Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 104(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37702592

RESUMEN

The family Phenuiviridae comprises viruses with 2-8 segments of negative-sense or ambisense RNA, comprising 8.1-25.1 kb in total. Virions are typically enveloped with spherical or pleomorphic morphology but can also be non-enveloped filaments. Phenuivirids infect animals including livestock and humans, birds, plants or fungi, as well as arthropods that serve as single hosts or act as biological vectors for transmission to animals or plants. Phenuivirids include important pathogens of humans, livestock, seafood and agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Phenuiviridae, which is available at ictv.global/report/phenuiviridae.


Asunto(s)
Artrópodos , Virus ARN , Animales , Humanos , Virus ARN/genética , Virión , ARN
2.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37622664

RESUMEN

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Virus ARN de Sentido Negativo , Virus ARN , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética
3.
Arch Insect Biochem Physiol ; 112(2): e21992, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36575628

RESUMEN

The small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.


Asunto(s)
Hemípteros , Oryza , Tenuivirus , Animales , Tenuivirus/genética , Insectos Vectores/genética , Hemípteros/genética , Insectos/genética , Perfilación de la Expresión Génica , Proteínas Virales/metabolismo
4.
Front Microbiol ; 12: 684599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194416

RESUMEN

Maize stripe virus is a pathogen of corn and sorghum in subtropical and tropical regions worldwide. We used high-throughput sequencing to obtain the complete nucleotide sequence for the reference genome of maize stripe virus and to sequence the genomes of ten additional isolates collected from the United States or Papua New Guinea. Genetically, maize stripe virus is most closely related to rice stripe virus. We completed and characterized the RNA1 sequence for maize stripe virus, which revealed a large open reading frame encoding a putative protein with ovarian tumor-like cysteine protease, endonuclease, and RNA-dependent RNA polymerase domains. Phylogenetic and amino acid identity analyses among geographically diverse isolates revealed evidence for reassortment in RNA3 that was correlated with the absence of RNA5. This study yielded a complete and updated genetic description of the tenuivirus maize stripe virus and provided insight into potential mechanisms underpinning its diversity.

5.
Viruses ; 13(5)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066457

RESUMEN

Negative-strand (-) RNA viruses (NSVs) comprise a large and diverse group of viruses that are generally divided in those with non-segmented and those with segmented genomes. Whereas most NSVs infect animals and humans, the smaller group of the plant-infecting counterparts is expanding, with many causing devastating diseases worldwide, affecting a large number of major bulk and high-value food crops. In 2018, the taxonomy of segmented NSVs faced a major reorganization with the establishment of the order Bunyavirales. This article overviews the major plant viruses that are part of the order, i.e., orthospoviruses (Tospoviridae), tenuiviruses (Phenuiviridae), and emaraviruses (Fimoviridae), and provides updates on the more recent ongoing research. Features shared with the animal-infecting counterparts are mentioned, however, special attention is given to their adaptation to plant hosts and vector transmission, including intra/intercellular trafficking and viral counter defense to antiviral RNAi.


Asunto(s)
Bunyaviridae/genética , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Bunyaviridae/patogenicidad , Virus de Plantas/patogenicidad , Plantas/virología , Virus ARN/genética , Virus ARN/patogenicidad
6.
J Virol ; 95(14): e0058921, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33952642

