Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.139
Filtrar
1.
Chem Biodivers ; : e202401945, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39419757

RESUMEN

The chemical composition of the essential oil isolated from the aerial parts of Teucrium aureo-candidum, an endemic aromatic shrub collected from Moghrar and Djeniene Bourezg in the Nâama region (Algeria), was determined for the first time using GC/FID and GC/MS. A total of 45 constituents were identified, representing 87.73% of the oil. Characterized by unique chemical variability, it was primarily composed of sesquiterpene hydrocarbons (29.53%) and oxygenated sesquiterpenes (30.06%), with the major compounds being γ-cadinene (5.24%), δ-cadinene (4.24%), α-muurolene (4.04%), τ-muurolol (11.35%), and α-cadinol (3.30%). However, monoterpene hydrocarbons and oxygenated monoterpenes accounted for 23.98% and 1.64%, respectively, contributing to a relatively low fraction. The essential oil demonstrated notable antibacterial activity, particularly against Gram-positive bacteria. Due to safety concerns associated with triclosan, a known inhibitor of the Enoyl-Acyl Carrier Protein Reductase (FabI) enzyme, the essential oil components from this plant were explored as alternatives through a combination of experimental approaches and in silico molecular docking studies. The results revealed that α-cadinol, spathulenol, caryophyllene, and α-muurolene exhibited strong FabI inhibition, with better bioavailability and lower toxicity than triclosan, highlighting their potential in combating antibiotic-resistant bacteria.

2.
Ecotoxicology ; 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39427267

RESUMEN

Triclosan (TCS) is a lipophilic, broad spectrum antimicrobial agent commonly used in personal care products with a projected continuous escalation in aquatic environments in the post COVID 19 era. There is rich documentation in the literature on the alteration of physiological responses in fish due to TCS exposure; however, studies on gut associated bacteria of fish are still scarce. This is the first attempt to determine changes in bacterial community structure due to exposure of TCS on Labeo rohita, a commercially essential freshwater species, using 16S V3-V4 region ribosomal RNA (rRNA) next-generation sequencing (NGS). Chronic exposure of TCS at environmentally realistic concentrations viz. 1/5th (T1: 0.129 mg/L) and 1/10th (T2: 0.065 mg/L) of LC50 for 28 days resulted in the dose dependent bioconcentration of TCS in the fish gut. Prolonged exposure to TCS leads to disruption of gut bacteria evidenced by down regulation of the host immune system. Additionally, high-throughput sequencing analysis showed alternation in the abundance and diversity of microbial communities in the gut, signifying Proteobacteria and Verrucomicrobia as dominant phyla. Significant changes were also observed in the relative abundance of Chloroflexi and Gammatimonadetes phyla in TCS exposed groups. The study revealed that gut microbiome can be used as a biomarker in assessing the degree of TCS toxicity in commercially important fish species.

3.
Bull Environ Contam Toxicol ; 113(5): 59, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39438328

RESUMEN

Triclosan (TCS), a widely used antimicrobial biocide, has raised serious concern among the scientific community in recent years owing to its ubiquitous presence around the globe and toxicity to aquatic organisms. The current study investigated the alterations in bacterial diversity, nutrients, and sediment enzyme activity in TCS-exposed sediment. TCS concentrations of 3 mg/L (T1) and 6 mg/L (T2) were applied in a microcosm setup for 28 days to sediment collected from Versova Creek, Mumbai. Among sediment enzymes, dehydrogenase activity exhibited the greatest degree of variability in 3 mg/L exposed sediment. Nitrite, total nitrogen and urease exhibited higher concentrations in 6 mg/L TCS exposed sediment. The concentration of ammonia was observed to be decreasing in treatments exposed to 6 mg/L TCS. Total heterotrophic bacteria exhibited an increase in count in T1 and a decrease in T2. Metagenomics data showed a higher relative abundance of bacteria in T1 compared to T2 on the 28th day of sampling. Proteobacteria was found to be the most abundant phylum in all samples, and their relative abundance was reduced by 0.14% in T1 and 5.48% in T2. The results confirm the alterations in the composition of sediment bacterial communities and their enzymatic activities due to TCS exposure.


