Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 953: 176008, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39236826

RESUMEN

Organic UV filters (OUVFs) are vital components in various personal care products (PCPs) and commercial goods, with the annual consumption estimated at 10,000 tons. Consequently, the unavoidable use of OUVFs in PCPs and other unregulated commercial applications could present a considerable risk to human and environmental health. These chemical entities enter terrestrial ecosystems through wastewater discharge, agriculture, atmospheric deposition, and recreational activities. Compared to aqueous ecosystems, the effects of OUVFs on terrestrial environments should be more studied and potentially underestimated. The present review addresses the abovementioned gap by summarizing 189 studies conducted between 2006 and 2024, focusing on the analytical measures, occurrence, and ecotoxicological effects of OUVFs on terrestrial ecosystems. These studies underscore the harmful effects of certain OUVFs on the development, reproduction, and endocrine systems of terrestrial organisms, highlighting the necessity for comprehensive toxicological assessments to understand their impacts on non-target species in terrestrial ecosystems. Besides, by underscoring the ecological effects of OUVFs, this review aims to guide future research and inform regulatory measures to mitigate the risks posed by these widespread contaminants. Meanwhile, interdisciplinary research is essential, integrating environmental science, toxicology, ecology, and chemistry to tackle OUVF challenges in terrestrial ecosystems.


Asunto(s)
Ecosistema , Protectores Solares , Protectores Solares/toxicidad , Monitoreo del Ambiente , Contaminantes Ambientales/análisis
2.
Chemosphere ; 364: 143047, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39121958

RESUMEN

Assessing historical records of DOC concentrations (DOC) in drinking water sources is important for water utilities to understand long-term planning for infrastructure needs. This study investigates 15-20 years of historical data of the Woronora water supply catchment in Australia inclusive of the water filtration plant (WFP), the lake from where the water was drawn for WFP supply, and the two primary river inputs. The DOC at each site ranged from 0.8 mg L-1 to 13.9 mg L-1, with the highest and lowest concentrations observed in Waratah Rivulet. The DOC in the lake and WFP significantly (p < 0.001) increased at annual change rates of 0.192 and 0.180 mg L-1 yr-1. However, Woronora River showed a ∼50% lower rate of DOC increase at 0.096 mg L-1 yr-1 (p < 0.001), while Waratah Rivulet showed no trend (p > 0.05). UV254 also showed increasing trends at Woronora River, Lake Woronora, and Woronora WFP, indicating an increase in aromatic DOC compounds in all three sites. Waratah Rivulet, however, transported more than 60% of the total DOC load into Lake Woronora due to high flow volumes (more than 65% of total annual system flow). Annual DOC load to the lake is positively correlated with annual rainfall (R2 > 0.92; p < 0.001). The higher percentage (>73%) of the samples had SUVA254 greater than 2 L mg -1 m-1 in all four sites indicating a dominance of hydrophobic DOC. The terrestrial plant-derived DOC has increased in Lake Woronora, predominantly influenced by historical rainfall magnitude. The results underscore the importance of considering the impact of increased DOC at the treatment plant intake for the planning and operation of the Woronora water supply system.


Asunto(s)
Carbono , Agua Potable , Monitoreo del Ambiente , Lagos , Contaminantes Químicos del Agua , Abastecimiento de Agua , Australia , Agua Potable/química , Contaminantes Químicos del Agua/análisis , Lagos/química , Carbono/análisis , Abastecimiento de Agua/estadística & datos numéricos , Ríos/química , Purificación del Agua/métodos
3.
Environ Int ; 191: 108964, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173234

RESUMEN

Ecosystem multifunctionality reflects the capacity of ecosystems to simultaneously maintain multiple functions which are essential bases for human sustainable development. Whereas viruses are a major component of the soil microbiome that drive ecosystem functions across biomes, the relationships between soil viral diversity and ecosystem multifunctionality remain under-studied. To address this critical knowledge gap, we employed a combination of amplicon and metagenomic sequencing to assess prokaryotic, fungal and viral diversity, and to link viruses to putative hosts. We described the features of viruses and their potential hosts in 154 soil samples from 29 farmlands and 25 forests distributed across China. Although 4,460 and 5,207 viral populations (vOTUs) were found in the farmlands and forests respectively, the diversity of specific vOTUs rather than overall soil viral diversity was positively correlated with ecosystem multifunctionality in both ecosystem types. Furthermore, the diversity of these keystone vOTUs, despite being 10-100 times lower than prokaryotic or fungal diversity, was a better predictor of ecosystem multifunctionality and more strongly associated with the relative abundances of prokaryotic genes related to soil nutrient cycling. Gemmatimonadota and Actinobacteria dominated the host community of soil keystone viruses in the farmlands and forests respectively, but were either absent or showed a significantly lower relative abundance in that of soil non-keystone viruses. These findings provide novel insights into the regulators of ecosystem multifunctionality and have important implications for the management of ecosystem functioning.


