Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; : e0106924, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303014

RESUMEN

Prior to 2017, the family Bunyaviridae included five genera of arthropod and rodent viruses with tri-segmented negative-sense RNA genomes related to the Bunyamwera virus. In 2017, the International Committee on Taxonomy of Viruses (ICTV) promoted the family to order Bunyavirales and subsequently greatly expanded its composition by adding multiple families for non-segmented to polysegmented viruses of animals, fungi, plants, and protists. The continued and accelerated discovery of bunyavirals highlighted that an order would not suffice to depict the evolutionary relationships of these viruses. Thus, in April 2024, the order was promoted to class Bunyaviricetes. This class currently includes two major orders, Elliovirales (Cruliviridae, Fimoviridae, Hantaviridae, Peribunyaviridae, Phasmaviridae, Tospoviridae, and Tulasviridae) and Hareavirales (Arenaviridae, Discoviridae, Konkoviridae, Leishbuviridae, Mypoviridae, Nairoviridae, Phenuiviridae, and Wupedeviridae), for hundreds of viruses, many of which are pathogenic for humans and other animals, plants, and fungi.

2.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37622664

RESUMEN

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Virus ARN de Sentido Negativo , Virus ARN , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética
3.
Viruses ; 14(2)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35215958

RESUMEN

The Australasian biogeographic realm is a major centre of diversity for orchids, with every subfamily of the Orchidaceae represented and high levels of endemism at the species rank. It is hypothesised that there is a commensurate diversity of viruses infecting this group of plants. In this study, we have utilised high-throughput sequencing to survey for viruses infecting greenhood orchids (Pterostylidinae) in New South Wales and the Australian Capital Territory. The main aim of this study was to characterise Pterostylis blotch virus (PtBV), a previously reported but uncharacterised virus that had been tentatively classified in the genus Orthotospovirus. This classification was confirmed by genome sequencing, and phylogenetic analyses suggested that PtBV is representative of a new species that is possibly indigenous to Australia as it does not belong to either the American or Eurasian clades of orthotospoviruses. Apart from PtBV, putative new viruses in the genera Alphaendornavirus, Amalgavirus, Polerovirus and Totivirus were discovered, and complete genome sequences were obtained for each virus. It is concluded that the polerovirus is likely an example of an introduced virus infecting a native plant species in its natural habitat, as this virus is probably vectored by an aphid, and Australia has a depauperate native aphid fauna that does not include any species that are host-adapted to orchids.


Asunto(s)
Orchidaceae/virología , Virus de Plantas/aislamiento & purificación , Virus ARN/aislamiento & purificación , Australia , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Orchidaceae/clasificación , Filogenia , Enfermedades de las Plantas/virología , Virus de Plantas/clasificación , Virus de Plantas/genética , Virus ARN/clasificación , Virus ARN/genética , ARN Viral/genética , Proteínas Virales/genética
4.
Mol Plant Pathol ; 23(3): 431-446, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34913556

RESUMEN

To identify host factors for tomato spotted wilt orthotospovirus (TSWV), a virus-induced gene silencing (VIGS) screen using tobacco rattle virus (TRV) was performed on Nicotiana benthamiana for TSWV susceptibility. To rule out any negative effect on the plants' performance due to a double viral infection, the method was optimized to allow screening of hundreds of clones in a standardized fashion. To normalize the results obtained in and between experiments, a set of controls was developed to evaluate in a consist manner both VIGS efficacy and the level of TSWV resistance. Using this method, 4532 random clones of an N. benthamiana cDNA library were tested, resulting in five TRV clones that provided nearly complete resistance against TSWV. Here we report on one of these clones, of which the insert targets a small gene family coding for the ribosomal protein S6 (RPS6) that is part of the 40S ribosomal subunit. This RPS6 family is represented by three gene clades in the genome of Solanaceae family members, which were jointly important for TSWV susceptibility. Interestingly, RPS6 is a known host factor implicated in the replication of different plant RNA viruses, including the negative-stranded TSWV and the positive-stranded potato virus X.


Asunto(s)
Virus ARN , Solanum lycopersicum , Tospovirus , Enfermedades de las Plantas , Proteína S6 Ribosómica , Nicotiana/genética
5.
Viruses ; 13(5)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066457

RESUMEN

Negative-strand (-) RNA viruses (NSVs) comprise a large and diverse group of viruses that are generally divided in those with non-segmented and those with segmented genomes. Whereas most NSVs infect animals and humans, the smaller group of the plant-infecting counterparts is expanding, with many causing devastating diseases worldwide, affecting a large number of major bulk and high-value food crops. In 2018, the taxonomy of segmented NSVs faced a major reorganization with the establishment of the order Bunyavirales. This article overviews the major plant viruses that are part of the order, i.e., orthospoviruses (Tospoviridae), tenuiviruses (Phenuiviridae), and emaraviruses (Fimoviridae), and provides updates on the more recent ongoing research. Features shared with the animal-infecting counterparts are mentioned, however, special attention is given to their adaptation to plant hosts and vector transmission, including intra/intercellular trafficking and viral counter defense to antiviral RNAi.


Asunto(s)
Bunyaviridae/genética , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Bunyaviridae/patogenicidad , Virus de Plantas/patogenicidad , Plantas/virología , Virus ARN/genética , Virus ARN/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...