Asunto(s)
Bacterias , Biodiversidad , Sedimentos Geológicos , Triclosán , Contaminantes Químicos del Agua , Triclosán/toxicidad , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Bacterias/efectos de los fármacos
4.
R Soc Open Sci ; 11(10): 240676, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39392739

RESUMEN

A set of alkyl-/1H-1,2,3-triazole-based dimers was strategically designed and synthesized to evaluate their in vitro anti-mycobacterial activities against Mycobacterium tuberculosis and the non-tuberculous Mycobacterium abscessus strains. Systematic variations in the nature (alkyl/1H-1,2,3-triazole) and positioning of the linker were implemented based on the docking scores observed in the binding sites identified in the crystal structures of InhA from M. tuberculosis and M. abscessus. However, the in vitro evaluation results revealed that the synthesized compounds did not exhibit inhibitory effects on the growth of mycobacteria, even at the highest tested concentrations. The elevated lipophilicity values determined through ADMET studies for these synthesized dimers might be a contributing factor to their poor activity profiles.

5.
J Hazard Mater ; 480: 136033, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39368358

RESUMEN

Triclosan (TCS) is an antimicrobial agent commonly used in personal care products. However, little is known about its toxicity to corals. Here, we examined the acute toxic effects (96 h) of TCS at different levels to the coral Porites lutea. Results showed that the bioaccumulation factors (BAFs) of TCS in Porites lutea decreased with increasing TCS exposure levels. Exposure to TCS at the level up to 100 µg/L did not induce bleaching of Porites lutea. However, by the end of the experiment, both the density and chlorophyll a content of the symbiotic zooxanthellae were 19-52 % and 19.9-45.6 % lower in the TCS treatment groups than in the control, respectively. For the coral host, its total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT) activities were all significantly lower in the TCS treatment groups than the control. Transcriptome analysis showed that 942 and 1077 differentially expressed genes (DEGs) were identified in the coral host in the 0.5 and 100 µg/L TCS treatment groups, respectively. Meanwhile, TCS can interfere with pathways related to immune system and reproductive system in coral host. Overall, our results suggest that environmentally relevant concentrations of TCS can impact both the coral host and the symbiotic zooxanthellae.

6.
Environ Sci Technol ; 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39445662

RESUMEN

The significance of histone methylation in epigenetic inheritance underscores its relevance to disease and the chronic effects of environmental chemicals. However, limited evidence of the causal relationships between chemically induced epigenetic changes and organismal-level effects hinders the application of epigenetic markers in ecotoxicological assessments. This study explored the contribution of repressive histone marks to reproductive toxicity induced by chemicals in consumer products in Caenorhabditis elegans, applying the adverse outcome pathway (AOP) framework. Triclosan (TCS) and tetrabromobisphenol A (TBBPA) exposures caused reproductive toxicity and altered histone methyltransferase (HMT) and histone demethylase (HDM) activities, increasing the level of trimethylation of H3K9 and H3K27. Notably, treatment with an H3K27-specific HMT inhibitor alleviated reproductive defects and the transcriptional response of genes related to vitellogenin, xenobiotic metabolism, and oxidative stress. Comparison of points of departure (PODs) based on calculated benchmark concentrations (BMCs) revealed the sensitivity of histone-modifying enzyme activities to these chemicals. Our findings suggest that the 'disturbance of HMT and HDM' can serve as the molecular initiating event (MIE) leading to reproductive toxicity in the epigenetic AOP for TCS and TBBPA. The study extended the biological applicability of these enzymes by identifying model species with analogous protein sequences and functions. This combined approach enhances the essentiality, empirical support, and taxonomic domain of applicability (tDOA), which are crucial considerations for ecotoxicological AOPs. Given the widespread use and environmental distribution of chemicals in consumer products, this study proposes histone-modifying enzyme activity as an effective screening tool for reproductive toxicants and emphasizes the integration of epigenetic mechanisms into a prospective ERA.

