Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998972

RESUMEN

Heterocyclic compounds, particularly those containing azole rings, have shown extensive biological activity, including anticancer, antibacterial, and antifungal properties. Among these, the imidazole ring stands out due to its diverse therapeutic potential. In the presented study, we designed and synthesized a series of imidazole derivatives to identify compounds with high biological potential. We focused on two groups: thiosemicarbazide derivatives and hydrazone derivatives. We synthesized these compounds using conventional methods and confirmed their structures via nuclear magnetic resonance spectroscopy (NMR), MS, and elemental analysis, and then assessed their antibacterial and antifungal activities in vitro using the broth microdilution method against Gram-positive and Gram-negative bacteria, as well as Candida spp. strains. Our results showed that thiosemicarbazide derivatives exhibited varied activity against Gram-positive bacteria, with MIC values ranging from 31.25 to 1000 µg/mL. The hydrazone derivatives, however, did not display significant antibacterial activity. These findings suggest that structural modifications can significantly influence the antimicrobial efficacy of imidazole derivatives, highlighting the potential of thiosemicarbazide derivatives as promising candidates for further development in antibacterial therapies. Additionally, the cytotoxic activity against four cancer cell lines was evaluated. Two derivatives of hydrazide-hydrazone showed moderate anticancer activity.


Asunto(s)
Antibacterianos , Antifúngicos , Antineoplásicos , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Humanos , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Bacterias Grampositivas/efectos de los fármacos , Nitroimidazoles/farmacología , Nitroimidazoles/química , Nitroimidazoles/síntesis química , Línea Celular Tumoral , Bacterias Gramnegativas/efectos de los fármacos , Relación Estructura-Actividad , Semicarbacidas/química , Semicarbacidas/farmacología , Semicarbacidas/síntesis química , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química , Candida/efectos de los fármacos , Estructura Molecular
2.
Int J Biol Macromol ; 272(Pt 2): 132690, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825270

RESUMEN

A rising quantity of drugs has been discharged into the aquatic environment, posing a substantial hazard to public health. In the current work, a novel hydrogel (i.Carr@Bent@PTC), comprised of iota-carrageenan, bentonite, and 4-phenyl-3-thiosemicarbazide, was successfully prepared. The introduction of 4-phenyl-3-thiosemicarbazide and bentonite in iota-carrageenan significantly increased the mechanical strength of iota-carrageenan hydrogel and improved its degree of swelling, which can be attributed to the hydrophilic properties of PTC and Bent. The recorded contact angle was 70.8°, 59.1°, 53.9°, and 34.6° for pristine i.Carr, i.Carr@Bent, and i.Carr@Bent@PTC, respectively. The low contact angle measurement of the Bent and PTC loaded-i.Carr hydrogel was attributed to the hydrophilic Bent and PTC. The ternary i.Carr@Bent@PTC hydrogel demonstrated broad pH adaptability and excellent adsorption capacities for sulfamethoxazole (SMX) and losartan potassium (LP), i.e., 467.61 mg. g-1 and 274.43 mg. g-1 at 298.15 K, respectively. The pseudo-first-order (PSO) model provided a better fit for the adsorption kinetics. The adsorption of SMX and LP can be better explained by employing the Sips and Langmuir isotherm models. As revealed by XPS and FTIR investigations, π-π stacking, complexation, electrostatic interaction, and hydrogen bonding were primarily involved in the adsorption mechanisms.


