Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.174
Filtrar
1.
J Neurosci ; 44(40)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358029

RESUMEN

Communication between neurons and glia significantly influences the development maturation, plasticity, and disease progressions of the nervous system. As a new signaling modality, extracellular vesicles display a diverse role for robust functional regulation of neurons through their protein and nucleic acid cargoes. This review highlights recent breakthroughs in the research of signaling mechanisms between glia and neurons mediated by extracellular vesicles that are important for neural development, axonal maintenance, synaptic functions, and disease progression in the mammalian nervous system. We will discuss the biological roles of extracellular vesicles released from neurons, astroglia, microglia, and oligodendroglia in the nervous system and their implications in neurodegenerative disorders.


Asunto(s)
Comunicación Celular , Sistema Nervioso Central , Vesículas Extracelulares , Neuroglía , Neuronas , Vesículas Extracelulares/fisiología , Vesículas Extracelulares/metabolismo , Humanos , Animales , Neuronas/fisiología , Neuroglía/fisiología , Comunicación Celular/fisiología , Sistema Nervioso Central/fisiología , Sistema Nervioso Central/citología
2.
Alzheimers Res Ther ; 16(1): 209, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358820

RESUMEN

BACKGROUND: Recent advances in blood-based biomarker discovery are paving the way for simpler, more accessible diagnostic tools that can detect early signs of Alzheimer's disease (AD). Recent successes in the development of amyloid-targeting immunotherapy approaches mark an important advancement in providing new options for the treatment of AD. We have developed a set of high-affinity monoclonal antibodies (mAbs) to tau protein that have the potential as tools for diagnosis and treatment of AD. METHODS: Sheep were immunised with either full-length tau (1-441) or truncated paired helical filament (PHF)-core tau (297-391). A stringent bio-panning and epitope selection strategy, with a particular focus directed to epitopes within the disease-relevant PHF-core tau, was used to identify single-chain antibodies (scAbs). These scAbs were ranked by affinity for each epitope class, with leads converted to high-affinity mAbs. These antibodies and their potential utility were assessed by their performance in tau immunoassays, as well as their ability to prevent tau aggregation and propagation. Further characterisation of these antibodies was performed by immunohistochemical staining of brain sections and immuno-gold electronmicroscopy of isolated PHFs. RESULTS: Our work resulted in a set of high-affinity antibodies reacting with multiple epitopes spanning the entire tau protein molecule. The tau antibodies directed against the core tau unit of the PHF inhibited pathological aggregation and seeding using several biochemical and cell assay systems. Through staining of brain sections and PHFs, the panel of antibodies revealed which tau epitopes were available, truncated, or occluded. In addition, highly sensitive immunoassays were developed with the ability to distinguish between and quantify various tau fragments. CONCLUSION: This article introduces an alternative immunodiagnostic approach based on the concept of a "tauosome" - the diverse set of tau fragments present within biological fluids. The development of an antibody panel that can distinguish a range of different tau fragments provides the basis for a novel approach to potential diagnosis and monitoring of disease progression. Our results further support the notion that tau immunotherapy targeting the PHF-core needs to combine appropriate selection of both the target epitope and antibody affinity to optimise therapeutic potential.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos Monoclonales , Proteínas tau , Proteínas tau/inmunología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/diagnóstico , Animales , Ovinos , Anticuerpos Monoclonales/inmunología , Humanos , Encéfalo/metabolismo , Encéfalo/inmunología , Encéfalo/patología , Epítopos/inmunología
3.
Brain Pathol ; : e13305, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354671