7.
J Abdom Wall Surg ; 3: 13337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39360221

RESUMEN

Introduction: Wound closure with triclosan-coated sutures (TCS) appears to reduce the risk of surgical site infection (SSI). Because there is a strong association between postoperative SSI and the development of acute abdominal wall dehiscence (AWD) after laparotomy, we hypothesized that the use of TCS for wound closure after laparotomy may also reduce the risk of AWD. Methods: The MEDLINE, Embase, and CENTRAL databases were searched from their inception to 01 November 2022. Randomized trials that compared the use of TCS with identical but uncoated sutures for fascial closure were eligible if they could provide individual participant data (IPD) on AWD. From these trials, we only included in the analysis those subjects who underwent open abdominal surgery. The primary outcome was the incidence of AWD within 30 days postoperatively, requiring emergency reoperation. The certainty of evidence was assessed using the GRADE methodology (PROSPERO: CRD42019121173. Results: We identified twelve eligible trials. Eight studies shared IPD. The incidence of AWD within 30 days after surgery was 27/1,565 (1.7%) in the TCS group vs. 40/1,430 (2.8%) in the control group (Relative Risk: 0.70 [95% confidence interval (CI) 0.44-1.11, I 2 = 0%, τ2 = 0.00]). The certainty of evidence was moderate after downgrading for imprecision. The incidence of incisional SSI was 163/1,576 (10.3%) vs. 198/1,439 (13.8%), RR 0.80 (95% CI 0.67-0.97). Conclusion: We found no conclusive evidence to support the use of triclosan-coated sutures for the prevention of acute abdominal wall dehiscence after laparotomy. In these selected studies, a significant reduction in incisional SSI was observed.

8.
Int J Mol Sci ; 25(20)2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39457115

RESUMEN

This study investigates the degradation of six different types of absorbable surgical threads commonly used in clinical practice, focusing on their response to exposure to physiological fluids. The threads were subjected to hydrolytic and enzymatic degradation in physiological saline, bile, and pancreatic juice. Our findings demonstrate that bile and pancreatic juice, particularly when contaminated with bacterial strains such as Escherichia coli, Klebsiella spp., and Enterococcus faecalis, significantly accelerate the degradation process. Using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and tensile strength testing, we observed distinct differences in the chemical structure and mechanical integrity of the sutures. Principal component analysis (PCA) of the FTIR spectra revealed that PDS threads exhibited the highest resistance to degradation, maintaining their mechanical properties for a longer duration compared with Monocryl and Vicryl. These results highlight the critical role of thread selection in gastrointestinal surgeries, where prolonged exposure to bile and pancreatic juice can compromise the suture integrity and lead to postoperative complications. The insights gained from this study will contribute to improving the selection and application of absorbable threads in clinical settings.


Asunto(s)
Suturas , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Resistencia a la Tracción , Humanos , Líquidos Corporales/metabolismo , Líquidos Corporales/química , Jugo Pancreático/metabolismo , Jugo Pancreático/química , Bilis/metabolismo , Bilis/química , Microscopía Electrónica de Rastreo
9.
Bioresour Technol ; 413: 131522, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39321940

RESUMEN

The present study aims to investigate the mechanism by which triclosan influences the dissemination of antibiotic resistance genes (ARGs) during the whole anaerobic digestion process. qPCR and metagenomic analyses revealed that triclosan facilitated ARGs dissemination in a dose- and time-dependent manner. Furthermore, integrons exhibited a significant correlation with the majority of quantified ARGs, and various ARGs were frequently linked on integron gene cassettes. Microbial community and redundancy analyses indicated that triclosan altered the components of dominant ARGs hosts Firmicutes, Synergistetes and Bacteroidetes. Path modeling analysis confirmed integrons were the main driving force for facilitating ARGs dissemination. The promoted ARGs dissemination may be associated with the increased reactive oxygen species generation, cell membrane permeability, close-connected the ARGs transfer related regulatory proteins induced by triclosan. This study broadens the understanding of triclosan facilitates ARGs dissemination through anaerobic treatment, the strategies for preventing potential risks should be proposed in practice.