RESUMEN

Negative-stranded RNA (NSR) viruses include both animal- and plant-infecting viruses that often cause serious diseases in humans and livestock and in agronomic crops. Rice stripe tenuivirus (RSV), a plant NSR virus with four negative-stranded/ambisense RNA segments, is one of the most destructive rice pathogens in many Asian countries. Due to the lack of a reliable reverse-genetics technology, molecular studies of RSV gene functions and its interaction with host plants are severely hampered. To overcome this obstacle, we developed a mini-replicon-based reverse-genetics system for RSV gene functional analysis in Nicotiana benthamiana. We first developed a mini-replicon system expressing an RSV genomic RNA3 enhanced green fluorescent protein (eGFP) reporter [MR3(-)eGFP], a nucleocapsid (NP), and a codon usage-optimized RNA-dependent RNA polymerase (RdRpopt). Using this mini-replicon system, we determined that RSV NP and RdRpopt are indispensable for the eGFP expression from MR3(-)eGFP. The expression of eGFP from MR3(-)eGFP can be significantly enhanced in the presence of four viral suppressors of RNA silencing (VSRs), NSs, and P19-HcPro-γb. In addition, NSvc4, the movement protein of RSV, facilitated eGFP trafficking between cells. We also developed an antigenomic RNA3-based replicon in N. benthamiana. However, we found that the RSV NS3 coding sequence acts as a cis element to regulate viral RNA expression. Finally, we made mini-replicons representing all four RSV genomic RNAs. This is the first mini-replicon-based reverse-genetics system for monocot-infecting tenuivirus. We believe that the mini-replicon system described here will allow studies of the RSV replication, transcription, cell-to-cell movement, and host machinery underpinning RSV infection in plants. IMPORTANCE Plant-infecting segmented negative-stranded RNA (NSR) viruses are grouped into three genera: Orthotospovirus, Tenuivirus, and Emaravirus. Reverse-genetics systems have been established for members of the genera Orthotospovirus and Emaravirus. However, there is still no reverse-genetics system available for Tenuivirus. Rice stripe virus (RSV) is a monocot-infecting tenuivirus with four negative-stranded/ambisense RNA segments. It is one of the most destructive rice pathogens and causes significant damage to the rice industry in Asian countries. Due to the lack of a reliable reverse-genetics system, molecular characterizations of RSV gene functions and the host machinery underpinning RSV infection in plants are extremely difficult. To overcome this obstacle, we developed a mini-replicon-based reverse-genetics system for RSV in Nicotiana benthamiana. This is the first mini-replicon-based reverse-genetics system for tenuivirus. We consider that this system will provide researchers a new working platform to elucidate the molecular mechanisms dictating segmented tenuivirus infections in plants.


Asunto(s)
Genes Fúngicos/fisiología , Nicotiana/virología , Replicón , Genética Inversa , Tenuivirus/genética , Regulación Viral de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Movimiento , Nucleocápside/genética , Interferencia de ARN , Proteínas no Estructurales Virales/genética
7.
Front Microbiol ; 12: 655256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833749

RESUMEN

Rice stripe virus (RSV), a tenuivirus with four negative-sense/ambisense genome segments, is one of the most devastating viral pathogens affecting rice production in many Asian countries. Despite extensive research, our understanding of RSV infection cycles and pathogenesis has been severely impaired by the lack of reverse genetics tools. In this study, we have engineered RSV minireplicon (MR)/minigenome cassettes with reporter genes substituted for the viral open reading frames in the negative-sense RNA1 or the ambisense RNA2-4 segments. After delivery to Nicotiana benthamiana leaves via agroinfiltration, MR reporter gene expression was detected only when the codon-optimized large viral RNA polymerase protein (L) was coexpressed with the nucleocapsid (N) protein. MR activity was also critically dependent on the coexpressed viral suppressors of RNA silencing, but ectopic expression of the RSV-encoded NS3 silencing suppressor drastically decreased reporter gene expression. We also developed intercellular movement-competent MR systems with the movement protein expressed either in cis from an RNA4-based MR or in trans from a binary plasmid. Finally, we generated multicomponent replicon systems by expressing the N and L proteins directly from complementary-sense RNA1 and RNA3 derivatives, which enhanced reporter gene expression, permitted autonomous replication and intercellular movement, and reduced the number of plasmids required for delivery. In summary, this work enables reverse genetics analyses of RSV replication, transcription, and cell-to-cell movement and provides a platform for engineering more complex recombinant systems.