RESUMEN

Tau interacts with multiple heterogeneous nuclear ribonucleoproteins (hnRNPs)-a family of RNA binding proteins that regulate multiple known cellular functions, including mRNA splicing, mRNA transport, and translation regulation. We have previously demonstrated particularly significant interactions between phosphorylated tau and three hnRNPs (hnRNP A1, hnRNP A2B1, and hnRNP K). Although multiple hnRNPs have been previously implicated in tauopathies, knowledge of whether these hnRNPs colocalize with tau aggregates or show cellular mislocalization in disease is limited. Here, we performed a neuropathological study examining the colocalization between hnRNP A1, hnRNP A2B1, hnRNP K, and phosphorylated tau in two brain regions (hippocampus and frontal cortex) in six disease groups (Alzheimer's disease, mild cognitive impairment, progressive supranuclear palsy, corticobasal degeneration, Pick's disease, and controls). Contrary to expectations, hnRNP A1, hnRNP A2B1, and hnRNP K did not colocalize with AT8-immunoreactive phosphorylated tau pathology in any of the tauopathies examined. However, we did observe significant cellular mislocalization of hnRNP A1, hnRNP A2B1 and hnRNP K in tauopathies, with unique patterns of mislocalization observed for each hnRNP. These data point to broad dysregulation of hnRNP A1, A2B1 and K across tauopathies with implications for disease processes and RNA regulation.

4.
J Alzheimers Dis ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39269841

RESUMEN

This review is an attempt to compile existing hypotheses on the mechanisms underlying the initiation and progression of Alzheimer's disease (AD), starting from sensory impairments observed in AD and concluding with molecular events that are typically associated with the disease. These events include spreading of amyloid plaques and tangles of hyperphosphorylated tau and formation of Hirano and Biondi bodies as well as the development of oxidative stress. We have detailed the degenerative changes that occur in several neuronal populations, including the cholinergic neurons in the nucleus basalis of Meynert, the histaminergic neurons in the tuberomammillary nucleus, the serotonergic neurons in the raphe nuclei, and the noradrenergic neurons in the locus coeruleus. Furthermore, we discuss the potential role of iron accumulation in the brains of subjects with AD in the disease progression which served as a basis for the idea that iron chelation in the brain may mitigate oxidative stress and decelerate disease development. We also draw attention to possible role of sympathetic system and, more specifically, noradrenergic neurons of the superior cervical ganglion in triggering of the disease. We also explore the alternative possibility of compensatory protective changes that may occur in these neurons to support cholinergic function in the forebrain of subjects with AD.

5.
J Alzheimers Dis ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39269843

RESUMEN

Hippocampal dysfunction is associated with early clinical signs of Alzheimer's disease (AD). Due to the limited availability or invasiveness of current biomarkers, the AD diagnosis is usually based on cognitive assessment and structural brain imaging. The recent study by Lalive and colleagues examined the specificity of brain morphometry for the AD diagnosis in a memory clinic cohort with hippocampal-type amnestic syndrome. The results indicate that memory deficits and hippocampal atrophy are similar in AD and non-AD patients, highlighting their low diagnostic specificity. These findings challenge the traditional AD diagnosis and underscore the need for biomarkers to differentiate specific neuropathological entities.

6.
BMC Neurol ; 24(1): 334, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256712

RESUMEN

BACKGROUND: Anti-IgLON5 disease is an autoimmune encephalitis overlapping with neurodegenerative disorders due to pathological accumulation of hyperphosphorylated tau. It is characterized by several clinical manifestations determined by involvement of different brain areas, and mild response to first-line immunotherapies. We report a case of anti-IgLON5 disease with a multifaceted semiology and an unusually good response to glucocorticoid monotherapy. CASE PRESENTATION: A 68-year-old man with type 2 diabetes was evaluated for an 8-month history of progressive gait disorder causing frequent falls. He also suffered from obstructive sleep apneas and complained of dysphonia, dysarthria, occasional dysphagia, urinary incontinence, and upper limb action tremor. Neurological examination demonstrated bilateral eyelid ptosis, limitation of ocular horizontal smooth pursuit movements, slow horizontal saccades, and lack of inhibition of the vestibulo-ocular reflex during rapid horizontal head torsions. The patient also displayed involuntary, slow, rhythmic movements of the left periorbital and perioral muscles, spreading to the ipsilateral hemipalate and hemitongue, along with bilateral negative upper limb myoclonus. There were proximal muscle wasting in the upper limbs, proximal weakness of the four limbs, and diffuse fasciculations. Ataxia of stance and gait and of the four limbs was noted. MRI of the brain and spine was unremarkable; nerve conduction studies revealed a chronic, predominantly demyelinating, sensory-motor polyneuropathy, probably due to diabetes. Routine CSF examination was unrevealing and serum GFAP level was 89.6 pg/mL; however, the autoimmunity tests revealed a high-titer positivity for anti-IgLON5 autoantibodies in both CSF and serum, leading to the diagnosis of anti-IgLON5 disease. Symptoms improved significantly after intravenous methylprednisolone. CONCLUSIONS: Hemifacial and hemiorolingual myorhythmia along with peculiar oculomotor abnormalities characterizes the multifaceted clinical picture of our case. The complex semiology of our patient may reflect multifocal targeting of the autoimmune process or sequential spreading of tau inclusions in different brain areas. Our patient's optimal response to glucocorticoid monotherapy could be underpinned by a slightly different phenotype in which autoimmunity plays a greater pathogenic role than tauopathy, with a lower burden of tau deposition. In such patients, neurodegeneration and tau accumulation could be merely secondary to immune-mediated neuronal dysfunction, supporting the existence of a group of glucocorticoid-responsive patients.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Humanos , Masculino , Anciano , Moléculas de Adhesión Celular Neuronal/inmunología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología
7.
Alzheimers Dement ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316411