Asunto(s)
Farmacorresistencia Microbiana , Triclosán , Triclosán/farmacología , Anaerobiosis , Farmacorresistencia Microbiana/genética , Transferencia de Gen Horizontal , Genes Bacterianos , Reactores Biológicos
10.
Microorganisms ; 12(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39338482

RESUMEN

Enterococcus faecalis and E. faecium are opportunistic pathogens commonly found in the microbiota of humans and other animals as well as in the environment. This article presents the results of antimicrobial susceptibility testing using phenotypic methods (broth microdilution and standardized disk diffusion) on selected clinical, food, and wastewater isolates of E. faecalis and E. faecium. The isolates were divided into subgroups based on their sensitivity to the following antibiotics: vancomycin (VAN) and ciprofloxacin (CIP), and biocides triclosan (TCL) and chlorhexidine (CHX). The study also investigated in vitro virulence factors, including biofilm formation ability, cell surface hydrophobicity (CSH) and ß-hemolysis, to explore aspects of pathogenesis. In our study, regardless of the isolation source, VAN-resistant (VAN-R) and CIP-resistant (CIP-R) E. faecalis and E. faecium were detected. The highest proportion of CIP-R strains was found among clinical isolates of E. faecalis and E. faecium, with clinical E. faecium also showing the highest proportion of VAN-R strains. But the highest proportion of VAN-R E. faecalis strains was found in wastewater samples. The highest TCL MIC90 values for E. faecalis were found in wastewater isolates, while for E. faecium, the highest TCL MIC90 values were observed in food isolates. The highest CHX MIC90 values for both E. faecalis and E. faecium were identified in clinical specimens. The results obtained for E. faecalis did not indicate differences in TCL MIC and CHX MIC values with respect to sensitivity to VAN and CIP. Higher CHX MIC50 and CHX MIC90 values were obtained for CIP-R and VAN-R E. faecium. Among the tested isolates, 97.75% of the E. faecalis isolates produced biofilm, while 72.22% of the E. faecium isolates did so as well. In biofilm-forming strength categories III and IV, statistically significantly higher proportions of CIP-susceptible (CIP-S) and VAN-susceptible (VAN-S) E. faecalis were determined. In category III, there is no statistically significant difference in E. faecium CIP sensitivity. In category IV, we had a significantly higher proportion of CIP-R strains. On the other hand, the association between the moderate or strong category of biofilm formation and E. faecium VAN susceptibility was not significant. E. faecalis isolated from wastewater had a CSH index (HI) ≥ 50%, categorizing them as "moderate", while all the other strains were categorized as "low" based on the CSH index. Among the E. faecalis isolates, cell surface hydrophobicity indices differed significantly across isolation sources. In contrast, E. faecium isolates showed similar hydrophobicity indices across isolation sources, with no significant difference found. Moreover, no correlation was found between the enterococcal cell surface hydrophobicity and biofilm formation in vitro. After anaerobic incubation, ß-hemolytic activity was confirmed in 19.10% of the E. faecalis and 3.33% of the E. faecium strains.

11.
Ecotoxicol Environ Saf ; 284: 116989, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39260212

RESUMEN

Triclosan (TCS) is an eminent antibacterial agent. However, extensive usage causes potential health risks like hepatotoxicity, intestinal damage, kidney injury, etc. Existing studies suggested that TCS would disrupt bile acid (BA) enterohepatic circulation, but its toxic mechanism remains unclear. Hence, the current study established an 8-week TCS exposure model to explore its potential toxic mechanism. The results discovered 8 weeks consecutive administration of TCS induced distinct programmed cell death, inflammatory cell activation and recruitment, and excessive BA accumulation in liver. Furthermore, the expression of BA synthesis and transport associated genes were significantly dysregulated upon TCS treatment. Additional mechanism exploration revealed that Fxr inhibition induced by TCS would be the leading cause for unusual BA biosynthesis and transport. Subsequent Fxr up-stream investigation uncovered TCS exposure caused pyroptosis and its associated IL-1ß would be the reason for Fxr reduction mediated by NF-κB. NF-κB blocking by dimethylaminoparthenolide ameliorated TCS induced BA disorder which confirmed the contribution of NF-κB in Fxr repression. To sum up, our findings conclud TCS-caused BA disorder is attributed to Fxr inhibition, which is regulated by the IL-1ß-NF-κB signaling pathway. Hence, we suggest Fxr would be a potential target for abnormal BA stimulated by TCS and its analogs.


