Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2703: 45-57, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37646936

RESUMEN

Transposon elements (TEs) are mobile genetic elements that can insert themselves into new locations and modify the plant genome. In recent years, they have been used as molecular markers in plant breeding programs. TE-based molecular markers (TE-markers) are divided into two categories depending on the transcription mechanism of the TEs. The first category is retrotransposon-based molecular markers, which include RBIP, IRAP, REMAP, and iPBS. The second group is DNA-based-TE-markers, which include MITE, TE-junction, and CACTA TE-markers. These markers are a good tool for studying genetic diversity and can provide information on plants' phylogenetic and evolutionary history. They can help improve breeding programs to increase agronomic traits and develop new varieties. Overall, TE-markers play an important role in plant genetics and plant breeding and contribute to a better understanding of plant biology. Here, we present TEMM, a curated data resource for TE-markers in plants. Relevant research articles were screened to collect primer sequences and related information. Only articles containing primer sequences are added to the present data resource. TEMM contains 784 primers with their associated PCR reaction programs and their applications in various crops. These include 203 IPBS, 191 RBIP, 140 IRAP, 78 TE-junction, 76 IRAPS, 47 RBIP-IRAP, 16 IRAP-REMAP, 12 REMAP, 12 REMA-IRAP, 6 REMA, and 3 ISBP primers. The data resource is freely available at https://bioinformatics.um6p.ma/TEMM .


Asunto(s)
Elementos Transponibles de ADN , Fitomejoramiento , Filogenia , Elementos Transponibles de ADN/genética , Biomarcadores , Productos Agrícolas
2.
Front Genet ; 10: 10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30815010

RESUMEN

Fragile-X syndrome is one of the most common forms of inherited mental retardation and autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the X-linked Fmr1 gene in humans, is responsible for the syndrome. Patients exhibit a variety of symptoms predominantly linked to the function of FMRP protein in the nervous system like autistic behavior and mild-to-severe intellectual disability. Fragile-X (FraX) individuals also display cellular and morphological traits including branched dendritic spines, large ears, and macroorchidism. The dFmr1 gene is the Drosophila ortholog of the human Fmr1 gene. dFmr1 mutant flies exhibit synaptic abnormalities, behavioral defects as well as an altered germline development, resembling the phenotypes observed in FraX patients. Therefore, Drosophila melanogaster is considered a good model to study the physiopathological mechanisms underlying the Fragile-X syndrome. In this review, we explore how the multifaceted roles of the FMRP protein have been addressed in the Drosophila model and how the gained knowledge may open novel perspectives for understanding the molecular defects causing the disease and for identifying novel therapeutical targets.

3.
Toxicol Rep ; 6: 186-192, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899675

RESUMEN

Small non-coding RNAs control normal development and differentiation in the embryo. These regulatory molecules play a key role in the development of human diseases and are used often today for researching new treatments for different pathologies. In this study, CaCo2 colorectal adenocarcinoma cells were initially epigenetically reprogrammed and transformed into CD4+ cells with nano-sized complexes of amphiphilic poly-(N-vinylpyrrolidone) (PVP) with miRNA-152 and piRNA-30074. The transformation of cells was confirmed by morphological and genetic changes in the dynamic of reprogramming. CD4+ lymphocytes marker was detected using immunofluorescence. Amphiphilic poly-(N-vinylpyrrolidone)/small non-coding RNAs complexes were investigated for transfection efficiency and duration of transfection of CaCo2 colorectal adenocarcinoma cells using fluorescence.

4.
New Phytol ; 211(1): 288-99, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26871271

RESUMEN

Subgenome dominance is an important phenomenon observed in allopolyploids after whole genome duplication, in which one subgenome retains more genes as well as contributes more to the higher expressing gene copy of paralogous genes. To dissect the mechanism of subgenome dominance, we systematically investigated the relationships of gene expression, transposable element (TE) distribution and small RNA targeting, relating to the multicopy paralogous genes generated from whole genome triplication in Brassica rapa. The subgenome dominance was found to be regulated by a relatively stable factor established previously, then inherited by and shared among B. rapa varieties. In addition, we found a biased distribution of TEs between flanking regions of paralogous genes. Furthermore, the 24-nt small RNAs target TEs and are negatively correlated to the dominant expression of individual paralogous gene pairs. The biased distribution of TEs among subgenomes and the targeting of 24-nt small RNAs together produce the dominant expression phenomenon at a subgenome scale. Based on these findings, we propose a bucket hypothesis to illustrate subgenome dominance and hybrid vigor. Our findings and hypothesis are valuable for the evolutionary study of polyploids, and may shed light on studies of hybrid vigor, which is common to most species.


Asunto(s)
Brassica rapa/genética , Elementos Transponibles de ADN , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta
5.
Plant Cell Environ ; 39(1): 174-84, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26147461

RESUMEN

In maize (Zea mays), as well as in other crops, transposable elements (TEs) constitute a great proportion of the genome. Chromatin modifications play a vital role in establishing transposon silencing and perpetuating the acquired repressive state. Nucleosomes associated with TEs are enriched for dimethylation of histone H3 at lysine 9 and 27 (H3K9me2 and H3K27me2, respectively), signals of repressive chromatin. Here, we describe a chromatin protein, ZmMBD101, involved in the regulation of Mutator (Mu) genes in maize. ZmMBD101 is localized to the nucleus and contains a methyl-CpG-binding domain (MBD) and a zinc finger CW (CW) domain. Transgenic lines with reduced levels of ZmMBD101 transcript present enhanced induction of Mu genes when plants are irradiated with UV-B. Chromatin immunoprecipitation analysis with H3K9me2 and H3K27me2 antibodies indicated that ZmMBD101 is required to maintain the levels of these histone repressive marks at Mu terminal inverted repeats (TIRs) under UV-B conditions. Although Mutator inactivity is associated with DNA methylation, cytosine methylation at Mu TIRs is not affected in ZmMBD101 deficient plants. Several plant proteins are predicted to share the simple CW-MBD domain architecture present in ZmMBD101. We hypothesize that plant CW-MBD proteins may also function to protect plant genomes from deleterious transposition.


Asunto(s)
Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/genética , Genoma de Planta/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Núcleo Celular/metabolismo , Cromatina/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Histonas/genética , Histonas/metabolismo , Mutación , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión , Rayos Ultravioleta , Zea mays/citología , Zea mays/metabolismo , Zea mays/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...