RESUMEN

The tauopathies are defined by pathological tau protein aggregates within a spectrum of clinically heterogeneous neurodegenerative diseases. The primary tauopathies meet the definition of rare diseases in the United States. There is no approved treatment for primary tauopathies. In this context, designing the most efficient development programs to translate promising targets and treatments from preclinical studies to early-phase clinical trials is vital. In September 2022, the Rainwater Charitable Foundation convened an international expert workshop focused on the translation of tauopathy therapeutics through early-phase trials. Our report on the workshop recommends a framework for principled drug development and a companion lexicon to facilitate communication focusing on reproducibility and achieving common elements. Topics include the selection of targets, drugs, biomarkers, participants, and study designs. The maturation of pharmacodynamic biomarkers to demonstrate target engagement and surrogate disease biomarkers is a crucial unmet need. HIGHLIGHTS: Experts provided a framework to translate therapeutics (discovery to clinical trials). Experts focused on the "5 Rights" (target, drug, biomarker, participants, trial). Current research on frontotemporal degeneration, progressive supranuclear palsy, and corticobasal syndrome therapeutics includes 32 trials (37% on biologics) Tau therapeutics are being tested in Alzheimer's disease; primary tauopathies have a large unmet need.

8.
bioRxiv ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39282355

RESUMEN

Aggregation of microtubule-associated protein tau (MAPT/tau) into conformationally distinct fibrils underpins neurodegenerative tauopathies. Fluorescent probes (fluoroprobes), such as thioflavin T (ThT), have been essential tools for studying tau aggregation; however, most of them do not discriminate between amyloid fibril conformations (polymorphs). This gap is due, in part, to a lack of high-throughput methods for screening large, diverse chemical collections. Here, we leverage advances in protein adaptive differential scanning fluorimetry (paDSF) to screen the Aurora collection of 300+ fluorescent dyes against multiple synthetic tau fibril polymorphs. This screen, coupled with orthogonal secondary assays, revealed pan-fibril binding chemotypes, as well as fluoroprobes selective for subsets of fibrils. One fluoroprobe recognized tau pathology in ex vivo brain slices from Alzheimer's disease patients. We propose that these scaffolds represent entry points for development of selective fibril ligands and, more broadly, that high throughput, fluorescence-based dye screening is a platform for their discovery.

9.
Cell ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39265576

RESUMEN

The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNA-seq and ATAC-seq in Alzheimer's disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), analyzing 41 participants and ∼1 million cells (RNA + ATAC) from three brain regions varying in vulnerability and pathological burden. We identify 32 shared, disease-associated cell types and 14 that are disease specific. Disease-specific cell states represent glial-immune mechanisms and selective neuronal vulnerability impacting layer 5 intratelencephalic neurons in AD, layer 2/3 intratelencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We identify disease-associated gene regulatory networks and cells impacted by causal genetic risk, which differ by disorder. These data illustrate the heterogeneous spectrum of glial and neuronal compositional and gene expression alterations in different dementias and identify therapeutic targets by revealing shared and disease-specific cell states.