Asunto(s)
Antiinfecciosos Locales , Ácidos y Sales Biliares , Transducción de Señal , Triclosán , Animales , Masculino , Ratones , Antiinfecciosos Locales/toxicidad , Ácidos y Sales Biliares/metabolismo , Interleucina-1beta/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Triclosán/toxicidad
12.
J Health Popul Nutr ; 43(1): 138, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227884

RESUMEN

INTRODUCTION: Exposure to endocrine disrupting chemicals (EDCs) can result in alterations of natural hormones in the body. The aim of this review article is to highlight the knowledge about EDCs and obesity. METHODS: A scoping review of the electronic literature was performed using PubMed platform for studies on EDCs and obesity published between the years 2013-2023. A total of 10 systematic reviews and meta-analysis studies met our inclusion criteria on more prominent EDCs focusing mainly on bisphenols, including parabens, triclosan, and phthalates, and their association with obesity. DESIGN: Scoping review. RESULTS: EDCs, mostly bisphenols and phthalates, are related to health effects, while there is less information on the impact of parabens and triclosan. A series of negative physiological effects involving obesogenic, diabetogenic, carcinogenic, and inflammatory mechanisms as well as epigenetic and microbiota modulations was related to a prolonged EDCs exposure. A more profound research of particular pollutants is required to illuminate the accelerating effects of particular EDCs, mixtures or their metabolites on the mechanism of the development of obesity. CONCLUSION: Considering the characteristics of EDCs and the heterogeneity of studies, it is necessary to design specific studies of effect tracking and, in particular, education about daily preventive exposure to EDCs for the preservation of long-term public health.


Asunto(s)
Disruptores Endocrinos , Obesidad , Ácidos Ftálicos , Humanos , Disruptores Endocrinos/efectos adversos , Obesidad/prevención & control , Ácidos Ftálicos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Fenoles/efectos adversos , Parabenos/efectos adversos , Contaminantes Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Triclosán/efectos adversos , Compuestos de Bencidrilo/efectos adversos , Femenino
13.
Environ Sci Technol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261290

RESUMEN

Triclosan (TCS), a widely used antimicrobial agent, has been implicated in the oxidative stress induction and disruption of cellular processes in aquatic organisms. As TCS is ubiquitous in the aquatic environment, many previous studies have documented the effects of exposure to TCS on aquatic organisms. Nevertheless, most of the research has concentrated on the molecular and physiological responses of TCS, but there are still limited studies on the function of specific genes and the consequences of their absence. In this study, we focused on p53, a gene that is crucial for molecular responses such as autophagy and apoptosis as a result of TCS exposure. In order to ascertain the role and impact of the p53 gene in TCS-induced molecular responses, we examined the molecular responses to TCS-induced oxidative stress in wild-type (WT) and CRISPR/Cas9-mediated p53 mutant (MT) water fleas. The result has been accomplished by examining changes in molecular mechanisms, including in vivo end points, enzyme activities, adenosine triphosphate release rate, and apoptosis, to determine the role and impact of the p53 gene on TCS-induced molecular responses. The results indicated that the sensitivity of MT water fleas to TCS was greater than that of WT water fleas; however, the difference in sensitivity was significant at short exposures within 48 h and decreased toward 48 h. Accordingly, when we confirmed the oxidative stress after 24 h of exposure, the oxidative stress to TCS exposure was stronger in the MT group, with an imbalance of redox. To identify the mechanisms of tolerance to TCS in WT and MT Daphnia magna, we checked mitochondrial and ER-stress-related biomarkers and found an increase in apoptosis and greater sensitivity to TCS exposure in the MT group than in the WT. Our results suggest that the absence of p53 caused alterations in molecular processes in response to TCS exposure, resulting in increased sensitivity to TCS, and that p53 plays a critical role in response to TCS exposure.