Asunto(s)
Bentonita , Carragenina , Hidrogeles , Losartán , Semicarbacidas , Sulfametoxazol , Contaminantes Químicos del Agua , Carragenina/química , Adsorción , Semicarbacidas/química , Losartán/química , Hidrogeles/química , Bentonita/química , Contaminantes Químicos del Agua/química , Sulfametoxazol/química , Concentración de Iones de Hidrógeno , Cinética , Purificación del Agua/métodos , Interacciones Hidrofóbicas e Hidrofílicas
3.
Bioorg Chem ; 150: 107511, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38870705

RESUMEN

Tuberculosis is a global serious problem that imposes major health, economic and social challenges worldwide. The search for new antitubercular drugs is extremely important which could be achieved via inhibition of different druggable targets. Mycobacterium tuberculosis enoyl acyl carrier protein reductase (InhA) enzyme is essential for the survival of M. tuberculosis. In this investigation, a series of coumarin based thiazole derivatives was synthesized relying on a molecular hybridization approach and was assessed against thewild typeMtb H37Rv and its mutant strain (ΔkatG) via inhibiting InhA enzyme. Among the synthesized derivatives, compounds 2b, 3i and 3j were the most potent against wild type M. tuberculosis with MIC values ranging from 6 to 8 µg/ mL and displayed low cytotoxicity towards mouse fibroblasts at concentrations 8-13 times higher than the MIC values. The three hybrids could also inhibit the growth of ΔkatGmutant strain which is resistant to isoniazid (INH). Compounds 2b and 3j were able to inhibit the growth of mycobacteria inside human macrophages, indicating their ability to penetrate human professional phagocytes. The two derivatives significantly suppress mycobacterial biofilm formation by 10-15 %. The promising target compounds were also assessed for their inhibitory effect against InhA and showed potent effectiveness with IC50 values of 0.737 and 1.494 µM, respectively. Molecular docking studies revealed that the tested compounds occupied the active site of InhA in contact with the NAD+ molecule. The 4-phenylcoumarin aromatic system showed binding interactions within the hydrophobic pocket of the active site. Furthermore, H-bond formation and π -π stacking interactions were also recorded for the promising derivatives.


Asunto(s)
Antituberculosos , Proteínas Bacterianas , Cumarinas , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Oxidorreductasas , Tiazoles , Cumarinas/farmacología , Cumarinas/química , Cumarinas/síntesis química , Antituberculosos/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Tiazoles/farmacología , Tiazoles/química , Tiazoles/síntesis química , Relación Estructura-Actividad , Humanos , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Estructura Molecular , Animales , Ratones , Relación Dosis-Respuesta a Droga , Modelos Moleculares , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química
4.
Eur J Med Chem ; 275: 116595, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38875808

RESUMEN

In the quest for potent α-glucosidase inhibitors to combat diabetes, a series of novel thiosemicarbazide-based ß-carboline derivatives (CTL1∼36) were synthesized and evaluated. CTL1∼36 exhibited remarkable inhibitory effects against α-glucosidase, with IC50 values ranging from 2.81 to 12.40 µM, significantly surpassing the positive control acarbose (IC50 = 564.28 µM). Notably, CTL26 demonstrated the most potent inhibition (IC50 = 2.81 µM) and was characterized as a non-competitive inhibitor. Through a combination assay with fluorescence quenching, 3D fluorescence spectra, CD spectra, and molecular docking, we elucidated that CTL26 formed a complex with α-glucosidase via hydrogen bondings and hydrophobic interactions, leading to α-glucosidase conformation changes that impaired enzymatic activity. In vivo studies revealed that oral administration of CTL26 (25 and 50 mg/kg/d) reduced fasting blood glucose levels, enhanced glucose tolerance, and ameliorated lipid abnormalities in diabetic mice. These findings positioned CTL26 as a promising candidate for the development of α-glucosidase inhibitors with anti-diabetic potential.


Asunto(s)
Carbolinas , Diabetes Mellitus Experimental , Inhibidores de Glicósido Hidrolasas , Semicarbacidas , alfa-Glucosidasas , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Animales , alfa-Glucosidasas/metabolismo , Carbolinas/farmacología , Carbolinas/química , Carbolinas/síntesis química , Semicarbacidas/farmacología , Semicarbacidas/química , Semicarbacidas/síntesis química , Ratones , Relación Estructura-Actividad , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Estructura Molecular , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga , Masculino , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Glucemia/análisis , Humanos
5.
Artículo en Inglés | MEDLINE | ID: mdl-38741543

