Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.214
Filtrar
1.
Angew Chem Int Ed Engl ; : e202414360, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353849

RESUMEN

Tin-oxo clusters are increasingly recognized as promising materials for nanolithography technology due to their unique properties, yet their structural impacts on lithography performance remain underexplored. This work explores the structural impacts of heterometal strategies on the performance of tin-oxo clusters in nanolithography, focusing on various metal dopants and their coordination geometries. Specifically, SnOC-1(In), SnOC-1(Al), SnOC-1(Fe), and SnOC-2 were synthesized and characterized. These clusters demonstrate excellent solubility, dispersibility, and stability, facilitating the preparation of high-quality films via spin-coating for lithographic applications. Notably, this work innovatively employs nano-infrared (nano-IR), neutron reflectivity (NR), and X-ray reflectivity (XRR) measurements to confirm film homogeneity. Upon electron beam lithography (EBL), all four materials achieve 50 nm line patterns, with SnOC-1(In) demonstrating the highest lithography sensitivity. This enhanced sensitivity is attributed to indium dopants, which possess superior EUV absorption capabilities and unsaturated coordination environments. Further studies on exposure mechanisms indicated that Sn-C bond cleavage generates butyl free radicals, promoting network formations that induce solubility-switching behaviors for lithography. These findings underscore the efficacy of tailored structural design and modulation of cluster materials through heterometal strategies in enhancing lithography performance, offering valuable insights for future material design and applications.

2.
Mar Pollut Bull ; 208: 117055, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366062

RESUMEN

After tin and mercury salts were added to estuarine microbial mats increasing amounts of methyltin and methylmercury, respectively, were formed over a 30 to 100 hour time period. Inhibition of the methylation by molybdate, a metabolic inhibitor of sulfate reduction, stimulation by pyruvate addition and lack of methylation by sterilized mats, were evidence that sulfate reducing bacteria within the mats were responsible for the tin and mercury methylation. Methyl mercury was formed from mercuric chloride and mercuric cysteine, but not from mercuric sulfide. We suggest that mercury bound to organic complexes in anoxic sediments is likely methylated by microbial mats. Since estuarine meiofauna and macrofauna fed on microbial mats, the methylmercury and methyltin formed by microbial mats could be an important avenue for the entrance of these compounds into the marine food web.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39367821

RESUMEN

Magnesium-ion batteries (MIBs) are a "beyond Li-ion" technology that are hampered by Mg metal reactivity, which motivates the development of anode materials such as tin (Sn) with high theoretical capacity (903 mAh g-1). However, pure Sn is inactive for Mg2+ storage. Herein, Mg alloying with Sn is enabled within dual-phase Bi-Sn anodes, where the optimal composition (Bi66.5Sn33.5) outperformed single-phase Bi and Sn electrodes to deliver high specific capacity (462 mAh g-1 at 100 mA g-1), good cycle life (84% after 200 cycles), and significantly improved rate capability (403 mAh g-1 at 1000 mA g-1). Density functional theory (DFT) calculations revealed that Mg alloys first with Bi and the subsequent formation of the Mg3Bi2//Sn interfaces is energetically more favorable compared to the individual Mg3Bi2 and Sn phases. Mg insertion into Sn is facilitated when Mg3Bi2 is present. Moreover, dealloying Mg from Mg3Bi2:Mg2Sn systems requires the creation of Mg vacancies and subsequent Mg diffusion. Mg vacancy creation is easier for Mg2Sn compared to Mg3Bi2, while the latter has slightly lower activated Mg-diffusion pathways. The computational findings point toward easier magnesiation/demagnesiation for BiSn alloys over pure Bi or pure Sn, corroborating the superior Mg storage performance of Bi-Sn electrodes over the corresponding single-phase electrodes.