14.
Cureus ; 16(8): e66654, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39262565

RESUMEN

Aim and objectives The purpose of this study is to compare the incidence of surgical site infection (SSI) rates in abdominal wound closure utilizing antibacterial-coated (triclosan-coated) suture material versus conventional suture material with subcutaneous antibacterial infiltration along the incision line. Materials and method This prospective and comparative (randomized, non-blinded clinical trial) was conducted at the Postgraduate Department of Surgery, Swaroop Rani Nehru Hospital, associated with Motilal Nehru Medical College, Prayagraj, India. The sample size was calculated to be one hundred. The patients in Group A underwent laparotomy using polyglactin 910 coated with triclosan. The patients in Group B underwent normal suture closure and local infiltration of broad-spectrum antibiotics (1 gram of ceftriaxone in 10 ml distilled water, along with the incision). Results There was no discernible difference between the various groups on postoperative day (POD) 14, 21, and 30. In Group A, 100.0% of individuals had healed wound status (POD 30). Group B had healed wound status among the 96.0% of members (POD 30). Twenty percent of the people in Group A had SSI whereas 38.0% of the participants in Group B had SSI. There was no discernible difference between the two groups regarding the distribution of culture (χ² = 7.741, p = 0.127). Conclusion Triclosan-coated sutures are more effective than subcutaneous antibiotic infiltration along the incision line in lowering the frequency of SSI during primary laparotomy wound closure.

15.
J Hazard Mater ; 479: 135734, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244982

RESUMEN

Intestinal epithelium has the largest surface of human body, contributes dramatically to defense of toxicant-associated intestinal injury. Triclosan (TCS) and triclocarban (TCC), extensively employed as antibacterial agents in personal care products (PCPs) and healthcare facilities, caused serious damage to human intestine. However, the role of the intestinal epithelium in TCS/TCC-induced intestinal toxicity and its underlying toxic mechanisms remain incompletely understood. In this study, a novel 3D intestinal organoid model was utilized to investigate that exposure to TCS/TCC led to a compromised self-renewal and differentiation of intestinal stem cells (ISCs). Consequently, this disrupted intestinal epithelial homeostasis ultimately caused a reduction in nutrient absorption and deficient of epithelial defense to exogenous and endogenous pathogens stimulation. The inhibition of the Wnt signaling pathway in intestinal stem cell was contributed to the intestinal toxicity of TCS/TCC. These results were further confirmed in vivo with mice exposed to TCS/TCC. The findings of this study provide evidence that TCS/TCC possess the capacity to disturb the homeostasis of the intestinal epithelium, and emphasize the credibility of organoids as a valuable model for toxicological studies, as they could faithfully recapitulate in vivo phenomena.


Asunto(s)
Carbanilidas , Homeostasis , Mucosa Intestinal , Intestino Delgado , Organoides , Células Madre , Triclosán , Triclosán/toxicidad , Carbanilidas/toxicidad , Organoides/efectos de los fármacos , Animales , Homeostasis/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Células Madre/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Antiinfecciosos Locales/toxicidad , Ratones , Ratones Endogámicos C57BL , Humanos , Masculino , Diferenciación Celular/efectos de los fármacos
16.
Environ Pollut ; 361: 124901, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243936