10.
Biochem J ; 481(18): 1255-1274, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39248243

RESUMEN

Tauopathies, including Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy, are characterised by the aggregation of tau into insoluble neurofibrillary tangles in the brain. Tau is subject to a range of post-translational modifications, including proteolysis, that can promote its aggregation. Neuroinflammation is a hallmark of tauopathies and evidence is growing for a role of CD8+ T cells in disease pathogenesis. CD8+ T cells release granzyme proteases but what role these proteases play in neuronal dysfunction is currently lacking. Here, we identified that granzyme A (GzmA) is present in brain tissue and proteolytically cleaves tau. Mass spectrometric analysis of tau fragments produced on digestion of tau with GzmA identified three cleavage sites at R194-S195, R209-S210 and K240-S241. Mutation of the critical Arg or Lys residues at the cleavage sites in tau or chemical inhibition of GzmA blocked the proteolysis of tau by GzmA. Development of a semi-targeted mass spectrometry approach identified peptides in tauopathy brain tissue corresponding to proteolysis by GzmA at R209-S210 and K240-S241 in tau. When expressed in cells the GzmA-cleaved C-terminal fragments of tau were highly phosphorylated and aggregated upon incubation of the cells with tauopathy brain seed. The C-terminal fragment tau195-441 was able to transfer between cells and promote aggregation of tau in acceptor cells, indicating the propensity for such tau fragments to propagate between cells. Collectively, these results raise the possibility that GzmA, released from infiltrating cytotoxic CD8+ T cells, proteolytically cleaves tau into fragments that may contribute to its pathological properties in tauopathies.


Asunto(s)
Granzimas , Proteolisis , Tauopatías , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Granzimas/metabolismo , Granzimas/genética , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/genética , Encéfalo/metabolismo , Encéfalo/patología , Linfocitos T CD8-positivos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/genética
11.
Cell ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276772

RESUMEN

Protein aggregation causes a wide range of neurodegenerative diseases. Targeting and removing aggregates, but not the functional protein, is a considerable therapeutic challenge. Here, we describe a therapeutic strategy called "RING-Bait," which employs an aggregating protein sequence combined with an E3 ubiquitin ligase. RING-Bait is recruited into aggregates, whereupon clustering dimerizes the RING domain and activates its E3 function, resulting in the degradation of the aggregate complex. We exemplify this concept by demonstrating the specific degradation of tau aggregates while sparing soluble tau. Unlike immunotherapy, RING-Bait is effective against both seeded and cell-autonomous aggregation. RING-Bait removed tau aggregates seeded from Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) brain extracts and was also effective in primary neurons. We used a brain-penetrant adeno-associated virus (AAV) to treat P301S tau transgenic mice, reducing tau pathology and improving motor function. A RING-Bait strategy could be applied to other neurodegenerative proteinopathies by replacing the Bait sequence to match the target aggregate.

12.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273636

RESUMEN

The amyloid cascade hypothesis postulates that extracellular deposits of amyloid ß (Aß) are the primary and initial cause leading to the full development of Alzheimer's disease (AD) with intracellular neurofibrillary tangles; however, the details of this mechanism have not been fully described until now. Our preliminary data, coming from our day-to-day neuropathology practice, show that the primary location of the hyperphosphorylated tau protein is in the vicinity of the cell membrane of dystrophic neurites. This observation inspired us to formulate a hypothesis that presumes an interaction between low-density lipoprotein receptor-related protein 1 (LRP1) and fibrillar aggregates of, particularly, Aß42 anchored at the periphery of neuritic plaques, making internalization of the LRP1-Aß42 complex infeasible and, thus, causing membrane dysfunction, leading to the tauopathy characterized by intracellular accumulation and hyperphosphorylation of the tau protein. Understanding AD as a membrane dysfunction tauopathy may draw attention to new treatment approaches not only targeting Aß42 production but also, perhaps paradoxically, preventing the formation of LRP1-Aß42.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Tauopatías , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/etiología , Membrana Celular/metabolismo , Fosforilación , Animales , Fragmentos de Péptidos/metabolismo
13.
Neuroradiology ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325192