8.
Virol J ; 18(1): 5, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407622

RESUMEN

BACKGROUND: Advances in sequencing and analysis tools have facilitated discovery of many new viruses from invertebrates, including ants. Solenopsis invicta is an invasive ant that has quickly spread worldwide causing significant ecological and economic impacts. Its virome has begun to be characterized pertaining to potential use of viruses as natural enemies. Although the S. invicta virome is the best characterized among ants, most studies have been performed in its native range, with less information from invaded areas. METHODS: Using a metatranscriptome approach, we further identified and molecularly characterized virus sequences associated with S. invicta, in two introduced areas, U.S and Taiwan. The data set used here was obtained from different stages (larvae, pupa, and adults) of S. invicta life cycle. Publicly available RNA sequences from GenBank's Sequence Read Archive were downloaded and de novo assembled using CLC Genomics Workbench 20.0.1. Contigs were compared against the non-redundant protein sequences and those showing similarity to viral sequences were further analyzed. RESULTS: We characterized five putative new viruses associated with S. invicta transcriptomes. Sequence comparisons revealed extensive divergence across ORFs and genomic regions with most of them sharing less than 40% amino acid identity with those closest homologous sequences previously characterized. The first negative-sense single-stranded RNA virus genomic sequences included in the orders Bunyavirales and Mononegavirales are reported. In addition, two positive single-strand virus genome sequences and one single strand DNA virus genome sequence were also identified. While the presence of a putative tenuivirus associated with S. invicta was previously suggested to be a contamination, here we characterized and present strong evidence that Solenopsis invicta virus 14 (SINV-14) is a tenui-like virus that has a long-term association with the ant. Furthermore, based on virus sequence abundance compared to housekeeping genes, phylogenetic relationships, and completeness of viral coding sequences, our results suggest that four of five virus sequences reported, those being SINV-14, SINV-15, SINV-16 and SINV-17, may be associated to viruses actively replicating in the ant S. invicta. CONCLUSIONS: The present study expands our knowledge about viral diversity associated with S. invicta in introduced areas with potential to be used as biological control agents, which will require further biological characterization.


Asunto(s)
Hormigas/virología , Especies Introducidas , Viroma/genética , Animales , Hormigas/genética , Hormigas/crecimiento & desarrollo , Biodiversidad , Virus ADN/clasificación , Virus ADN/genética , Genoma Viral/genética , Estadios del Ciclo de Vida , Sistemas de Lectura Abierta/genética , Filogenia , Virus ARN/clasificación , Virus ARN/genética , Taiwán , Transcriptoma , Estados Unidos
9.
Virus Res ; 292: 198225, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33181202

RESUMEN

Reported here is the complete genome sequence of Mourilyan virus (MoV) that infects giant tiger (Penaeus monodon) and kuruma prawns (P. japonicas) in Australia. Its genome was determined using various PCR strategies based on the sequences of 3 randomly-amplified cDNA clones to its L and M RNA segments discovered in a library generated to determine the genome sequence of gill-associated ronivirus. The sequences of PCR products and clones obtained showed the MoV genome to comprise 4 ssRNA segments (L, M, S1 and S2), as confirmed by Northern blotting using RNA from naïve and MoV-infected prawns, and by Illumina sequence analysis of semi-purified MoV. BLASTn searches identified the MoV L, M and S1 RNA segments to be homologous to Wenzhou shrimp virus 1 (WzSV1) segments discovered recently in a P. monodon RNA-Seq library (SRR1745808). Mapping this read library to the MoV S2 RNA segment identified WzSV1 to also possess an equivalent segment. BLASTp searches identified the putative non-structural protein (NSs2; 393-394 aa) encoded in their S2 RNA segments to have no homologs in GenBank. Possibly due to NSs2 being encoded in a discrete RNA segment rather than in ambisense relative to the N protein as in the S RNA segments of other phenuiviruses, each of 6 MoV S1 RNA segment clones sequenced possessed a variable-length (≤ 645 nt) imperfect GA-repeat extending from the N protein stop codon to the more variable ∼90 nt segment terminal sequence. Read mapping of RNA-Seq library SRR1745808 showed the WzSV1 S1 RNA segment to possess a similar GA-repeat. However, paired-read variations hindered definitive assembly of a consensus sequence. All 4 MoV and WzSV1 RNA segments terminated with a 10 nt inverted repeat sequence (5'-ACACAAAGAC.) identical to the RNA segment termini of uukuviruses. Phylogenetic analyses of MoV/WzSV1 RNA-dependant RNA polymerase (L RNA), G1G2 precursor glycoprotein (M RNA) and nucleocapsid (N) protein (S1 RNA) sequences generally clustered them with as yet unassigned crustacean/diptera bunya-like viruses on branches positioned closely to others containing tick-transmitted phenuiviruses. As genome sequences of most phenuiviruses discovered recently have originated from meta-transcriptomics studies, the data presented here showing the MoV and WzSV1 genomes to comprise more than 3 RNA segments, like the plant tenuiviruses, suggests a need to investigate the genomes of these unassigned viruses more closely.