RESUMEN

Triclosan, a widely used antimicrobial agent, is frequently detected in aquatic environments, prompting concerns about its toxic effects on aquatic species. Understanding its occurrence and ecological risks is crucial for mitigating triclosan contamination, formulating water quality criteria, and protecting aquatic organisms. This study systematically analyzed triclosan occurrence and ecological risks in surface water across China using the Risk Quotient methodology. A total of 139 and 134 data points were collected for triclosan concentrations and toxicities of aquatic organisms, respectively. Triclosan concentrations in surface water across China ranged from 0.06 to 612 ng/L. Higher triclosan levels were observed in Eastern China compared to Central and Western China, with the average concentration being 4.21- and 7.25-fold higher, respectively. Specifically, the Southeast Rivers Basin (132.98 ng/L) and Pearl River Basin (86.64 ng/L) exhibited maximum triclosan levels, 2.57-19.58 times higher than the other river basins. Further analysis revealed elevated triclosan concentrations in small rivers and surface water within residential areas, with values of 246.1 ng/L in Zhejiang, 86.64 ng/L in Guangdong, 67.58 ng/L in Jiangsu, and 127.99 ng/L in Beijing. Additionally, species sensitivity distribution curves indicated that algae was the most sensitive species to triclosan exposure, followed by invertebrates, while fish exhibited the highest tolerance. The Predicted No-Effect Concentration for the algae, invertebrates, fish, and combined aquatic species were determined to be 0.09, 2.95, 4.44, and 1.51 µg/L, respectively. The occurrence of triclosan in surface water across China did not pose widespread ecological risks. However, targeted monitoring and mitigation efforts are needed, especially in highly developed regions. This study provides crucial insights into the status of triclosan contaminations and risks in China and contributes valuable knowledge to global efforts aimed at safeguarding aquatic ecosystems.

17.
Environ Res ; 263(Pt 1): 119975, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265761

RESUMEN

BACKGROUND: Endocrine-disrupting chemicals (EDCs) have been linked to adverse health outcomes and prenatal exposure is known to impact infant and child development. However, few studies have assessed early developmental consequences of prenatal exposure to two common phenolic compounds, benzophenone-3 (BP-3) and triclosan (TCS). OBJECTIVE: We evaluated the relationship of prenatal exposure to BP-3 and TCS with infant cognition at 7.5 months via performance on a visual recognition memory (VRM) task. METHODS: Drawing from the Illinois Kids Development Study (IKIDS) cohort, prenatal exposure to BP-3 and TCS was assessed in pools of five urine samples collected from each woman across pregnancy. Cognition was measured in 310 infants using a VRM task assessing information processing speed, attention, and recognition memory through infrared eye-tracking. Generalized linear regression estimated exposure-outcome associations, followed by stratification to investigate modification of associations by infant sex and stimulus set. RESULTS: Sampled mothers were more likely to be white, college educated, and middle or high income relative to the US population. Mean chemical exposures were significantly higher than those of adult women in the NHANES cohort. In models adjusted for income, gestational age at birth, and testing age, prenatal BP-3 exposure was associated with an increase in run duration (average time spent looking at the stimuli before looking away) (ß = 0.0011, CI -0.0001:0.0022), indicating slower information processing speed, while TCS was associated with significantly longer time to familiarization (time to accrue a total of 20 s of looking time to the stimuli) (ß = 0.0686, CI 0.0203:0.1168, p < 0.01), indicating poorer attention. Stratum-specific analyses isolated both effects to male infants who viewed the second of two stimulus sets. CONCLUSION: Higher prenatal exposure to triclosan was associated with poorer attention in infancy, while benzophenone-3 may be associated with slower information processing speed, particularly among males.