RESUMEN

BACKGROUND: Brain vascular pathology is an important comorbidity in Alzheimer's disease (AD), with white matter damage independently predicting cognitive impairment. However, it is still unknown how vascular pathology differentially impacts primary age-related tauopathy (PART) compared to AD. Therefore, our objectives were to compare the brain microangiopathic burden in patients with PART and AD, evaluated by MRI, while assessing its relation with neuropathological findings, patterns of brain atrophy and degree of clinical impairment. METHODS: Clinical information, brain MRI (T1 and T2-FLAIR) and neuropathological data were obtained from the National Alzheimer's Coordinating Centre ongoing study, with a total sample of 167 patients identified, that were divided according to the presence of neuritic plaques in Consortium to Establish a Registry for Alzheimer's disease (CERAD) 0 to 3. Microangiopathic burden and brain atrophy were evaluated by two certified neuroradiologists, using, respectively, the Fazekas score and previously validated visual rating scales to assess brain regional atrophy. RESULTS: Significant correlations were found between the Fazekas score and atrophy in the fronto-insular and medial temporal regions on both groups, with PART showing overall stronger positive correlations than in AD, especially in the fronto-insular region. For this specific cohort, no significant correlations were found between the Fazekas score and the degree of clinical impairment. CONCLUSION: Our results show that PART presents different pathological consequences at the brain microvascular level compared with AD and further supports PART as an independent pathological entity from AD.

14.
Alzheimers Dement ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254209

RESUMEN

INTRODUCTION: Magnetic resonance imaging (MRI) segmentation algorithms make it possible to study detailed medial temporal lobe (MTL) substructures as hippocampal subfields and amygdala subnuclei, offering opportunities to develop biomarkers for preclinical Alzheimer's disease (AD). METHODS: We identified the MTL substructures significantly associated with tau-positron emission tomography (PET) signal in 581 non-demented individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI-3). We confirmed our results in our UCLouvain cohort including 110 non-demented individuals by comparing volumes between individuals with different visual Braak's stages and clinical diagnosis. RESULTS: Four amygdala subnuclei (cortical, central, medial, and accessory basal) were associated with tau in amyloid beta-positive (Aß+) clinically normal (CN) individuals, while the global amygdala and hippocampal volumes were not. Using UCLouvain data, we observed that both Braak I-II and Aß+ CN individuals had smaller volumes in these subnuclei, while no significant difference was observed in the global structure volumes or other subfields. CONCLUSION: Measuring specific amygdala subnuclei, early atrophy may serve as a marker of temporal tauopathy in preclinical AD, identifying individuals at risk of progression. HIGHLIGHTS: Amygdala atrophy is not homogeneous in preclinical Alzheimer's disease (AD). Tau pathology is associated with atrophy of specific amygdala subnuclei, specifically, the central, medial, cortical, and accessory basal subnuclei. Hippocampal and amygdala volume is not associated with tau in preclinical AD. Hippocampus and CA1-3 volume is reduced in preclinical AD, regardless of tau.

15.
Curr Med Res Opin ; : 1-4, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39297876

RESUMEN

INTRODUCTION: Corticobasal syndrome (CBS) is a rare form of atypical parkinsonism, most commonly caused by neurodegenerative disorders. Autoimmune underlying conditions are extremely rare, and anti-Yo antibody-associated CBS has not been reported yet. CASE REPORT: Herein, we describe a case of a 68-year-old woman presenting with progressive dysarthria, gait instability and difficulty using her left hand with subacute deterioration during the last 3 months. Neurological examination revealed asymmetrical parkinsonism and pyramidal syndrome, reflex myoclonus and dystonia of her left upper limb, accompanied by apraxia of her left lower limb, fulfilling the criteria for possible CBS. Neuroimaging showed asymmetric frontoparietal atrophy, while cerebrospinal fluid and dopamine transporter imaging were normal. Prior to our evaluation, antineuronal autoantibody testing indicated positive anti-Yo antibodies. There was mild improvement after second IVIG cycle, and further investigation revealed no tumor. CONCLUSION: Although autoimmune etiology of this case cannot be certain, it highlights the potential expansion of the clinical spectrum of anti-Yo-associated paraneoplastic syndrome.