Asunto(s)
Genoma Viral , Penaeidae/virología , Virus ARN/genética , ARN Viral/genética , Animales , Secuencia de Bases , Filogenia , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Viral/metabolismo , Proteínas Virales/genética
10.
Virus Genes ; 57(1): 117-120, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33146853

RESUMEN

Virus encoded deubiquitinating enzyme (DUB) plays important roles in viral replication and the regulation of host innate immunity. Bioinformatics-based analysis revealed the presence of an ovarian tumor (OTU) protease domain in the N terminus of rice stripe tenuivirus (RSV) Pc1. Many viral OTU domains have been reported to possess DUB activity, which suggests that RSV OTU probably also have DUB activity. To confirm this prediction, we first expressed and purified RSV OTU domain (the N-terminal 200 amino acids of Pc1) and its three mutants (D42A, C45A and H148A) from Escherichia coli and analyzed its DUB activity in vitro. The purified RSV OTU hydrolyzed both K48-linked and K63-linked polyubiquitin chains, indicating RSV OTU domain has DUB enzyme activity in vitro. The mutations of the predicted catalytic sites (Asp42, Cys45 and His148) resulted in the loss of DUB activity, demonstrating these three residues were required for enzyme activity. Then, RSV OTU and its mutants were expressed in insect cells and assayed their DUB activities in vivo by co-transfection with HA-tagged ubiquitin. RSV OTU dramatically reduced ubiquitin-conjugated cellular proteins compared to control and the mutants, showing that RSV OTU also displays DUB activity in vivo. Characterization of RSV OTU DUB enzyme activity and its key catalytic residues will facilitate the development of novel antiviral reagents against RSV.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Tenuivirus/enzimología , Proteínas Virales/metabolismo , Replicación Viral
11.
Pest Manag Sci ; 76(12): 4086-4092, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32542993

RESUMEN

BACKGROUND: Rice stripe tenuivirus (RSV) is one of the most destructive pathogens of rice and other cereal crops. The virus is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a circulative-propagative manner. Thus, blocking transmission by the insect vector would provide an effective strategy to prevent epidemic outbreaks of the disease. RESULTS: In this study, we explored the effect of ribavirin on acquisition and transmission of the virus by specifically inhibiting the expression of sugar transporter 6 (LsSt-6), which was recently reported as a key vector component for RSV transmission. Ribavirin at the highest concentration tested (250 µmol L-1 ) significantly reduced RSV acquisition and transmission efficiency by SBPHs through inhibiting LsSt-6 messenger RNA (mRNA) level. Survival of the model insect Spodoptera frugiperda cell line (Sf9) was 95.0 ± 2.2 and 85.6 ± 2.1% after exposure to 250 µmol L-1 ribavirin or 8-azaguanine, respectively. Further study confirmed that 250 µmol L-1 ribavirin also significantly reduced LsSt-6 mRNA and protein levels in Sf9 cells. However, 8-azaguanine did not significantly inhibit viral infectivity and LsSt-6 mRNA levels in SBPH or the Sf9 cell line. CONCLUSION: This result provides evidence that ribavirin has the potential to disrupt LsSt-6 expression but not others like viral RNAs to prevent acquiring RSV, which leads to less viral accumulation in SBPH tissues and thereby lower transmission efficiency. © 2020 Society of Chemical Industry.


Asunto(s)
Hemípteros , Oryza , Tenuivirus , Animales , Insectos Vectores , Ribavirina/farmacología , Azúcares , Tenuivirus/genética
12.
Phytopathology ; 110(1): 68-79, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31631806

RESUMEN

High-throughput sequencing technologies were used to identify plant viruses in cereal samples surveyed from 2012 to 2017. Fifteen genome sequences of a tenuivirus infecting wheat, oats, and spelt in Estonia, Norway, and Sweden were identified and characterized by their distances to other tenuivirus sequences. Like most tenuiviruses, the genome of this tenuivirus contains four genomic segments. The isolates found from different countries shared at least 92% nucleotide sequence identity at the genome level. The planthopper Javesella pellucida was identified as a vector of the virus. Laboratory transmission tests using this vector indicated that wheat, oats, barley, rye, and triticale, but none of the tested pasture grass species (Alopecurus pratensis, Dactylis glomerata, Festuca rubra, Lolium multiflorum, Phleum pratense, and Poa pratensis), are susceptible. Taking into account the vector and host range data, the tenuivirus we have found most probably represents European wheat striate mosaic virus first identified about 60 years ago. Interestingly, whereas we were not able to infect any of the tested cereal species mechanically, Nicotiana benthamiana was infected via mechanical inoculation in laboratory conditions, displaying symptoms of yellow spots and vein clearing evolving into necrosis, eventually leading to plant death. Surprisingly, one of the virus genome segments (RNA2) encoding both a putative host systemic movement enhancer protein and a putative vector transmission factor was not detected in N. benthamiana after several passages even though systemic infection was observed, raising fundamental questions about the role of this segment in the systemic spread in several hosts.