RESUMEN

Thiosemicarbazide was used as a key starting material for the building of a diversity of novel heterocyclic moieties. The heterocyclization reaction of thiosemicarbazide derivatives with carbon disulfide in basic conditions afforded novel heterocyclic 1,3,4-thiadiazolethiolate derivatives. 1,3,4-thiadiazole-2-thiol was successfully reacted with protected α-D-gluco- and galacto-pyranosyl bromides in dimethylformamide at room temperature to give the matching 1,3,4-thiadiazole S-glycosides in good yields. The latter compounds were reacted with ammonia-methanol at room temperature for 10 min, and the deprotected derivatives were obtained in good yields. The newly synthesized compounds were characterized by basic analyses and spectral information (IR,1H NMR, and 13C NMR, X-ray). All newly produced compounds were evaluated and screened for their antibacterial activities. Compound 6f proved to be the most active antimicrobial among the investigated heterocycles.

6.
BMC Chem ; 18(1): 102, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773663

RESUMEN

BACKGROUND: Carbazole-based molecules containing thiosemicarbazide functional groups are recognized for their diverse biological activities, particularly in enhancing therapeutic anticancer effects through inhibiting crucial pathways. These derivatives also exhibit noteworthy antioxidant properties. OBJECTIVES: This study aims to synthesize, characterize, and evaluate the antioxidant and anticancer activities of 18 novel carbazole derivatives. METHODS: The radical scavenging capabilities of the compounds were assessed using the 2,2-diphenyl-1-picrylhydrazyl assay. Antiproliferative activities were evaluated on MCF-7 cancer cell lines through viability assays. Additionally, the modulation of the PI3K/Akt/mTOR pathway, apoptosis/necrosis induction, and cell cycle analysis were conducted for the most promising anticancer agents. RESULTS: nine compounds showed potent antioxidant activities with IC50 values lower than the positive control acarbose, with compounds 4 h and 4y exhibiting the highest potency (IC50 values of 0.73 and 0.38 µM, respectively). Furthermore, compounds 4o and 4r displayed significant anticancer effects, with IC50 values of 2.02 and 4.99 µM, respectively. Compound 4o, in particular, exhibited promising activity by targeting the PI3K/Akt/mTOR signaling pathway, inhibiting tumor survival, inducing apoptosis, and causing cell cycle arrest in MCF-7 cell lines. Furthermore, compound 4o was showed significant antimicrobial activities against S. aureus and E. coli, and antifungal effect against C. albicans. Its potential to overcome drug resistance through this pathway inhibition highlights its promise as an anticancer agent. Molecular docking simulations supported these findings, revealing favorable binding profiles and interactions within the active sites of the enzymes PI3K, AKT1, and mTOR. Moreover, assessing the druggability of the newly synthesized thiosemicarbazide derivatives demonstrated optimal physicochemical properties, further endorsing their potential as drug candidates.

7.
Arch Biochem Biophys ; 755: 109955, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460659

RESUMEN

In this study, eighteen new ligands (B1-B18) containing a thiosemicarbazide core were synthesized and characterized in terms of physicochemical properties, molecular docking and in vitro biological activity. The structures of eleven ligands were investigated using X-Ray diffraction and Hirschfeld Surface analysis. To study the structure-activity relationship, the organic ligands contained pyridin-2-ylmethyl, pyridin-3-ylmethyl or pyridin-4-ylmethyl moieties and various substituents. Their pharmakokinetic profiles and molecular docking results suggest high potential as new drug candidates. The complexing ability of the selected organic ligands was also evaluated, yielding five new Cu(II) complexes (Cu(B1)Cl2, Cu(B4)Cl2, Cu(B10)Cl2, Cu(B17)Cl2, Cu(B18)Cl2). The obtained results suggest the formation of the polymeric structures. All organic ligands and Cu(II) complexes were tested for anticancer activity against prostate and melanoma cancer cells (PC-3, DU-145, LNCaP, A375, G-361, SK-MEL-28) and normal fibroblasts (BJ), as well as antimicrobial activity against six selected bateria strains. Among B1-B18 compounds, B3, B5, B9, B10, B12 and B14 exhibited cytotoxic activity. The studied Cu(II) complexes were in general more active, with Cu(B1)Cl2 exhibiting antincancer activity agains all three prostate cancer cells and Cu(B10)Cl2 reaching the IC50 value equal to 88 µM against G-361 melanoma cells. Several compounds also exhibited antimicrobial activity against gram-positive and gram-negative bacteria. It was found that the type of specific substituents, especially the presence of -chloro and -dichloro substituents had a greated impact on the cytotoxicity than the position of the nitrogen atom in the pyridylacetyl moiety.