16.
Cell Rep ; 43(8): 114574, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39096489

RESUMEN

A prevailing hypothesis is that neurofibrillary tangles play a causal role in driving cognitive decline in Alzheimer's disease (AD) because tangles correlate anatomically with areas that undergo neuronal loss. We used two-photon longitudinal imaging to directly test this hypothesis and observed the fate of individual neurons in two mouse models. At any time point, neurons without tangles died at >3 times the rate as neurons with tangles. Additionally, prior to dying, they became >20% more distant from neighboring neurons across imaging sessions. Similar microstructural changes were evident in a population of non-tangle-bearing neurons in Alzheimer's donor tissues. Together, these data suggest that nonfibrillar tau puts neurons at high risk of death, and surprisingly, the presence of a tangle reduces this risk. Moreover, cortical microstructure changes appear to be a better predictor of imminent cell death than tangle status is and a promising tool for identifying dying neurons in Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer , Muerte Celular , Ovillos Neurofibrilares , Neuronas , Animales , Enfermedad de Alzheimer/patología , Ovillos Neurofibrilares/patología , Neuronas/patología , Neuronas/metabolismo , Ratones , Humanos , Proteínas tau/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Masculino , Femenino
17.
Protein Sci ; 33(9): e5099, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39145409

RESUMEN

The microtubule associated protein, tau, is implicated in a multitude of neurodegenerative disorders that are collectively termed as tauopathies. These disorders are characterized by the presence of tau aggregates within the brain of afflicted individuals. Mutations within the MAPT gene that encodes the tau protein form the genetic backdrop for familial forms of tauopathies, such as frontotemporal dementia (FTD), but the molecular consequences of such alterations and their pathological effects are unclear. We sought to investigate the conformational properties of the aggregates of three tau mutants: A152T, P301L, and R406W, all implicated within FTD, and compare them to those of the native form (WT-Tau 2N4R). Our immunochemical analysis reveals that mutants and WT tau oligomers exhibit similar affinity for conformation-specific antibodies but have distinct morphology and secondary structure. Additionally, these oligomers possess different dye-binding properties and varying sensitivity to proteolytic processing. These results point to conformational variety among them. We then tested the ability of the mutant oligomers to cross-seed the aggregation of WT tau monomer. Using similar array of experiments, we found that cross-seeding with mutant aggregates leads to the formation of conformationally unique WT oligomers. The results discussed in this paper provide a novel perspective on the structural properties of oligomeric forms of WT tau 2N4R and its mutant, along with shedding some light on their cross-seeding behavior.


Asunto(s)
Tauopatías , Proteínas tau , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo , Humanos , Tauopatías/genética , Tauopatías/metabolismo , Mutación , Conformación Proteica , Multimerización de Proteína , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo
18.
Brain Behav Immun ; 121: 291-302, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098437

RESUMEN

In Alzheimer's disease, chronic neuroinflammation is accompanied by amyloid and tau pathologies. Especially, aberrant microglial activation is known to precede the regional tau pathology development, but the mechanisms how microglia affect tau spread remain largely unknown. Here, we found that toll-like receptor 2 (TLR2) in microglia recognizes oligomeric tau as a pathogenic ligand and induces inflammatory responses. Knockout of TLR2 reduced tau pathology and microglial activation in rTg4510 tau transgenic mice. Treatment of oligomeric tau induced TLR2 activation and increased inflammatory responses in microglial cells. TLR2 further mediated the tau-induced microglial activation and promoted tau uptake into neurons in neuron-microglia co-culture system and in mouse hippocampus after intracranial tau injection. Importantly, treatment with anti-TLR2 monoclonal antibody Tomaralimab blocked TLR2 activation and inflammatory responses in a dose-dependent manner, and significantly reduced tau spread and memory loss in rTg4510 mice. These results suggest that TLR2 plays a crucial role in tau spread by causing aberrant microglial activation in response to pathological tau, and blocking TLR2 with immunotherapy may ameliorate tau pathogenesis in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Inmunoterapia , Trastornos de la Memoria , Microglía , Enfermedades Neuroinflamatorias , Neuronas , Proteínas tau , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Inmunoterapia/métodos , Inflamación/metabolismo , Trastornos de la Memoria/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microglía/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Receptor Toll-Like 2/metabolismo
19.
Front Immunol ; 15: 1458713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176092