Asunto(s)
Ecosistema , Microbiología del Suelo , Virus , China , Virus/genética , Suelo/química , Microbiota , Hongos/genética , Bosques , Metagenómica , Biodiversidad
4.
Microbiome ; 12(1): 136, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039586

RESUMEN

BACKGROUND: Soil giant viruses are increasingly believed to have profound effects on ecological functioning by infecting diverse eukaryotes. However, their biogeography and ecology remain poorly understood. RESULTS: In this study, we analyzed 333 soil metagenomes from 5 habitat types (farmland, forest, grassland, Gobi desert, and mine wasteland) across China and identified 533 distinct giant virus phylotypes affiliated with nine families, thereby greatly expanding the diversity of soil giant viruses. Among the nine families, Pithoviridae were the most diverse. The majority of phylotypes exhibited a heterogeneous distribution among habitat types, with a remarkably high proportion of unique phylotypes in mine wasteland. The abundances of phylotypes were negatively correlated with their environmental ranges. A total of 76 phylotypes recovered in this study were detectable in a published global topsoil metagenome dataset. Among climatic, geographical, edaphic, and biotic characteristics, soil eukaryotes were identified as the most important driver of beta-diversity of giant viral communities across habitat types. Moreover, co-occurrence network analysis revealed some pairings between giant viral phylotypes and eukaryotes (protozoa, fungi, and algae). Analysis of 44 medium- to high-quality giant virus genomes recovered from our metagenomes uncovered not only their highly shared functions but also their novel auxiliary metabolic genes related to carbon, sulfur, and phosphorus cycling. CONCLUSIONS: These findings extend our knowledge of diversity, habitat preferences, ecological drivers, potential hosts, and auxiliary metabolism of soil giant viruses. Video Abstract.


Asunto(s)
Ecosistema , Virus Gigantes , Metagenoma , Microbiología del Suelo , China , Virus Gigantes/genética , Virus Gigantes/clasificación , Suelo/química , Filogenia , Genoma Viral/genética , Metagenómica
5.
Sci Total Environ ; 948: 174826, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39025151

RESUMEN

Long-term atmospheric nitrogen (N) deposition has been known to enhance plant productivity by increasing available N in terrestrial ecosystems. However, the response of carbon process to N deposition in terrestrial ecosystems remains unclear, particularly about different climate regions and biomes. In this study, we synthesized 1281 pairwise observations from 218 published articles on experimental N addition globally, aiming to quantify the responses of the carbon process and its mechanisms to N addition. Our results revealed a significant overall increase in net ecosystem productivity (NEP) by 31.42 % following N addition treatment, owing to increased aboveground net primary productivity (ANPP, 16.46 %), belowground net primary productivity (BNPP, 27.74 %), and reduced soil respiration (Rs, -2.56 %), soil heterotrophic respiration (Rh, -6.24 %). Furthermore, the effects of N addition on NEP varied with biomes and climate regions. The positive effect of N addition on NEP was more pronounced in arid regions (28.67 %) compared to humid regions (21.92 %), primarily driven by a higher increase in vegetation productivity. Additionally, N addition exhibited a higher increase in NEP (33.95 %) in forest compared to grassland (31.80 %), resulting from a more reduction in respiratory processes. However, the positive effects of N addition on NEP diminished with increasing experimental duration. Furthermore, ANPP and BNPP displayed a convex relationship with N addition rates, with the optimum BNPP addition rate exceeding that of ANPP. In contrast, Rs exhibited a concave response to addition rates. These findings suggest that carbon sink in terrestrial ecosystems could be enhanced under future atmospheric N deposition, especially in arid regions and forest ecosystems. Our study provided insight for predicting how N deposition influences terrestrial ecosystem carbon process.