4.
J Colloid Interface Sci ; 679(Pt A): 430-440, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39368162

RESUMEN

Two-dimensional (2D) layered group-IV monochalcogenides with large surface-to-volume ratio and high surface activity make that their structural and optoelectronic properties are sensitive to air oxidation. Here, we report the utilization of oxidation-induced gradient doping to modulate electronic structures and optoelectronic properties of 2D group-IV monochalcogenides by using SnS nanoplates grown by physical vapor deposition as a model system. By a precise control of oxidation time and temperature, the structural transition from SnS to SnSOx could be driven by the layer-by-layer oxygen doping and intercalation. The resulting SnSOx with a graded narrowing bandgap exhibits the enhanced optical absorption and photocurrent, leading to the fabricated SnSOx photodetector with remarkable photoresponsivity and fast response speed (<64 µs) at a broadband spectrum range of 520-1550 nm. The peak responsivity (7294 A/W) and detectivity (9.54 × 109 Jones) of SnSOx device are at least two orders of magnitude larger than those of SnS photodetector. Moreover, its photodetection performance can be competed with state-of-the-art of 2D materials-based photodetectors. This work suggests that the air oxidation could be utilized as an efficient strategy to engineer the electronic and optical properties of SnS and other 2D group-IV monochalcogenides for the development of high-performance broadband photodetectors.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39357010

RESUMEN

Doping modifications and surface coatings are effective methods to slow volume dilatation and boost the conductivity in silicon (Si) anodes for lithium-ion batteries (LIBs). Herein, using low-cost ferrosilicon from industrial production as the energy storage material, a bread-like nitrogen-doped carbon shell-coated porous Si embedded with the titanium nitride (TiN) nanoparticle composite (PSi/TiN@NC) was synthesized by simple ball milling, etching, and self-assembly growth processes. Remarkably, the porous Si structure formed by etching the FeSi2 phase in ferrosilicon alloys can provide buffer space for significant volume expansion during lithiation. Highly conductive and stable TiN particles can act as stress absorption sites for Si and improve the electronic conductivity of the material. Furthermore, the nitrogen-doped porous carbon shell further helps to sustain the structural stability of the electrode material and boost the migration rate of Li-ions. Benefiting from its unique synergistic effect of components, the PSi/TiN@NC anode exhibits a reversible discharge capacity up to 1324.2 mAh g-1 with a capacity retention rate of 91.5% after 100 cycles at 0.5 A g-1 (vs fourth discharge). Simultaneously, the electrode also delivers good rate performance and a stable discharge capacity of 923.6 mAh g-1 over 300 cycles. This research can offer a potential economic strategy for the development of high-performance and inexpensive Si-based anodes for LIBs.

6.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 10): 1039-1043, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39372187

RESUMEN

The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyl-tin trichloride in methanol, exhibits intra-molecular hydrogen-bonding inter-actions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by inter-molecular C-H⋯Cl hydrogen bonds, as well as Y-X⋯π and π-stacking inter-actions involving three different aromatic rings with centroid-centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) inter-actions make smaller contributions.

7.
ChemSusChem ; : e202401181, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375528

RESUMEN

Electrochemical carbon dioxide reduction reaction (CO2RR) is an environmentally friendly and economically viable approach to convert greenhouse gas CO2 into valuable chemical fuels and feedstocks. Among various products of CO2RR, formic acid/formate (HCOOH/HCOO-) is considered the most attractive one with its high energy density and ease of storage, thereby enabling widespread commercial applications in chemical, medicine, and energy-related industries. Nowadays, the development of efficient and financially feasible electrocatalysts with excellent selectivity and activity towards HCOOH/HCOO- is paramount for the industrial application of CO2RR technology, in which Tin (Sn), Bismuth (Bi), and Indium (In)-based electrocatalysts have drawn significant attention due to their high efficiency and various regulation strategies have been explored to design diverse advanced electrocatalysts. Herein, we comprehensively review the rational strategies to enhance electrocatalytic performances of these electrocatalysts for CO2RR to HCOOH/HCOO-. Specifically, the internal mechanism between the physicochemical properties of engineering materials and electrocatalytic performance is analyzed and discussed in details. Besides, the current challenges and future opportunities are proposed to provide inspiration for the development of more efficient electrocatalysts in this field.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39378302

