Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 876611, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547117

RESUMEN

Melanin is one of the most studied virulence factors in pathogenic fungi. This pigment protects them from a series of both environmental and host stressors. Among basidiomycetes, Cryptococcus neoformans and Trichosporon asahii are known to produce melanin in the presence of phenolic precursors. Other species from the Trichosporonaceae family also produce this pigment, but the extent to this production among the clinically relevant species is unknown. For this reason, the aim of this study was to verify the production of melanin by different Trichosporonaceae species of clinical interest and to compare their pigments with the ones from C. neoformans and T. asahii, which are more prevalent in human infections. Melanin was produced in a minimal medium supplemented with 1 mM L-dihydroxyphenylalanine (L-DOPA). Pigment was evaluated using scanning electron microscopy, Zeta potential measurements, and energy-dispersive X-ray spectroscopy. It was found that, besides C. neoformans and T. asahii, Trichosporon japonicum, Apiotrichum montevideense, Trichosporon inkin, Trichosporon faecale, Cutaneotrichosporon debeurmannianum, and Cutaneotrichosporon arboriformis also produce melanin-like particles in the presence of L-DOPA. Melanin particles have negative charge and are smaller than original cells. Variations in color, fluorescence, and chemical composition was noticed between the studied strains. All melanins presented carbon, oxygen, sodium, and potassium in their composition. Melanins from the most pathogenic species also presented iron, zinc, and copper, which are important during parasitism. Biophysical properties of these melanins can confer to the Trichosporonaceae adaptive advantages to both parasitic and environmental conditions of fungal growth.

2.
Mycopathologia ; 186(3): 377-385, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33956292

RESUMEN

Glucuronoxylomannan (GXM) participates in several immunoregulatory mechanisms, which makes it an important Cryptococcus virulence factor that is essential for the disease. Trichosporon asahii and Trichosporon mucoides share with Cryptococcus species the ability to produce GXM. To check whether other opportunistic species in the Trichosporonaceae family produce GXM-like polysaccharides, extracts from 28 strains were produced from solid cultures and their carbohydrate content evaluated by the sulfuric acid / phenol method. Moreover, extracts were assessed for cryptococcal GXM cross-reactivity through latex agglutination and lateral flow assay methods. Cryptococcus neoformans and Saccharomyces cerevisiae were used as positive and negative controls, respectively. In addition to T. asahii, the species Trichosporon inkin, Apiotrichum montevideense, Trichosporon japonicum, Trichosporon faecale, Trichosporon ovoides, Cutaneotrichosporon debeurmannianum, and Cutaneotrichosporon arboriformis are also producers of a polysaccharide immunologically similar to the GXM produced by human pathogenic Cryptococcus species. The carbohydrate concentration of the extracts presented a positive correlation with the GXM contents determined by titration of both methodologies. These results add several species to the list of fungal pathogens that produce glycans of the GXM type and bring information about the origin of potential false-positive results on immunological tests for diagnosis of cryptococcosis based on GXM detection.


Asunto(s)
Polisacáridos/aislamiento & purificación , Basidiomycota , Cryptococcus neoformans , Humanos
3.
J Invertebr Pathol ; 133: 1-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26585300

RESUMEN

This paper evaluates the phylogenetic position of the ectoparasitic fungus Aegeritella tuberculata Balazy & Wisniewski, and broadly discusses its presence on ants in southern Poland. Field work was conducted in the Silesian Beskid Mountains in 2011-2013. The fungus was found on four species of ants: Lasius niger L., Lasius brunneus Latr., Formica lemani Bondr. and Formica fusca L. The first three species have not been noted previously in the literature as hosts of Aegeritella fungi. The infection rate ranged from 1% for Formica lemani to 21% for L. brunneus. Molecular analysis based on ITS and SSU rDNA sequences revealed close relationships between Aegeritella and Trichosporon isolates. We conclude that the genus Aegeritella-inceratae sedis until now, should be placed within the fungal group Basidiomycota, Tremellomycetes, Tremellomycetidae, Tremellales, Trichosporonaceae.


Asunto(s)
Hormigas/microbiología , Basidiomycota/fisiología , Filogenia , Animales , Basidiomycota/citología , Basidiomycota/genética , ADN de Hongos/química , Interacciones Huésped-Patógeno , Polonia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...