Asunto(s)
Genoma Viral , Virus del Mosaico , Virus de Plantas , Animales , Grano Comestible/virología , Genoma Viral/genética , Hemípteros/virología , Virus del Mosaico/genética , Noruega , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Suecia
13.
Methods ; 183: 43-49, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31759050

RESUMEN

Geminiviruses constitute a family of plant viruses with characteristic twinned quasi-icosahedral virions and a small circular DNA genome. Geminiviruses, especially begomoviruses, cause substantial economic losses in tropical and subtropical regions globally. Geminiviruses use the host's transcriptional mechanisms to synthesize their mRNAs. They are considered as an attractive model to understand the transcription mechanism of their host plants. Experiments were conducted to identify transcriptional start sites (TSSs) of the three begomoviruses, i.e., Cotton leaf curl Multan virus (CLCuMuV), Corchorus yellow vein virus (CoYVV), and Ramie mosaic virus (RamV). We first rub-inoculated Rice stripe tenuivirus (RSV), a segmented negative-sense RNA virus that uses cap-snatching to produce capped viral mRNAs, into N. benthamiana. After the inoculation, RSV-infected N. benthamiana were super-infected by CoYVV, CLCuMuV, or RamV, respectively. The capped-RNA leaders snatched by RSV were obtained by determining the 5'-ends of RSV mRNA with high throughput sequencing. Afterwards, snatched capped-RNA leaders of RSV were mapped onto the genome of each begomovirus and those matching the begomoviral genome were considered to come from the 5' ends of assumed begomoviral mRNAs. In this way, TSSs of begomoviruses were obtained. After mapping these TSSs onto the genome of the respective begomovirus, it was found very commonly that a begomovirus can use many different TSSs to transcribe the same gene, producing many different mRNA isoforms containing the corresponding open reading frames (ORFs).


Asunto(s)
Begomovirus/genética , Southern Blotting/métodos , ADN Viral/genética , Nicotiana/virología , Transcripción Genética , Animales , Begomovirus/patogenicidad , Coinfección/virología , Genoma Viral , Hemípteros/virología , Enfermedades de las Plantas/virología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Viral/genética , Tenuivirus/genética , Tenuivirus/patogenicidad , Nicotiana/genética , Sitio de Iniciación de la Transcripción
14.
Virus Res ; 260: 33-37, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30439393

RESUMEN

Rice stripe tenuivirus (RSV) initiates its mRNA transcription by using the cap-snatching mechanism during which an endonuclease activity is required for the cleavage of host mRNA. In this study, we aim to characterize the endonuclease in RSV. Sequence alignment revealed the presence of a cap-snatching endonuclease domain in RSV Pc1. Expression and in vitro enzymatic activity assay demonstrated that this domain indeed had a manganese-dependent endonuclease activity. The enzyme could efficiently degrade ssRNA with preference for unstructured ssRNA, but not DNA. Mutations in the endonuclease domain allowed the identification of four key residues (D547, D567, E585 and K604). The endonuclease of RSV was similar but not identical to other known viral endonucleases, suggesting that RSV endonuclease may have some distinct catalytic characteristics.


Asunto(s)
Endonucleasas/aislamiento & purificación , Endonucleasas/metabolismo , Tenuivirus/enzimología , Tenuivirus/aislamiento & purificación , Sustitución de Aminoácidos , Clonación Molecular , Coenzimas/metabolismo , Análisis Mutacional de ADN , Endonucleasas/genética , Expresión Génica , Manganeso/metabolismo , Oryza/virología , Enfermedades de las Plantas/virología , ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
15.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046442