RESUMEN

Progressive Supranuclear Palsy is an atypical parkinsonism based on tauopathic pathology. Growing interest is associated with the pathomechanism of this disease. Among theories analyzing this issue can be mentioned the one highlighting the significance of inflammation. In this study authors examined 14 patients with PSP-Richardson syndrome (PSP-RS) and 13 healthy volunteers using laboratory testing based on the analysis of interleukins 1 and 6 (IL-1 and IL-6), tau in the cerebrospinal fluid (CSF) and non-specific parameters of peripheral inflammation in the serum (IL-1, IL-6, neutrophils, lymphocytes, monocytes, platelets and the ratios based on the factors). All of the patients underwent neuroimaging using magnetic resonance imaging using 3 Tesla. The serum levels of IL-1 were positively correlated with the area of the mesencephalon, suggesting that higher levels of IL-1 are not linked with atrophic changes in this region, whereas serum levels IL-6 was positively correlated with frontal horn width and negatively correlated with superior cerebellar area. Additionally IL-6 in the serum was found to be correlated with neutrophil-to-high density lipoprotein ratio. The observations were not confirmed in the analysis of the levels of interleukins in the CSF. To the best of our knowledge this work is one of the first analyzing this issue. The outcome of the work shows that the role of interleukins associated with microglial activation may possibly differ in the context of neurodegenerative changes, moreover the role of peripheral inflammation in PSP requires further analysis.


Asunto(s)
Imagen por Resonancia Magnética , Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/líquido cefalorraquídeo , Parálisis Supranuclear Progresiva/sangre , Masculino , Proyectos Piloto , Femenino , Anciano , Persona de Mediana Edad , Neuroimagen/métodos , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo , Biomarcadores/sangre , Interleucina-6/sangre , Interleucina-6/líquido cefalorraquídeo , Interleucina-1/sangre , Inflamación/diagnóstico por imagen
20.
Acta Neuropathol Commun ; 12(1): 135, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154163

RESUMEN

Progressive supranuclear palsy (PSP) is a neurodegenerative movement and cognitive disorder characterized by abnormal accumulation of the microtubule-associated protein tau in the brain. Biochemically, inclusions in PSP are enriched for tau proteoforms with four microtubule-binding domain repeats (4R), an isoform that arises from alternative tau pre-mRNA splicing. While preferential aggregation and reduced degradation of 4R tau protein is thought to play a role in inclusion formation and toxicity, an alternative hypothesis is that altered expression of tau mRNA isoforms plays a causal role. This stems from the observation that PSP is associated with common variation in the tau gene (MAPT) at the 17q21.31 locus which contains low copy number repeats flanking a large recurrent genomic inversion. The complex genomic structural changes at the locus give rise to two dominant haplotypes, termed H1 and H2, that have the potential to markedly influence gene expression. Here, we explored haplotype-dependent differences in gene expression using a bulk RNA-seq dataset derived from human post-mortem brain tissue from PSP (n = 84) and controls (n = 77) using a rigorous computational pipeline, including alternative pre-mRNA splicing. We found 3579 differentially expressed genes in the temporal cortex and 10,011 in the cerebellum. We also found 7214 differential splicing events in the temporal cortex and 18,802 in the cerebellum. In the cerebellum, total tau mRNA levels and the proportion of transcripts encoding 4R tau were significantly increased in PSP compared to controls. In the temporal cortex, the proportion of reads that expressed 4R tau was increased in cases compared to controls. 4R tau mRNA levels were significantly associated with the H1 haplotype in the temporal cortex. Further, we observed a marked haplotype-dependent difference in KANSL1 expression that was strongly associated with H1 in both brain regions. These findings support the hypothesis that sporadic PSP is associated with haplotype-dependent increases in 4R tau mRNA that might play a causal role in this disorder.


Asunto(s)
Haplotipos , Parálisis Supranuclear Progresiva , Transcriptoma , Proteínas tau , Humanos , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Anciano , Masculino , Femenino , Anciano de 80 o más Años , Encéfalo/metabolismo , Encéfalo/patología , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...