8.
Molecules ; 29(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542968

RESUMEN

The search for new antibacterial compounds is still a huge challenge for scientists. Each new chemotherapy drug is not 100% effective when introduced into treatment. Bacteria quickly become resistant to known structures. One promising group of new compounds is thiosemicarbazides. In the presented work, we looked for the relationship between structure and antibacterial activity within the group of thiosemicarbazide derivatives. This is a continuation of our previous work. Here, we decided to check to what extent the position of the 3-methoxyphenyl substituent affects potency. We obtained new structures that differ in the positions of the substituent in the thiosemicarbazide skeleton. Based on the obtained results of the biological tests, it can be concluded that the substituent in position 1 of thiosemicarbazide derivatives significantly determines their activity. Generally, among the substituents used, trifluoromethylphenyl turned out to be the most promising. The MIC values for compounds with this substituent are 64 µg/mL towards Staphylococci sp. Using molecular docking, we tried to explain the mechanism behind the antibacterial activity of the tested compounds.


Asunto(s)
Antibacterianos , Semicarbacidas , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Semicarbacidas/farmacología , Semicarbacidas/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular
9.
Int J Biol Macromol ; 263(Pt 1): 130255, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368988

RESUMEN

Developing an efficient adsorbent for Ru3+ ions in wastewater is crucial for both environmental protection and resource recovery. This study introduces a novel approach using cellulose-based adsorbents, specifically modified with furan-thiosemicarbazide (FTC), to enhance their selectivity for Ru3+ ions. By cross-linking the Ru3+/FTC-modified cellulose (FTC-CE) complex with a bis(maleimido)ethane (BME) cross-linker, we created a Ru3+ ion-imprinted sorbent (Ru-II-CE) that exhibits a strong affinity and selectivity for Ru3+ ions. The synthesis process was thoroughly characterized using NMR and FTIR spectroscopy, while the surface morphology of the sorbent particles was examined with scanning electron microscopy. The Ru-II-CE sorbent demonstrated exceptional selectivity for Ru3+ among competing metal cations, achieving optimal adsorption at a pH of 5. Its adsorption capacity was notably high at 215 mg/g, fitting well with the Langmuir isotherm model, and it followed pseudo-second-order kinetics. This study highlights the potential of FTC-CE for targeted Ru3+ removal from wastewater, offering a promising solution for heavy metal decontamination.


Asunto(s)
Rutenio , Semicarbacidas , Contaminantes Químicos del Agua , Aguas Residuales , Celulosa/química , Iones , Adsorción , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química , Cinética
10.
Sci Rep ; 14(1): 3809, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360831