Asunto(s)
Secuestro de Carbono , Ecosistema , Nitrógeno , Carbono/metabolismo , Suelo/química , Bosques
6.
Glob Chang Biol ; 30(6): e17381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923235

RESUMEN

In 2020, anthropogenic methane (CH4) emissions decreased due to COVID-19 containment policies, but there was a substantial increase in the concentration of atmospheric CH4. Previous research suggested that this abnormal increase was linked to higher wetland CH4 emissions and a decrease in the atmospheric CH4 sink. However, the impact of changes in the soil CH4 sink remained unknown. To address this, we utilized a process-based model to quantify alterations in the soil CH4 sink of terrestrial ecosystems between 2019 and 2020. By implementing the model with various datasets, we consistently observed an increase in the global soil CH4 sink, reaching up to 0.35 ± 0.06 Tg in 2020 compared to 2019. This increase was primarily attributed to warmer soil temperatures in northern high latitudes. Our results emphasize the importance of considering the CH4 sink in terrestrial ecosystems, as neglecting this component can lead to an underestimation of both emission increases and reductions in atmospheric CH4 sink capacity. Furthermore, these findings highlight the potential role of increased soil warmth in terrestrial ecosystems in slowing the growth of CH4 concentrations in the atmosphere.


Asunto(s)
Atmósfera , Metano , Suelo , Metano/análisis , Suelo/química , Atmósfera/química , Ecosistema , Modelos Teóricos , Temperatura
7.
Curr Biol ; 34(13): 2907-2920.e5, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38906143

RESUMEN

Protected areas conserve biodiversity and ecosystem functions but might impede local economic growth. Understanding the global patterns and predictors of different relationships between protected area effectiveness and neighboring community economic growth can inform better implementation of the Kunming-Montreal Global Biodiversity Framework. We assessed 10,143 protected areas globally with matched samples to address the non-random location of protected areas. Our results show that protected areas resist human-induced land cover changes and do not limit nightlight increases in neighboring settlements. This result is robust, using different matching techniques, parameter settings, and selection of covariates. We identify four types of relationships between land cover changes and nightlight changes for each protected area: "synergy," "retreat," and two tradeoff relationships. About half of the protected areas (47.5%) retain their natural land cover and do so despite an increase of nightlights in the neighboring communities. This synergy relationship is the most common globally but varies between biomes and continents. Synergy is less frequent in the Amazon, Southeast Asia, and some developing areas, where most biodiversity resides and which suffer more from poverty. Smaller protected areas and those with better access to cities, moderate road density, and better baseline economic conditions have a higher probability of reaching synergy. Our results are promising, as the expansion of protected areas and increased species protection will rely more on conserving the human-modified landscape with smaller protected areas. Future interventions should address local development and biodiversity conservation together to achieve more co-benefits.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Desarrollo Económico , Conservación de los Recursos Naturales/métodos , Ecosistema , Humanos
8.
Plants (Basel) ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732469

RESUMEN

During the period preceding the vegetation growing season (GS), temperature emerges as the pivotal factor determining phenology in northern terrestrial ecosystems. Despite extensive research on the impact of daily mean temperature (Tmean) during the preseason period, the influence of diurnal temperature range (DTR) on vegetation photosynthetic phenology (i.e., the impact of the plant photosynthetic cycle on seasonal time scale) has largely been neglected. Using a long-term vegetation photosynthetic phenology dataset and historical climate data, we examine vegetation photosynthetic phenology dynamics and responses to climate change across the mid-high latitudes of the Northern Hemisphere from 2001 to 2020. Our data reveal an advancing trend in the start of the GS (SOS) by -0.15 days per year (days yr-1), affecting 72.1% of the studied area. This is particularly pronounced in western Canada, Alaska, eastern Asia, and latitudes north of 60°N. Conversely, the end of the GS (EOS) displays a delaying trend of 0.17 days yr-1, impacting 62.4% of the studied area, especially northern North America and northern Eurasia. The collective influence of an earlier SOS and a delayed EOS has resulted in the notably prolonged length of the GS (LOS) by 0.32 days yr-1 in the last two decades, affecting 70.9% of the studied area, with Eurasia and western North America being particularly noteworthy. Partial correlation coefficients of the SOS with preseason Tmean, DTR, and accumulated precipitation exhibited negative values in 98.4%, 93.0%, and 39.2% of the study area, respectively. However, there were distinct regional variations in the influence of climate factors on the EOS. The partial correlation coefficients of the EOS with preseason Tmean, DTR, and precipitation were positive in 58.6%, 50.1%, and 36.3% of the region, respectively. Our findings unveil the intricate mechanisms influencing vegetation photosynthetic phenology, holding crucial significance in understanding the dynamics of carbon sequestration within terrestrial ecosystems amidst climate change.