RESUMEN

Most segmented negative-sense RNA viruses employ a process termed cap snatching, during which they snatch capped RNA leaders from host cellular mRNAs and use the snatched leaders as primers for transcription, leading to the synthesis of viral mRNAs with 5' heterogeneous sequences (HSs). With traditional methods, only a few HSs can be determined, and identification of their donors is difficult. Here, the mRNA 5' ends of Rice stripe tenuivirus (RSV) and Rice grassy stunt tenuivirus (RGSV) and those of their host rice were determined by high-throughput sequencing. Millions of tenuiviral HSs were obtained, and a large number of them mapped to the 5' ends of corresponding host cellular mRNAs. Repeats of the dinucleotide AC, which are complementary to the U1G2 of the tenuiviral template 3'-U1G2U3G4UUUCG, were found to be prevalent at the 3' termini of tenuiviral HSs. Most of these ACs did not match host cellular mRNAs, supporting the idea that tenuiviruses use the prime-and-realign mechanism during cap snatching. We previously reported a greater tendency of RSV than RGSV to use the prime-and-realign mechanism in transcription with leaders cap snatched from a coinfecting reovirus. Besides confirming this observation in natural tenuiviral infections, the data here additionally reveal that RSV has a greater tendency to use this mechanism in transcribing genomic than in transcribing antigenomic templates. The data also suggest that tenuiviruses cap snatch host cellular mRNAs from translation- and photosynthesis-related genes, and capped RNA leaders snatched by tenuiviruses base pair with U1/U3 or G2/G4 of viral templates. These results provide unprecedented insights into the cap-snatching process of tenuiviruses.IMPORTANCE Many segmented negative-sense RNA viruses (segmented NSVs) are medically or agriculturally important pathogens. The cap-snatching process is a promising target for the development of antiviral strategies against this group of viruses. However, many details of this process remain poorly characterized. Tenuiviruses constitute a genus of agriculturally important segmented NSVs, several members of which are major viral pathogens of rice. Here, we for the first time adopted a high-throughput sequencing strategy to determine the 5' heterogeneous sequences (HSs) of tenuiviruses and mapped them to host cellular mRNAs. Besides providing deep insights into the cap snatching of tenuiviruses, the data obtained provide clear evidence to support several previously proposed models regarding cap snatching. Curiously and importantly, the data here reveal that not only different tenuiviruses but also the same tenuivirus synthesizing different mRNAs use the prime-and-realign mechanism with different tendencies during their cap snatching.


Asunto(s)
Genoma Viral , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Tenuivirus/genética , Transcripción Genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Oryza/virología , ARN Mensajero/genética , ARN Viral , Tenuivirus/metabolismo
16.
Virus Genes ; 53(6): 898-905, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28589385

RESUMEN

The amount of Rice stripe virus (RSV) maintained through transovarial transmission was analyzed during the development and reproduction of its vector, Laodelphax striatellus. Reverse transcription quantitative PCR analysis was used to quantify RNA expressed from the RSV coat protein (CP) gene as an estimate of RSV content in nymphs and adults of L. striatellus at various developmental stages. The 18S ribosome RNA gene of L. striatellus was chosen as the reference for calculating RSV CP expression using the comparative Ct method. Based on the CP transcript levels, the amount of RSV did not differ significantly throughout the nymphal stage or between adult females of different ages; however, RSV content tended to increase slightly as males became older. The average RSV content in males was 1.30-2.49 times that in females. The amount of RSV in L. striatellus adults was compared between generations. The RSV content of female adults did not differ significantly between the parent and progeny populations three of three different females. L. striatellus grown to adults on a susceptible cultivar and five RSV-resistant cultivars were compared to analyze whether the amount of RSV varied among cultivars. Although the amount of RSV in L. striatellus adults differed significantly among the six rice cultivars evaluated, the difference seemed independent of whether resistance genes were present. In addition, the percentage of viruliferous insects was similar among cultivars.


Asunto(s)
Hemípteros/virología , Insectos Vectores/virología , Oryza/virología , Tenuivirus/genética , Animales , Femenino , Insectos/virología , Masculino , ARN Ribosómico 18S/genética , Proteínas Virales/genética
17.
Virology ; 506: 73-83, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28359901

RESUMEN

Rice stripe tenuivirus (RSV) is a filamentous, negative-strand RNA virus causing severe diseases on rice in Asian countries. The viral particle is composed predominantly of a nucleocapsid protein (NP) and genomic RNA. However, the molecular details of how the RSV NP interacts with genomic RNA during particle assembly remain largely unknown. Here, we modeled the NP-RNA complex and show that polar amino acids within a predicted groove of NP are critical for RNA binding and protecting the RNA from RNase digestion. RSV NP formed pentamers, hexamers, heptamers, and octamers. By modeling the higher-order structures, we found that oligomer formation was driven by the N-terminal amino arm of the NP. Deletion of this arm abolished oligomerization; the N-terminally truncated NP was less able to interact with RNA and protect RNA than was the wild type. These findings afford valuable new insights into molecular mechanism of RSV NPs interacting with genomic RNA.


