeted short hairpin RNA (sh-TXNIP) lentivirus was used to infect the AML12 cells. CCK8 and TUNEL assays were applied to detect cell viability and apoptosis, respectively. DCFH-DA probe was used to determine reactive oxygen species (ROS) release level, and JC-1 probe was used to evaluate mitochondrial membrane potential (MMP). The localization of TXNIP and HIF-1α was observed using immunofluorescence. Our results showed that TXNIP markedly increased in AML12 cells treated with OGD/R. TXNIP knockdown increased cell viability and reduced cell apoptosis under OGD/R treatment. Moreover, MMP significantly increased and ROS release decreased in cells after TXNIP knockdown under OGD/R treatment. Additionally, TXNIP knockdown markedly increased the expression of HIF-1α. HIF-1α exhibited nuclear translocation following OGD/R induction, and TXNIP knockdown further promoted it. Compared with the OGD/R + sh-TXNIP group, HIF-1α agonist ML228 inhibited cell apoptosis and ROS release, and increased MMP. However, HIF-1α inhibitor PX478 had the opposite effect. In summary, TXNIP deletion ameliorated AML12 cell injury caused by OGD/R via promoting HIF-1α expression and nuclear translocation, manifested by inhibiting cell apoptosis and alleviating mitochondrial dysfunction.

16.
Connect Tissue Res ; : 1-11, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884152

RESUMEN

BACKGROUND: Previous research has identified a significant role of Thioredoxin-interacting protein (TXNIP) in bone loss. The purpose of this investigation was to assess the role and the underlying molecular mechanisms of TXNIP in the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) and pre-osteoblast MC3T3-E1 cells. METHODS: Human bone marrow stem cells (hBMSCs) and MC3T3-E1 cells were used to induce osteogenic differentiation. The expression of genes and proteins was assessed using RT-qPCR and western blot, respectively. ChIP assay was used to validate the interaction between genes. The osteogenic differentiation ability of cells was reflected using ALP staining and detection of ALP activity. The mineralization ability of cells was assessed using ARS staining. DCFCA staining was employed to evaluate the intracellular ROS level. RESULTS: Initially, downregulation of TXNIP and upregulation of EZH2 were observed during osteogenesis in hBMSCs and MC3T3-E1 cells. Additionally, it was discovered that EZH2 negatively regulates TXNIP expression in these cells. Furthermore, experiments indicated that the knockdown of TXNIP stimulated the activation of the PI3K/AKT/Nrf2 signaling pathway in hBMSCs and MC3T3- E1 cells, thus inhibiting the production of reactive oxygen species (ROS). Further functional experiments revealed that overexpression of TXNIP inhibited the osteogenic differentiation in hBMSCs and MC3T3-E1 cells by enhancing ROS produc-tion. On the other hand, knockdown of TXNIP promoted the osteogenic differentiation capacity of hBMSCs and MC3T3-E1 cells through the activation of the PI3K/AKT/Nrf2 pathway. CONCLUSION: In conclusion, this study demonstrated that TXNIP expression, under the regulation of EZH2, plays a crucial role in the osteogenic differentiation of hBMSCs and MC3T3-E1 cells by regulating ROS production and the PI3K/AKT/Nrf2 pathway.

17.
Int J Med Sci ; 21(8): 1438-1446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903927

RESUMEN

Background: Exploring potential biomarkers for predicting clinical outcomes and developing targeted therapies for acute myeloid leukemia (AML) is of utmost importance. This study aimed to investigate the expression pattern of the thioredoxin-interacting protein (TXNIP)/nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) pathway and its role in the prognosis of AML patients. Methods: In this study, we examined the prognostic value of TXNIP/NLRP3 pathway in AML patients using microarray data from Gene Expression Omnibus (GEO) and transcriptome data from the Cancer Genome Atlas (TCGA) to develop a prognostic model and validated the results by quantitative real-time PCR (qRT-PCR) in a validation cohort of 26 AML patients and 18 healthy individuals from Jinan University (JNU) database. Results: Analysis of the GSE13159 database revealed that TXNIP, interleukin 1 beta (IL1B) within the TXNIP/NLRP3 pathway were significantly upregulated and caspase1 (CASP1) was downregulated in AML patients (TXNIP, P = 0.031; IL1B, P = 0.042; CASP1, P = 0.038). Compared to high NLRP3 expression, AML patients with low NLRP3 expression had a longer overall survival (OS) in the GSE12417 dataset (P = 0.004). Moreover, both the training and validation results indicated that lower TXNIP, NLRP3, and IL1B expression were associated with favorable prognosis (GSE12417, P = 0.009; TCGA, P = 0.050; JNU, P = 0.026). According to the receiver operating characteristic curve analysis, this model demonstrated a sensitivity of 84% for predicting three-year survival. These data might provide novel predictors for AML outcome and direction for further investigation of the possibility of using TXNIP/NLRP3/IL1B genes in novel targeted therapies for AML.