9.
Environ Pollut ; 352: 124064, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701965

RESUMEN

This study explored the levels, distribution, potential sources, ecological risks and estrogenic activities of 14 bisphenol analogues (BPs) in soil under eight land-use types in the megacity of Chengdu, China. Eleven BPs were detected in the soil samples and the total concentrations ranged from 32.3 to 570 ng/g d.w. Levels of bisphenol BP (BPBP) in the soil (up to 208 ng/g d.w.) only second to the most dominant compound bisphenol A (BPA) were found. Relatively higher Σ14BP accumulation in the soil was observed in the commercial and residential areas (median: 136 ng/g d.w. and 131 ng/g d.w.) compared with agricultural area (median: 67.5 ng/g d.w.). Source identification indicated the role of atmospheric particulate deposition and consecutive anthropogenic activities in BP emission. The ecotoxicity assessment implied that BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol PH (BPPH) might pose low to medium risk to the ecosystem due to their extensive use and biological effects. The calculated 17ß-estradiol equivalents of BPs were in the range of 0.501-7.74 pg E2/g d.w, and the estrogenic activities were inferior to those contributed by natural estrogens in the soil.


Asunto(s)
Compuestos de Bencidrilo , Monitoreo del Ambiente , Fenoles , Contaminantes del Suelo , Suelo , Fenoles/análisis , Contaminantes del Suelo/análisis , China , Compuestos de Bencidrilo/análisis , Suelo/química , Sulfonas/análisis , Sulfonas/toxicidad , Agricultura , Medición de Riesgo , Disruptores Endocrinos/análisis
10.
Environ Sci Technol ; 58(16): 7154-7164, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38590004

RESUMEN

Compared to aquatic ecosystem, terrestrial systems have been subjected to fewer investigations on the exposure to halogenated flame retardants (HFRs). Our study utilized peregrine falcon eggs collected from multiple habitats across North America to retrospectively explore both spatial distribution and temporal changes in legacy (e.g., polybrominated diphenyl ethers) and alternative HFRs over a 30 year period (1984-2016). The results reveal intensive HFR exposure in terrestrial ecosystems and chemical-specific spatiotemporal distribution patterns. The correlations between egg levels of the selected HFRs and human population density clearly illustrated a significant urban influence on the exposure of this wildlife species to these HFRs and subsequent maternal transfer to their eggs. Temporal analyses suggest that, unlike aquatic systems, terrestrial ecosystems may undergo continual exposure to consistently high levels of legacy HFRs for a long period of time. Our findings collectively highlight the effectiveness of using peregrine eggs to monitor terrestrial exposure to HFRs and other bioaccumulative chemicals and the need for continuous monitoring of HFRs in terrestrial ecosystems.

11.
Ecol Appl ; 34(3): e2967, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38469663

RESUMEN

The future ecosystem carbon cycle has important implications for biosphere-climate feedback. The magnitude of future plant growth and carbon accumulation depends on plant strategies for nutrient uptake under the stresses of nitrogen (N) versus phosphorus (P) limitations. Two archetypal theories have been widely acknowledged in the literature to represent N and P limitations on ecosystem processes: Liebig's Law of the Minimum (LLM) and the Multiple Element Limitation (MEL) approach. LLM states that the more limiting nutrient controls plant growth, and commonly leads to predictions of dramatically dampened ecosystem carbon accumulation over the 21st century. Conversely, the MEL approach recognizes that plants possess multiple pathways to coordinate N and P availability and invest resources to alleviate N or P limitation. We implemented these two contrasting approaches in the E3SM model, and compiled 98 in situ forest N or P fertilization experiments to evaluate how terrestrial ecosystems will respond to N and P limitations. We find that MEL better captured the observed plant responses to nutrient perturbations globally, compared with LLM. Furthermore, LLM and MEL diverged dramatically in responses to elevated CO2 concentrations, leading to a two-fold difference in CO2 fertilization effects on Net Primary Productivity by the end of the 21st century. The larger CO2 fertilization effects indicated by MEL mainly resulted from plant mediation on N and P resource supplies through N2 fixation and phosphatase activities. This analysis provides quantitative evidence of how different N and P limitation strategies can diversely affect future carbon and nutrient dynamics.