RESUMEN

Tin sulfide (SnS) has emerged as a promising anode material for sodium ion batteries (SIBs) due to its high theoretical capacity and large interlayer spacing. However, several challenges, such as severe insufficient electrochemical reactivity, rapid capacity degradation, and poor rate performance, still hinder its application in SIBs. In this study, in situ introduction of copper ions and a carbon conductive framework to form SnS nanocrystals embedded in a Cu2SnS3 lamellar structure heterojunction composite (SnS/Cu2SnS3/RGO) with graphene as the supporting material is proposed to achieve dual-driven sodium ion/electron migration during the continuous electrochemical process. The designed structure facilitates the preferential electrochemical reduction of copper ions into copper nanocrystals during the discharge process and functions as a catalytically active center to promote multivalence tin sodiation reaction. Furthermore, during the charging process, the presence of copper nanocrystals also facilitates efficient desodiation of NaxSn and further activates to form higher valence state sulfides. As a result, the SnS/Cu2SnS3/RGO composite demonstrates high cycling stability with a high reversible capacity of 395 mAh g-1 at 5A g-1 after 500 cycles with a capacity retention of 85.6%. In addition, the assembled Na3V2(PO4)3∥SnS/Cu2SnS3/RGO sodium ion full cell achieves 93.7% capacity retention after 80 cycles at 0.5 A g-1.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39379657

RESUMEN

The accurate and rapid detection of persulfate concentration is important for environmental decontamination and human health protection. In this work, a novel self-powered electrochemical sensor for the sensitive monitoring of persulfate was developed, which utilized cobalt tetroxide (Co3O4@CC) or tin-doped cobalt tetroxide (SnxCo3-xO4@CC) cathode as the sensing element and anode with electrogenic microorganisms as the power supplier. The Co3O4@CC and SnxCo3-xO4@CC electrodes were fabricated by in situ growing nanostructured Co3O4 or SnxCo3-xO4 catalysts on carbon cloth. Electrochemical tests revealed that these electrodes exhibited excellent catalytic reduction performance toward persulfate because of the synergistic catalysis by Co3O4 and electrode electrons, well-exposed Co2+/Co3+ catalytic sites, and high electron transfer efficiency. Tin doping could enhance the catalytic persulfate reduction by improving the conductivity and electron transfer of the Co3O4 catalyst. The electrode prepared at a hydrothermal temperature of 90 °C and a tin dosage of 0.286 g·cm-2 achieved the highest persulfate reduction activity under pH 7. The sensing properties of the self-powered sensors toward persulfate were explored in detail. Results showed that under the optimal external load of 300 Ω, the proposed sensor could display a broad detection range of 0 to 1500 µmol L-1 K2S2O8 with sensitivities of 1.13 and 0.12 µA µmol-1 L, a detection limit of 1.11 µmol L-1 (S/N = 3), and a fast response time within 30 s. The sensors also presented satisfactory reproducibility and selectivity during the detection of persulfate. The proposed sensor will provide a new approach for sensitive, on-site, and real-time monitoring of persulfate for a wide range of applications.

10.
Adv Sci (Weinh) ; : e2407771, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375946

RESUMEN

This study presents a pioneering investigation of hybrid bismuth-tin (BiSn) liquid metal particles for photothermal applications. It is shown that the intrinsic core-shell structure of liquid metal particles can be instrumentalized to combine the broadband absorption characteristics of defect-rich nano-oxides and the high light-to-heat conversion efficiency of metallic particles. Even though bismuth or tin does not show any photothermal characteristics alone, optimization of the core-shell structure of BiSn particles leads to the discovery of novel, highly efficient photothermal materials. Particles with optimized structures can absorb 85% of broadband light and achieve over 90% photothermal conversion efficiency. It is demonstrated that these particles can be used as a solar absorber for solar water evaporation systems owing to their broadband absorption capability and become a non-carbon alternative enabling scalable applications. We also showcased their use in polymer actuators in which a near-infrared (NIR) response stems from their oxide shell, and fast heating/cooling rates achieved by the metal core enable rapid response and local movement. These findings underscore the potential of BiSn liquid metal-derived core-shell particles for diverse applications, capitalizing on their outstanding photothermal properties as well as their facile and scalable synthesis conditions.