Asunto(s)
Biomarcadores de Tumor , Proteínas Portadoras , Inflamasomas , Interleucina-1beta , Leucemia Mieloide Aguda , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Femenino , Masculino , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Inflamasomas/metabolismo , Inflamasomas/genética , Transducción de Señal/genética , Adulto , Anciano , Regulación Leucémica de la Expresión Génica , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
18.
Mol Nutr Food Res ; 68(12): e2300912, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847553

RESUMEN

Diabetic liver injury (DLI) is one of the complications of diabetes mellitus, which seriously jeopardizes human health. Punicalagin (PU), a polyphenolic compound mainly found in pomegranate peel, has been shown to ameliorate metabolic diseases such as DLI, and the mechanism needs to be further explored. In this study, a HFD/STZ-induced diabetic mouse model is established to investigate the effect and mechanism of PU on DLI. The results show that PU intervention significantly improves liver histology and serum biochemical abnormalities in diabetic mice, significantly inhibits the expression of pyroptosis-related proteins such as NLRP3, Caspase1, IL-1ß, and GSDMD in the liver of diabetic mice, and up-regulated the expression of autophagy-related proteins. Meanwhile, PU treatment significantly increases FoxO1 protein expression and inhibits TXNIP protein expression in the liver of diabetic mice. The above results are further verified in the HepG2 cell injury model induced by high glucose. AS1842856 is a FoxO1 specific inhibitor. The intervention of AS1842856 combined with PU reverses the regulatory effects of PU on pyroptosis and autophagy in HepG2 cells. In conclusion, this study demonstrates that PU may inhibit pyroptosis and upregulate autophagy by regulating FoxO1/TXNIP signaling, thereby alleviating DLI.


Asunto(s)
Autofagia , Proteínas Portadoras , Diabetes Mellitus Experimental , Proteína Forkhead Box O1 , Taninos Hidrolizables , Hígado , Ratones Endogámicos C57BL , Piroptosis , Transducción de Señal , Animales , Piroptosis/efectos de los fármacos , Taninos Hidrolizables/farmacología , Autofagia/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Transducción de Señal/efectos de los fármacos , Humanos , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Células Hep G2 , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Tiorredoxinas
19.
Biosci Biotechnol Biochem ; 88(8): 966-978, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772744

RESUMEN

The NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the maturation of interleukin-1ß (IL-1ß) and is implicated in the pathogenesis of various inflammatory diseases. Urolithin A, a gut microbial metabolite of ellagic acid, reportedly exerts antiinflammatory effects in vitro and in vivo. However, whether urolithin A suppresses NLRP3 inflammasome activation is unclear. In this study, urolithin A inhibited the cleavage of NLRP3 inflammasome agonist-induced caspase-1, maturation of IL-1ß, and activation of pyroptosis in lipopolysaccharide-primed mouse bone marrow-derived macrophages. Urolithin A reduced generation of intracellular and mitochondrial reactive oxygen species (ROS) and restricted the interaction between thioredoxin-interacting protein and NLRP3, which attenuated NLRP3 inflammasome activation. Urolithin A administration prevented monosodium urate-induced peritonitis in mice. Collectively, these findings indicate that urolithin A suppresses NLRP3 inflammasome activation, at least partially, by repressing the generation of intracellular and mitochondrial ROS.


Asunto(s)
Cumarinas , Inflamasomas , Interleucina-1beta , Proteína con Dominio Pirina 3 de la Familia NLR , Peritonitis , Especies Reactivas de Oxígeno , Ácido Úrico , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cumarinas/farmacología , Cumarinas/química , Especies Reactivas de Oxígeno/metabolismo , Peritonitis/tratamiento farmacológico , Peritonitis/metabolismo , Peritonitis/inducido químicamente , Ácido Úrico/metabolismo , Inflamasomas/metabolismo , Ratones , Interleucina-1beta/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Caspasa 1/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Lipopolisacáridos , Piroptosis/efectos de los fármacos , Proteínas Portadoras , Tiorredoxinas
20.
Cell Biol Toxicol ; 40(1): 38, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789868

RESUMEN

Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.


Asunto(s)
Apoptosis , Proteínas Portadoras , Rutina , Animales , Humanos , Masculino , Ratones , Apoptosis/efectos de los fármacos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Rutina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...