Asunto(s)
Dióxido de Carbono , Ecosistema , Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Fósforo/análisis , Plantas , Carbono/metabolismo , Suelo
12.
Sci Total Environ ; 915: 170053, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38224891

RESUMEN

Investigations into the carbon cycle and how it responds to climate change at the national scale are important for a comprehensive understanding of terrestrial carbon cycle and global change issues. Contributions of carbon fluxes to the terrestrial sink and the effects on climate change are still not fully understood. In this study, we aimed to explore the relationship between ecosystem production (GPP/SIF/NDVI) and net ecosystem carbon exchange (NEE) and to investigate the sensitivity of carbon fluxes to climate change at different spatio-temporal scales. Furthermore, we sought to delve into the carbon cycle processes driven by climate stress in China since the beginning of the 21st century. To achieve these objectives, we employed correlation and sensitivity analysis techniques, utilizing a wide range of data sources including ground-based observations, remote sensing observations, atmospheric inversions, machine learning, and model simulations. Our findings indicate that NEE in most arid regions of China is primarily driven by ecosystem production. Climate variations have a greater influence on ecosystem production than respiration. Warming has negatively impacted ecosystem production in Northeast China, as well as in subtropical and tropical regions. Conversely, increased precipitation has strengthened the terrestrial carbon sink, particularly in the northern cool and dry areas. We also found that ecosystem respiration exhibits heightened sensitivity to warming in southern China. Moreover, our analysis revealed that the control of terrestrial carbon cycle by ecosystem production gradually weakens from cold/arid areas to warm/humid areas. We identified distinct temperature thresholds (ranging from 10.5 to 13.7 °C) and precipitation thresholds (approximately 1400 mm yr-1) for the transition from production-dominated to respiration-dominated processes. Our study provides valuable insights into the complex relationship between climate change and carbon cycle in China.

13.
Sci Total Environ ; 917: 170348, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38281647

RESUMEN

Terrestrial ecosystem carbon storage (TECS) could significantly affect the concentration of atmospheric CO2, which is critical for climate change prediction. Along these lines, the Integrated Valuation of Ecosystem Services and Trade-offs model was employed to determine the TECS of Hainan Island (HN) from 2015 to 2050 accurately. Besides, the Future Land-use Simulation model combined with natural and anthropogenic factors was used to forecast the land-use types from 2025 to 2050 in HN by considering different Shared-socioeconomic pathway-Rrepresentative concentration pathway (SSP-RCP) scenarios. Finally, the geographical detector explored the influence mechanism concerning the TECS. Under the SSP1-RCP1.9 scenario, the TECS of HN will be gradually increased to 388.10 million tons in 2050, mainly due to the increase in forest areas and the fact that the majority of grassland in the western part of HN is being converted into forest. Under different SSP-RCP scenarios except for SSP1-RCP1.9, HN's TECS is expected to gradually decrease from 2015 to 2050, mainly due to the loss of grassland and forest in coastal low-altitude areas. From the single/pair factor perspective influenced mechanism concerning the TECS, the elevation (DEM) and DEM∩Slope were found to be the dominant single/pair factor under the SSP1-RCP1.9, SSP1-RCP2.6 and SSP2-RCP4.5 scenarios. The least distance to residential area (LDP) and LDP∩LDR (i.e. LDP and least distance to roads or railways) were found to be the dominant factors under the SSP3-RCP7.0, SSP4-RCP3.4, SSP4-RCP6.0, SSP5-RCP3.4 and SSP5-RCP8.5 scenarios. Besides, the pair factors provided a higher determinant power for TECS than a single factor. Given the results of the TECS and the influence mechanism concerning the TECS under different SSP-RCP scenarios, we suggest reasonably planning the transportation network and limiting the disorderly expansion of construction land.