11.
J Esthet Restor Dent ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377103

RESUMEN

OBJECTIVES: To evaluate the effects of dentifrices containing sodium fluoride (NaF) combined with NovaMin (Sensodyne Repair & Protect-SRP), NaF combined with stannous fluoride (SnF2, Oral-B Pro-Gengiva-OBP), and amine fluoride (AmF, Colgate Elmex-ELM) on enamel subjected to simulated erosive cycling. MATERIALS AND METHODS: Bovine enamel-dentin discs (n = 10/group) were subjected to erosive cycling with orange juice (pH = 3.29, 5 min, 3x/day), artificial saliva (SA-2 h, 3x/day and overnight) and treated with dentifrice (2 min, 2x/day) or without treatment (CONT). Surface microhardness (SMH) was evaluated at baseline (T0), on the first (T1) and fifth (T5) days. SMH loss (%SHL) was calculated. Surface roughness (Ra, µm) was determined at T0 and T5. Morphology and mineral content were evaluated under scanning electron microscopy and energy-dispersive x-ray spectroscopy. Data were analyzed using ANOVA/Tukey or Bonferroni (α = 5%). RESULTS: No differences in %SHL were detected among groups at T1. At T5, OBP promoted %SHL, Ra, and ΔRa significantly lower than all the other groups (p < 0.05). All groups exhibited morphological changes in topography and similar Ca/P means before and after treatments. CONCLUSIONS: Dentifrice containing SnF2 minimized the negative effects on the SMH and Ra caused by exposure to orange juice after 5 days of simulated cycling. CLINICAL RELEVANCE: Patients who are more exposed to risk factors for dental erosion could benefit from the use of dentifrice containing SnF2.

12.
Adv Mater ; : e2410508, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363814

RESUMEN

The development of functional thermoelectric materials requires direct evidence of dopants' locations to rationally design the electronic and phononic structure of the host matrix. In this study, Cs-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy is employed at the atomic scale to identify Cu atoms' locations in a Cu-doped SnTe thermoelectric alloy. It is revealed that Cu atoms in the rocksalt SnTe form solid solutions at both Sn and Te sites, contrary to their electronegativity order and the intentional Cu doping at Sn sites. Cu atoms are also located at the tetrahedral and crowdion sites of the face-centred cubic structure, with varying degrees of correlations. Such high flexibility of Cu atoms in the rocksalt SnTe offers diverse phonon-scattering mechanisms conducive to the ultra-low lattice thermal conductivity of singly Cu-doped SnTe. This study offers atomic-scale insights for achieving more precise dopant engineering, leading to the accelerated development of functional thermoelectric materials.

13.
Environ Pollut ; : 125094, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389247

RESUMEN

Heavy metal pollution from informal e-waste recycling may adversely affect child growth. However, the potential toxic mechanisms from a population perspective remain unknown. Herein, 18 hair heavy metals, urinary metabolomics, and three child growth indices [i.e., weight-for-age Z-score (WAZ), height-for-age Z-score (HAZ), and BMI Z-score (BMIZ)] were measured in children from e-waste recycling (ER, N= 426) and control areas (CR, N= 247). We examined longitudinal changes in heavy metal exposure and child growth after e-waste control to further elucidate causal relationships. Results showed that children in regulated ER site were still exposed to higher levels of several heavy metals and experienced poorer growth compared to those in control areas. Elevated exposure to heavy metals like tin, antimony, lead, cadmium, and cobalt correlated with poor child growth, particularly affecting girls and younger children. Tin, rather than traditionally concerning heavy metals, exhibited the most crucial role in driving the adverse effects of metal mixtures on child growth. Reducing heavy metal exposure through e-waste control could notably improve child growth, confirming the causal relationship between heavy metal exposure and poor child growth and underscoring the health benefits of e-waste regulation. Our research identified the roles of steroid biosynthesis, folate biosynthesis, amino acid metabolism, and purine metabolism in mediating the effects of metal exposure on child growth. Testosterone glucuronide, riboflavin, folic acid, xanthosine, and xanthine emerged as key mediators, potentially serving as metabolic signatures of heavy metal exposure. These findings illuminate the toxic mechanisms underlying poor child growth resulted from heavy metal exposure, offering important insights from a population-based perspective. In addition to lead and cadmium, monitoring and regulating tin and antimony are crucial to mitigate their negative impact on child growth in e-waste recycling areas.