Asunto(s)
Nucleocápside/metabolismo , Oryza/virología , Enfermedades de las Plantas/virología , ARN Viral/metabolismo , Tenuivirus/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Nucleocápside/química , Nucleocápside/genética , Unión Proteica , ARN Viral/química , ARN Viral/genética , Alineación de Secuencia , Tenuivirus/química , Tenuivirus/genética
18.
Front Microbiol ; 8: 2519, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312219

RESUMEN

Identification of the transcription start sites (TSSs) of a virus is of great importance to understand and dissect the mechanism of viral genome transcription but this often requires costly and laborious experiments. Many segmented negative-sense RNA viruses (sNSVs) cleave capped leader sequences from a large variety of mRNAs and use these cleaved leaders as primers for transcription in a conserved process called cap snatching. The recent developments in high-throughput sequencing have made it possible to determine most, if not all, of the capped RNAs snatched by a sNSV. Here, we show that rice stripe tenuivirus (RSV), a plant-infecting sNSV, co-infects Nicotiana benthamiana with two different begomoviruses and snatches capped leader sequences from their mRNAs. By determining the 5' termini of a single RSV mRNA with high-throughput sequencing, the 5' ends of almost all the mRNAs of the co-infecting begomoviruses could be identified and mapped on their genomes. The findings in this study provide support for the using of the cap snatching of sNSVs as a tool to map viral TSSs.

19.
Virology ; 496: 287-298, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27393974

RESUMEN

Two tenuiviruses Rice stripe virus (RSV) and Rice grassy stunt virus (RGSV) were found to co-infect rice with the same reovirus Rice ragged stunt virus (RRSV). During the co-infection, both tenuiviruses recruited 10-21 nucleotides sized capped-RNA leaders from the RRSV. A total of 245 and 102 RRSV-RGSV and RRSV-RSV chimeric mRNA clones, respectively, were sequenced. An analysis of the sequences suggested a scenario consistent with previously reported data on related viruses, in which capped leader RNAs having a 3' end complementary to the viral template are preferred and upon base pairing the leaders prime processive transcription directly or after one to several cycles of priming and realignment (repetitive prime-and-realign). Interestingly, RSV appeared to have a higher tendency to use repetitive prime-and-realign than RGSV even with the same leader derived from the same RRSV RNA. Combining with relevant data reported previously, this points towards an intrinsic feature of RSV.


Asunto(s)
Oryza/virología , Tenuivirus/genética , Transcripción Genética , Regiones no Traducidas 5' , Secuencia de Bases , Coinfección , Evolución Molecular , Enfermedades de las Plantas/virología , ARN Mensajero/genética , ARN Viral
20.
Virus Genes ; 52(1): 152-5, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26728080

RESUMEN

Ramu stunt disease of sugarcane was first reported in Papua New Guinea in the mid 1980s. The disease can reduce sugarcane yields significantly and causes severe stunting and mortality in highly susceptible cultivars. The causal agent of Ramu stunt has been investigated but its characterization has not been completed. Sugarcane cv. Ragnar from Papua New Guinea with symptoms of Ramu stunt was analyzed by next generation sequencing. Total RNA was extracted and whole transcriptome shotgun sequencing was performed using an Illumina platform. Over thirty-seven million reads with an average length of 100 nucleotides were obtained. More than eighteen thousand contigs were assembled and subjected to BLASTX analysis. Twenty-one contigs were virus related and six were associated with plant viruses. The BLAST algorithms revealed sequence similarity to Tenuivirus and Phlebovirus, genera of viruses whose members contain genomes consisting of multiple RNA segments. The six contigs derived from the RNA sequencing data correspond to six RNAs that compose the Ramu stunt virus genome. Primers were designed for each of the six RNAs and RT-PCR amplicons were obtained only from the symptomatic sugarcane. There was concordance between the sequence data of the contigs obtained from the NGS and that of the amplicons obtained by RT-PCR. The NGS approach allowed us to determine the complete genomic sequence of Ramu stunt virus. It is likely that this virus is the causal agent of Ramu stunt disease.


Asunto(s)
Enfermedades de las Plantas/virología , Virus de Plantas/genética , Saccharum/virología , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Virus de Plantas/clasificación , Virus de Plantas/aislamiento & purificación , ARN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...