14.
Sci Total Environ ; 912: 168827, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38030014

RESUMEN

Plants, soils and microorganisms play important roles in maintaining stable terrestrial stoichiometry. Studying how nutrient balances of these biotic and abiotic players vary across temperature gradients is important when predicting ecosystem changes on a warming planet. The respective responses of plant, soil and microbial stoichiometric ratios to warming have been observed, however, whether and how the stoichiometric correlations among the three components shift under warming has not been clearly understood and identified. In the present study, we have performed a meta-analysis based on 600 case studies from 74 sites or locations to clarify whether and how warming affects plant, soil and microbial stoichiometry, respectively, and their correlations. Our results indicated that: (1) globally, plants had higher C:N and C:P values compared to soil and microbial pools, but their N:P distributions were similar; (2) warming did not significantly alter plant, soil and microbial C:N and C:P values, but had a noticeable effect on plant N:P ratios. When ecosystem types, duration and magnitude of warming were taken into account, there was an inconsistent and even inverse warming response in terms of the direction and magnitude of changes in the C:N:P ratios occurring among plants, soils and microorganisms; (3) despite various warming responses of the stoichiometric ratios detected separately for plants, soils and microorganisms, the stoichiometric correlations among all three parts remained constant even under different warming scenarios. Our study highlighted the complexity of the effect of warming on the C:N:P stoichiometry, as well as the absence and importance of simultaneous measurements of stoichiometric ratios across different components of terrestrial ecosystems, which should be urgently strengthened in future studies.


Asunto(s)
Ecosistema , Suelo , Temperatura , Plantas , Nutrientes , Microbiología del Suelo , Carbono , Nitrógeno/análisis
15.
Sci Total Environ ; 912: 169239, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38072275

RESUMEN

The ecosystem gross primary productivity (GPP) is crucial to land-atmosphere carbon exchanges, and changes in global GPP as well as its influencing factors have been well studied in recent years. However, identifying the spatio-temporal variations of global GPP under future climate changes is still a challenging issue. This study aims to develop data-driven approach for predicting the global GPP as well as its monthly and annual variations up to the year 2100 under changing climate. Specifically, Catboost was employed to examine the potential relationship between the GPP and environmental factors, with climate variables, CO2 concentration and terrain attributes being selected as environmental factors. The predicted monthly and annual GPP from Coupled Model Intercomparison Project phase 6 (CMIP6) under future SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios were analyzed. The results indicate that the global GPP is predicted to increase under the future climate change in the 21st century. The annual GPP is expected to be 115.122 Pg C, 116.537 Pg C, 117.626 Pg C, and 120.097 Pg C in 2100 under four future scenarios, and the predicted monthly GPP shows seasonal difference. Meanwhile, GPP tends to increase in the northern mid-high latitude regions and decrease in the equatorial regions. For the climate zones form Köppen-Geiger classification, the arid, cold, and polar zones present increased GPP, while GPP in the tropical zone will decrease in the future. Moreover, the high importance of climate variables in GPP prediction illustrates that the future climate change is the main driver of the global GPP dynamics. This study provides a basis for predicting how global GPP responds to future climate change in the coming decades, which contribute to understanding the interactions between vegetation and climate.

16.
Sci Total Environ ; 912: 169469, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38154650

RESUMEN

Soil is the source and sink of microplastics (MPs), which is more polluted than water and air. In this paper, the pollution levels of MPs in the agriculture, roadside, urban and landfill soils were reviewed, and the influence of MPs on soil ecosystem, including soil properties, microorganisms, animals and plants, was discussed. According to the results of in vivo and in vitro experiments, the possible risks of MPs to soil ecosystem and human health were predicted. Finally, in light of the current status of MPs research, several prospects are provided for future research directions to better evaluate the ecological risk and human health risk of MPs. MPs concentrations in global agricultural soils, roadside soils, urban soils and landfill soils had a great variance in different studies and locations. The participation of MPs has an impact on all aspects of terrestrial ecosystems. For soil properties, pH value, bulk density, pore space and evapotranspiration can be changed by MPs. For microorganisms, MPs can alter the diversity and abundance of microbiome, and different MPs have different effects on bacteria and fungi differently. For plants, MPs may interfere with their biochemical and physiological conditions and produce a wide range of toxic effects, such as inhibiting plant growth, delaying or reducing seed germination, reducing biological and fruit yield, and interfering with photosynthesis. For soil animals, MPs can affect their mobility, growth rate and reproductive capacity. At present epidemiological evidences regarding MPs exposure and negative human health effects are unavailable, but in vitro and in vivo data suggest that they pose various threats to human health, including respiratory system, digestive system, urinary system, endocrine system, nervous system, and circulation system. In conclusion, the existence and danger of MPs cannot be ignored and requires a global effort.