14.
Micromachines (Basel) ; 15(9)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39337782

RESUMEN

Extreme ultraviolet lithography (EUVL) is a leading technology in semiconductor manufacturing, enabling the creation of high-resolution patterns essential for advanced microelectronics. This review highlights recent progress in inorganic metal-oxide-based photoresists, with a focus on their applications in EUVL. The unique properties of zinc-based, tin-oxygen, and IVB group inorganic photoresists are examined, showcasing their enhanced chemical reactivity and precise patterning capabilities. Key advancements include the development of zinc oxide and tin oxide nanoparticles, which demonstrate significant improvements in photon absorption and solubility under extreme ultraviolet exposure. Additionally, the review delves into the photochemical reactions of tin-oxygen clusters and the influence of various ligands on film density and cross-linking. The findings suggest that these inorganic photoresists not only improve photolithographic performance but also hold potential for broader applications, such as pyroelectric infrared sensors and 3D printing. Future research directions are outlined, including the optimization of process parameters, the exploration of new ligand and metal combinations, and the evaluation of the environmental benefits of inorganic photoresists over traditional organic ones. These advancements are poised to further enhance the resolution and patterning capabilities required for next-generation semiconductor devices.

15.
Chem Asian J ; : e202401094, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300822

RESUMEN

Although many researchers have devoted their much effort to establish the strategy for developing a stimuli-responsive molecule and tuning of their properties according to the preprogrammed design, it is still challenging to create desired molecules from the scratch. We recently demonstrated that the molecules with a large structural difference between the theoretically optimized structures in the ground and excited states have a potential to exhibit stimuli-responsive luminescent properties. We defined these molecules as an excitation-driven molecule and have shown that they are a versatile platform for designing stimuli-responsive luminescent molecules. Herein, based on the concept of excitation-driven molecules, we show that the hypervalent tin-fused azomethine (TAm) compounds possessing aggregation-induced emission (AIE) properties can be obtained by simple chemical modification with a methyl group although conventional TAm derivatives are well known to be highly luminescent compounds in solution. Furthermore, by combining the solid-state luminescence property of AIE and the coordination number shifts of the hypervalent tin atom, the thermoresponsive films operating below the freezing point are fabricated with the polymer. In this study, we apply the concept of excitation-driven molecules to the hypervalent compounds and demonstrate to obtain the novel functional materials.

16.
Angew Chem Int Ed Engl ; : e202414346, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302244

RESUMEN

Tin (Sn) metal has emerged as a promising anode for aqueous batteries, due to its high capacity, non-toxicity, and cost-effectiveness. However, Sn metal has often been coupled with strong and corrosive sulfuric acids (2-3 M), leading to severe electrode corrosion and hydrogen evolution issues. Although high efficiency and long cycling were reported, the results were achieved using high currents to kinetically mask electrode-electrolyte side reactions. Herein, we introduce a low-acidity tin chloride electrolyte (pH=1.09) as a more viable option, which eliminates the need of strong acids and enables a reversible dendrite-free Sn plating chemistry. Remarkably, the plating efficiency approaches unity (99.97%) under standard testing conditions (1 mA cm-2 for 1 mAh cm-2), which maintains high at 99.23-99.93% across various aggressive conditions, including low current (0.1-0.25 mA cm-2), high capacity (5-10 mAh cm-2), and extended resting time (24-72 hours). The battery calendar life is further prolonged to 3064 hours, significantly surpassing literature reports. Additionally, we presented an effective method to mitigate the potential Sn2+ oxidization issue on the cathode, demonstrating long-cycling Sn||LiMn2O4 hybrid batteries. This work offers critical insights for developing highly reversible Sn metal batteries.