RESUMEN

The high mortality rate of colon cancer indicates the insufficient efficacy of current chemotherapy. Thus, the discussion on engineered metal nanoparticles in the treatment of the disease has been considered. In this study, silver nanoparticles were functionalized with glutamine and conjugated with thiosemiccarbazide. Then, anticancer mechanism of Ag@Gln-TSC NPs in a colon cancer cell line (SW480) was investigated. Characterizing Ag@Gln-TSC NPs by FT-IR, XRD, EDS-mapping, DLS, zeta potential, and SEM and TEM microscopy revealed that the Ag@Gln-TSC NPs were correctly synthesized, the particles were spherical, with surface charge of - 27.3 mV, high thermal stability and low agglomeration level. Using MTT assay we found that Ag@Gln-TSC NPs were significantly more toxic for colon cancer cells than normal fibroblast cells with IC50 of 88 and 186 µg/mL, respectively. Flow cytometry analysis showed that treating colon cancer cells with Ag@Gln-TSC NPs leads to a considerable increase in the frequency of apoptotic cells (85.9% of the cells) and increased cell cycle arrest at the S phase. Also, several apoptotic features, including hyperactivity of caspase-3 (5.15 folds), increased expression of CASP8 gene (3.8 folds), and apoptotic nuclear alterations were noticed in the nanoparticle treated cells. Furthermore, treating colon cancer cells with Ag@Gln-TSC NPs caused significant down-regulation of the HULC Lnc-RNA and PPFIA4 oncogene by 0.3 and 0.6 folds, respectively. Overall, this work showed that Ag@Gln-TSC NPs can effectively inhibit colon cancer cells through the activation of apoptotic pathways, a feature that can be considered more in studies in the field of colon cancer treatment.


Asunto(s)
Neoplasias del Colon , Nanopartículas del Metal , Semicarbacidas , Humanos , Plata/farmacología , Glutamina , Espectroscopía Infrarroja por Transformada de Fourier , Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Línea Celular Tumoral
11.
Heliyon ; 10(4): e25951, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38390191

RESUMEN

A thiosemicarbazide derivative as (E)-4-ethyl-1-(1-(naphthalen-1-yl) ethylidene) thiosemicarbazide (HAN) was synthesized then characterized to prepare [Co(HAN)Cl2·(H2O)2], [Ni(HAN)Cl2·(H2O)2]. H2O, and [Cd(HAN)Cl2] complexes. According to spectral and analytical data we could confirm the neutral bidentate mode of bonding via (C]S) and (C]N) groups to form 1:1 M ratio within the three complexes. The octahedral geometry was suggested for Co(II) and Ni(II) complexes according to electronic transitions assigned to 4T1g → 4T1g(P)(ʋ2) and 4T1g → 4A2g(F)(ʋ3) and 3A2g → 3T1g(P,υ3) and 3A2g → 3T1g(F,υ2), respectively. The values of nephelauetic ratio (ß) in the ligand field parameters detect the ionic nature of new M-L bonds. The molecular ion peaks appeared in the mass spectra of two selected complexes confirming their molecular formulae. The conductometric study was performed for Cd(II) ion solution during variable additions of HAN to calculate association and formation constant of Cd(II)-HAN complex. DFT/B3LYP method was used to optimize the structures of the compounds and confirm the binding mode of the ligand. The distribution of C(5) = N(17) and C(13) = S(19) groups asserts their priority in coordination. Hirshfeld crystal properties were obtained via normalized contact distance (dnorm) and shape index in which the nitrogen atoms act as the best contact points in crystal packing. The biological screening was carried out against microbial strains as well as methyl green/DNA test. In vitro, the superiority of the ligand was clearly recorded in its biological effectiveness. In silico methods were implemented to confirm the activity of the ligand and to recognize the interaction features. The bioavailability, pharmacokinetics and drug-likeness were evaluated via Swiss-link. The data detect the ability of the ligand to penetrate barrier of brain (BBB) but not absorbed in gastrointestinal tract. Pharmit link and molecular docking were utilized to investigate the interaction of HAN with 1bna, 425d and 2k4l proteins. The best intercalation with protein pockets was observed with 2k4l protein, and searching the MolPort library detects a drug analog of MolPort-002-894-701. Finally, the results suggest the biological efficiency of the ligand, which may be asserted by specialists through intensive in-vivo studies.