Asunto(s)
Microbiota , Suelo , Animales , Humanos , Ecosistema , Microplásticos , Plásticos , Agricultura
17.
J Environ Manage ; 345: 118869, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37690249

RESUMEN

The terrestrial ecosystem is the cradle of energy and material basis for human survival and development. However, there are large research deficits in accurately and finely depicting the quality of the terrestrial ecosystem (QTE) and assessing its changing triggers' contribution. Here, we summarized three major principles for selecting image sources in remote sensing data fusion. A continuous 30-m net vegetation productivity (NPP) dataset during 2000-2019 for the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) was derived by using the Carnegie-Ames-Stanford approach model and pre-fused normalized difference vegetation index. The factors' contributions to the QTE changes were quantitatively assessed. The role of the QTE in affecting the socio-economic and its behind mechanisms was quantitatively investigated. The results showed that: (1) High-quality images sources are the preference for spatio-temporal fusion of remote sensing data. Images with close month, the same season and year, and sensors should be then selected. Images of different sensors with similar spectral bandwidth, the ones from adjacent years and seasons, can be alternately considered. (2) Fine-resolution NPP has higher accuracy than coarse-resolution NPP and has marked advantages in finely characterizing the QTE. In the past 20 years, the QTE in the GBA has shown a fluctuating increasing trend (0.20 Tg C/yr). (3) Human activities contributed 54.19% of the QTE changes in the GBA, and dominates the QTE changes in the central rapidly urbanizing areas. Residual factors accounted for an overall contribution ratio of 35.71%. Climate change dominants the peripheral forest variations in the GBA. (4) In the GBA, the improvement of QTE has a significant positive socio-economic impact, it contributes to the GDP increment firstly then the GDP aggregate indirectly. Our results highlight that it is of great urgent to estimate long-term continuous NPP with high spatio-temporal resolution globally. Controlling strategies should be implemented to reduce factitious impacts on QTE. High level of ecological and environmental protection promotes the sustainable development.


Asunto(s)
Ecosistema , Bosques , Humanos , Cambio Climático , Hong Kong , Factores Socioeconómicos
19.
Huan Jing Ke Xue ; 44(8): 4655-4665, 2023 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-37694658

RESUMEN

Land use/cover change (LUCC) is the main factor leading to the change in carbon stock of terrestrial ecosystems. Studying the process of land use and carbon storage change under different scenarios in the future will help to formulate scientific land use policies and increase regional terrestrial ecosystem carbon storage. The GMMOP-PLUS-InVEST model was constructed to analyze the change characteristics of land use and carbon storage in northwest China from 2000 to 2020 through multi-source data and to predict the land use and carbon storage in northwest China in 2030 under the scenarios of natural development (ND), economic development (ED), ecological protection (EP), and comprehensive development (CD). The results showed that:①from 2000 to 2020, the area of grassland decreased by 1680.99×104 hm2, and the area of cultivated land, forest land, water area, wetland, construction land, and unused land increased by 201.19×104, 208.47×104, 91.54×104, 51.30×104, 157.40×104, and 971.09×104 hm2, respectively. ②From 2000 to 2020, soil and underground carbon storage decreased, dead organic matter and aboveground carbon storage increased, and total carbon storage decreased by 677.97×106 t. Grassland degradation was the main reason for the decrease in carbon storage. ③Compared to that in 2020, the total carbon storage in the ND scenario was reduced by 63.12×106 t, and the total carbon storage in the ED, EP, and CD scenarios increased by 759.19×106, 804.57×106, and 817.89×106 t, respectively; the CD scenario was the optimal development model. These results can provide a reference for regional land use planning and the increase of terrestrial ecosystem carbon storage.

20.
Glob Chang Biol ; 29(15): 4440-4452, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37303068

RESUMEN

Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.


Asunto(s)
Clima , Ecosistema , Humanos , Fenómenos Fisiológicos de las Plantas , Programas Informáticos , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...