17.
J Colloid Interface Sci ; 678(Pt C): 393-408, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39303558

RESUMEN

Given the notoriously poor wear performance of Ti6Al4V (TC4) alloys, two types of MgAl layered double hydroxides (LDHs) were synthesized as lubrication additives. Systematic tribological tests were conducted to explore the performance of the TC4 alloy with these MgAl LDHs at varying concentrations in oil. It was found that, with increasing additive concentration, the wear resistance of TC4 significantly improved. Notably, MgAl LDHs with a hexagonal nanosheet structure exhibited superior lubrication performance, reducing the coefficient of friction (COF) by approximately 67.94 % compared to dry friction, and markedly enhancing the anti-wear characteristics of the TC4 alloy. Furthermore, to improve the utility of TC4 alloy in industrial applications, titanium nitride (TiN) coatings with excellent mechanical properties were deposited onto the TC4 substrate using arc ion deposition. A comprehensive analysis of the tribological behavior and wear mechanisms of TiN coating with the two MgAl LDHs additives was also conducted. Results indicated that the combination of TiN hard coatings and MgAl LDHs lubricants achieved high wear resistance for the TC4 substrate. In conclusion, a low-wear synergistic protection system integrating TiN coatings and high-performance MgAl LDHs lubricants was developed, demonstrating effective protection for TC4 alloys. This strategy not only presents a novel approach for reducing wear in TC4 alloys but also provides a reliable method for safeguarding and ensuring the long-term stability of titanium alloys mechanical components under demanding conditions.

18.
Angew Chem Int Ed Engl ; : e202411604, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39279258

RESUMEN

Perovskite solar cells have emerged as a potential competitor to the silicon photovoltaic technology. The most representative perovskite cells employ SnO2 and spiro-OMeTAD as the charge-transport materials. Despite their high efficiencies, perovskite cells with such a configuration show unsatisfactory lifespan, normally attributed to the instability of perovskites and spiro-OMeTAD. Limited attention was paid to the influence of SnO2, an inorganic material, on device stability. Here we show that improving SnO2 with a redox interfacial modifier, cobalt hexammine sulfamate, simultaneously enhances the power-conversion efficiency (PCE) and stability of the perovskite solar cells. Redox reactions between the bivalent cobalt complexes and oxygen lead to the formation of a graded distribution of trivalent and bivalent cobalt complexes across the surface and bulk regions of the SnO2. The trivalent cobalt complex at the top surface of SnO2 raises the concentration of (SO3NH2)- which passivates uncoordinated Pb2+ and relieves tensile stress, facilitating the formation of perovskite with improved crystallinity. Our approach enables perovskite cells with PCEs of up to 24.91%. The devices retained 93.8% of their initial PCEs after 1000 hours of continuous operation under maximum power point tracking. These findings showcase the potential of cobalt complexes as redox interfacial modifiers for high-performance perovskite photovoltaics.

19.
Beilstein J Org Chem ; 20: 2217-2224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286796

RESUMEN

Electrosynthesis is a technique that is attracting increased attention and has many appealing features, particularly its potential greenness. At the same time, electrosynthesis requires a solvent and a supporting electrolyte in order for current to pass through the reaction. These are effectively consumable reagents unless a convenient means of recycling can be developed. As part of our interest in unusual solvents and electrochemistry, we explored the application of simple, inexpensive, and recyclable deep eutectic solvents to the allylation of carbonyls. While several sets of conditions were developed, the goal of avoiding stoichiometric amounts of metal has proven elusive. Still, a deep eutectic solvent can be used to plate out and thus recover the metal used, offering an interesting new option for electrochemical allylations.

20.
Nano Lett ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269918

RESUMEN

Solution-processable electrodes are promising for next-generation electronics due to their simplicity, cost-effectiveness, and potential for large-area fabrication. However, current solution-processable electrodes based on conductive polymers, carbon-based compounds, and metal nanowires face challenges related to stability, patterning, and production scalability. Here we introduce a novel approach using 3D tin halide perovskites (THPs) combined with a photolithography-free solution patterning technique to fabricate solution-processed electrodes. We demonstrate the preparation of highly conductive CsSnI3 films (234.9 S cm-1) and the fabrication of patterned 35 × 35 perovskite electrode arrays on a 4-in. silicon wafer. These electrodes, used as source/drain electrodes in organic transistors, resulted in devices showing high uniformity and stability. This electrode fabrication strategy is also applicable to other 3D THPs like FASnI3 and MASnI3, showcasing versatility for diverse applications. The results highlight the feasibility and advantages of using 3D THPs as solution-processable electrodes, providing a new material system for the advancement of solution-processed electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...