12.
Molecules ; 29(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257358

RESUMEN

A new class of benzimidazole-based derivatives (4a-j, 5, and 6) with potential dual inhibition of EGFR and BRAFV600E has been developed. The newly synthesized compounds were submitted for testing for antiproliferative activity against the NCI-60 cell line. All newly synthesized compounds 4a-j, 5, and 6 were selected for testing against a panel of sixty cancer cell lines at a single concentration of 10 µM. Some compounds tested demonstrated remarkable antiproliferative activity against the cell lines tested. Compounds 4c, 4e, and 4g were chosen for five-dose testing against 60 human tumor cell lines. Compound 4c demonstrated strong selectivity against the leukemia subpanel, with a selectivity ratio of 5.96 at the GI50 level. The most effective in vitro anti-cancer assay derivatives (4c, 4d, 4e, 4g, and 4h) were tested for EGFR and BRAFV600E inhibition as potential targets for antiproliferative action. The results revealed that compounds 4c and 4e have significant antiproliferative activity as dual EGFR/BRAFV600E inhibitors. Compounds 4c and 4e induced apoptosis by increasing caspase-3, caspase-8, and Bax levels while decreasing the anti-apoptotic Bcl2 protein. Moreover, molecular docking studies confirmed the potential of compounds 4c and 4e to act as dual EGFR/BRAFV600E inhibitors.


Asunto(s)
Antineoplásicos , Proteínas Proto-Oncogénicas B-raf , Humanos , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas B-raf/genética , Antineoplásicos/farmacología , Antinematodos , Línea Celular Tumoral , Bencimidazoles/farmacología , Receptores ErbB
13.
Food Chem ; 439: 138156, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064828

RESUMEN

The paper presents a new analytical procedure for the determination and speciation of trace and ultratrace selenium in water, beverages, seafood, milk, and vegetables. The developed method is based on the dispersive micro-solid phase extraction with the use of new thiosemicarbazide-incorporated graphene as a solid sorbent, in combination of the total-reflection X-ray fluorescence spectrometry (TXRF). As a result, we have created an auspicious analytical tool for fast and sensitive analysis of samples with a complex matrix. Regardless of the specimen type, the method is characterized by a very low detection limit of 1.7 pg mL-1 and high precision. The developed strategy allowed us to solve common problems associated with selenium loss during the sample preparation for the TXRF measurement and also improve its performance toward the analysis of beverages and high saline/solid samples, which may even be impossible to perform using standard sample preparation procedures for a TXRF measurement.


Asunto(s)
Grafito , Selenio , Agua , Selenio/análisis , Grafito/química , Espectrometría por Rayos X/métodos , Bebidas/análisis
14.
Leg Med (Tokyo) ; 66: 102370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142489

RESUMEN

BACKGROUND: We encountered a urine sample suspected of being mixed with tea, submitted by a suspect attempting to camouflage illegal drugs. Although urine should turn reddish-pink during a urea test with p-Dimethylaminocinnamaldehyde (DAC), this suspect's sample exhibited a blue coloration when tested with DAC. AIM: Our aim was to examine the influence and mechanism of green tea on various urine identification tests. RESULTS: Our examination revealed that DAC forms a compound with the urea in urine, resulting in a reddish pink coloration with a molecular weight of 217. However, it has been reported that DAC binds to polyphenols such as catechin. In the case of catechin, DAC binds to the C8 position, forming a compound that exhibits the highest absorption at 640 nm and appears blue. we investigated the effect of urine from volunteers who had consumed a large amount of catechin on the urea test with DAC. Additionally, we carried out quantitative analysis of catechin in urine by LC-MS/MS after enzymatic treatment with ß-glucuronidase. The concentration of urinary excreted catechin reached its peak approximately 3 to 4 h after ingestion. During the DAC test, urine samples collected 3 to 4 h after catechin ingestion displayed a bluish pink color, but not the blue color observed in the original suspect sample. CONCLUSION: This study investigated the impact of catechin on urine tests, revealing that a blue color in the DAC test indicates a high likelihood of camouflage by the suspect.


Asunto(s)
Catequina , Humanos , Catequina/metabolismo , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem , , Urea
15.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139832

RESUMEN

A series of N-Substituted 2-(benzenosulfonyl)-1-carbotioamide derivatives (WZ1-WZ4) were synthesized and characterized using spectral methods. A comprehensive activity study was performed for each compound. All compounds were tested for antibacterial activity. Moreover, in silico studies were carried out to determine the anticancer potential of the designed WZ1-WZ4 ligands. Based on molecular docking, aldehyde dehydrogenase was selected as a molecular target. The obtained data were compared with experimental data in vitro tests. Novel hybrids of the thiosemicarbazide scaffold and sulfonyl groups may have promising anticancer activity via the aldehyde dehydrogenase pathway. The best candidate for further studies appears to be WZ2, due to its superior selectivity in comparison to the other tested compounds.

16.
Molecules ; 28(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894587

RESUMEN

Chromatographic methods, apart from in silico ones, are commonly used rapid techniques for the evaluation of certain properties of biologically active compounds used for their prediction of pharmacokinetic processes. Thiosemicarbazides are compounds possessing anticancer, antimicrobial, and other valuable biological activities. The aim of the investigation was to estimate the lipophilicity of 1-aryl-4-(phenoxy)acetylthiosemicarbazides, to predict their oral adsorption and the assessment of their % plasma-protein binding (%PPB). RP-HPLC chromatographic techniques with five diversified HPLC systems, including columns with surface-bonded octadecylsilanes (C-18), phosphatidylcholine (immobilized artificial membrane, IAM), cholesterol (Chol), and α1-acid glycoprotein (AGP) and human serum albumin (HSA), were applied. The measured lipophilicity of all investigated compounds was within the range recommended for potential drug candidates. However, some derivatives are strongly bonded to HSA (%PPB ≈ 100%), which may limit some pharmacokinetic processes. HPLC determined lipophilicity descriptors were compared with those obtained by various computational approaches.


Asunto(s)
Biomimética , Proteínas Sanguíneas , Humanos , Biomimética/métodos , Proteínas Sanguíneas/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Semicarbacidas , Membranas Artificiales
17.
Arch Pharm (Weinheim) ; 356(12): e2300370, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743251

RESUMEN

A series of carvacrol-based thiosemicarbazide (3a-e) and 1,3,4-thiadiazole-2-amine (4a-e) were designed and synthesized for the first time. The structures were characterized by nuclear magnetic resonance and high resolution mass spectroscopy techniques. All compounds were examined for some metabolic enzyme activities. Results indicated that all the synthetic molecules exhibited powerful inhibitory actions against human carbonic anhydrase I and II (hCAI and II), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes compared to the standard molecules. Ki values of five novel thiosemicarbazides and five new 1,3,4-thiadiazole-2-amine derivatives (3a-e and 4a-e) for hCA I, hCA II, AChE, and BChE enzymes were obtained in the ranges 0.73-21.60, 0.42-15.08 µM, 3.48-81.48, 92.61-211.40 nM, respectively. After the experimental undertaking, an extensive molecular docking analysis was conducted to scrutinize the intricate details of interactions between the ligand and the enzyme in question. The principal focus of this investigation was to appraise the potency and efficacy of the most active compound. In this context, the calculated docking scores were noted to be remarkably low, with values of -8.65, -7.97, -8.92, and -8.32 kcal/mol being recorded for hCA I, hCA II, AChE, and BChE, respectively. These observations suggest a high affinity and specificity of the studied compounds toward the enzymes, as mentioned earlier, which may pave the way for novel therapeutic interventions aimed at modulating the activity of these enzymes.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Humanos , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Inhibidores de Anhidrasa Carbónica/farmacología , Aminas , Estructura Molecular
18.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513926

RESUMEN

2,3,4-trisubstituted thiazoles 3a-i, having a methyl group in position four, were synthesized by the reaction of 1,4-disubstituted thiosemicarbazides with chloroacetone in ethyl acetate/Et3N at room temperature or in ethanol under reflux. The structures of new compounds were determined using NMR spectroscopy, mass spectrometry, and elemental analyses. Moreover, the structure of compound 3a was unambiguously confirmed with X-ray analysis. The cell viability assay of 3a-i at 50 µM was greater than 87%, and none of the tested substances were cytotoxic. Compounds 3a-i demonstrated good antiproliferative activity, with GI50 values ranging from 37 to 86 nM against the four tested human cancer cell lines, compared to the reference erlotinib, which had a GI50 value of 33 nM. The most potent derivatives were found to be compounds 3a, 3c, 3d, and 3f, with GI50 values ranging from 37 nM to 54 nM. The EGFR-TK and BRAFV600E inhibitory assays' results matched the antiproliferative assay's results, with the most potent derivatives, as antiproliferative agents, also being the most potent EGFR and BRAFV600E inhibitors. The docking computations were employed to investigate the docking modes and scores of compounds 3a, 3c, 3d, and 3f toward BRAFV600E and EGFR. Docking computations demonstrated the good affinity of compound 3f against BRAFV600E and EGFR, with values of -8.7 and -8.5 kcal/mol, respectively.

19.
Med Chem Res ; 32(6): 1063-1076, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305208

RESUMEN

Emerging and re-emerging illnesses will probably present a new hazard of infectious diseases and have fostered the urge to research new antiviral agents. Most of the antiviral agents are analogs of nucleosides and only a few are non-nucleoside antiviral agents. There is quite a less percentage of marketed/clinically approved non-nucleoside antiviral medications. Schiff bases are organic compounds that possess a well-demonstrated profile against cancer, viruses, fungus, and bacteria, as well as in the management of diabetes, chemotherapy-resistant cases, and malarial infections. Schiff bases resemble aldehydes or ketones with an imine/azomethine group instead of a carbonyl ring. Schiff bases have a broad application profile not only in therapeutics/medicine but also in industrial applications. Researchers have synthesized and screened various Schiff base analogs for their antiviral potential. Some of the important heterocyclic compounds like istatin, thiosemicarbazide, quinazoline, quinoyl acetohydrazide, etc. have been used to derive novel Schiff base analogs. Keeping in view the outbreak of viral pandemics and epidemics, this manuscript compiles a review of Schiff base analogs concerning their antiviral properties and structural-activity relationship analysis.

20.
Heliyon ; 9(6): e16222, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292281

RESUMEN

The thiosemicarbazones and their derivatives have been recognized as antimicrobial agents against human pathogenic bacteria and fungi. Regarding these prospective, this study was designed to address the new antimicrobial agents from thiosemicarbazones and their derivatives. These derivatives were synthesized by multi-step synthesis methods, such as alkylation, acidification, esterification, and formed the 4-(4'-alkoxybenzoyloxy) thiosemicarbazones and its derivatives (THS1, THS2, THS3, THS4, and THS5). Afterward the synthesis, compounds were characterized by 1H NMR, FTIR spectra, and melting point. Later, the computational tools were applied to evaluate the drug likeness properties, bioavailability score, Lipinski rule, absorption, distribution, metabolism, excretion, and toxicity (ADMET). Secondly, the quantum calculations, for instance HOMO, LUMO and chemical descriptors, were calculated by the density functional theory (DFT). Finally, the molecular docking was performed against seven human pathogenic bacteria, black fungus (Rhizomucor mieh, Mucor lusitanicus, Mycolicibacterium smegmatis) and white fungus strains (Candida Auris, Aspergillus luchuensis, Candida albicans). To check and validate of molecular docking procedure and stability of docked complex for ligand and protein, the molecular dynamic was performed of docked complex. From the docking score with calculating the binding affinity, these derivatives could show a higher affinity than standard drug against all pathogens. From the computational details, it could be decided to do in-vitro test as antimicrobial activity against Staphylococcus aurious, Staphylococcus homonis, Salmonella typhi, and Shigella flexneria. The obtained result of antibacterial activity compared to standard drugs, and it was found that the synthesized compounds were almost same value of standard drug. Finally, it could be said from the in-vitro and in-silico study that the thiosemicarbazones derivatives are good antimicrobial agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...