18.
Environ Sci Pollut Res Int ; 31(45): 56550-56564, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39271616

RESUMEN

Triclosan (TCS), an emerging pollutant, is a notable contributor to adverse impacts on aquatic organisms due to its widespread use during COVID-19 and hydrophobic properties. There is extensive documented literature on TCS toxicity in commercially important fish species; however, studies on aquatic plants remain limited. In this prelude, the present study aims to evaluate the effect of TCS on Lemna minor, a commercially important aquatic plant species for 7 days. The results showed dose-dependent significant alterations in growth, pigments and stress enzymes of L. minor at varied concentrations of TCS (1 to 8 mg L-1). Median inhibitory concentration (IC50) was found to be 4.813 mg L-1. Total chlorophyll and carotenoid levels decreased 73.11 and 81.83%, respectively after 7 days of TCS exposure. A significant increase in catalase and superoxide dismutase activity was observed in TCS exposed groups as compared to the control. Bioconcentration factor was found to be in the range of 5.855 to 37.129 signifying TCS ability to accumulate and transfer through the food chain. Scanning electron microscopy (SEM) analysis showed deformation in the cell surface and alteration of stroma morphology of TCS exposed groups. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study also revealed that higher concentrations of TCS could cause alteration in the functional groups in the plant. This study demonstrates that TCS negatively impacts the growth and metabolism of primary producers, offering crucial insights into its interactions with aquatic plants and establishing baseline information essential for crafting effective mitigation strategies for TCS contamination in aquatic environments.


Asunto(s)
Araceae , Estrés Oxidativo , Triclosán , Contaminantes Químicos del Agua , Triclosán/toxicidad , Estrés Oxidativo/efectos de los fármacos , Araceae/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Ecotoxicología , Clorofila/metabolismo
19.
Environ Int ; 192: 109032, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39317008

RESUMEN

Ingestion of breast milk represents the primary exposure pathway for endocrine-disrupting chemicals (EDCs) in newborns. To elucidate the associated risks, it is essential to quantify EDC levels in both breast milk and infant urine. This study measured the concentrations of 13 EDCs, including parabens (methyl paraben (MP), ethyl paraben (EP), propyl paraben (PP), iso-propyl paraben, butyl paraben, and iso-butyl paraben), bisphenols (bisphenol A (BPA), bisphenol F, bisphenol S, bisphenol AF, and bisphenol Z), triclosan (TCS), and triclocarban, in breast milk and infant urine to assess their potential health effects and endocrine disruption risks. In total, 1 014 breast milk samples were collected from 20 cities across China, along with 144 breast milk samples and 134 urine samples from a mother-infant cohort in Hangzhou. The EDCs were detected using ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry. Endocrine-disrupting potency was evaluated using a predictive method based on EDC affinity for 15 hormone receptor proteins. The toxicological priority index (ToxPi), incorporating population exposure data, was employed to assess health risks associated with exposure to multiple EDCs. Among the 13 EDCs, MP, EP, PP, BPA, and TCS were detected in over 50 % of breast milk samples, with the highest median concentrations observed for MP (0.37 ng/mL), EP (0.29 ng/mL), and BPA (0.17 ng/mL). Across the 20 cities, 0 %-40 % of infants had a hazard index (HI) exceeding 1. Based on affinity prediction analysis and estimated exposure, cumulative endocrine disruption risk intensity was ranked as MP > TCS > BPA > EP > PP. This research highlights the extensive exposure of Chinese infants to EDCs, offering a detailed analysis of their varying endocrine disruption potencies and underscoring the significant health risks associated with EDCs in breast milk.


Asunto(s)
Compuestos de Bencidrilo , Disruptores Endocrinos , Leche Humana , Parabenos , Humanos , Disruptores Endocrinos/análisis , China , Leche Humana/química , Femenino , Lactante , Parabenos/análisis , Compuestos de Bencidrilo/análisis , Triclosán/análisis , Triclosán/orina , Recién Nacido , Lactancia Materna , Medición de Riesgo , Fenoles/análisis , Carbanilidas/análisis , Adulto , Cosméticos/análisis , Preparaciones Farmacéuticas/análisis , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis
20.
Environ Int ; 191: 108966, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39167854

RESUMEN

Triclosan (TCS) is an environmental pollutant. In recent years, there has been increasing level of concern regarding the potential toxicity of TCS in animals and humans, especially its effects on the nervous system. However, whether TCS induces ADHD-like behaviour and the mechanism by which it affects neural function are unclear. The impact of 60 days of continuous exposure to TCS on the behaviour of offspring rats was assessed in this research. According to the results of this study, TCS exposure led to ADHD-like behaviour in offspring rats and activated microglia in the prefrontal cortex (PFC), inducing inflammatory factor release. In vitro studies showed that TCS increased the levels of inflammatory cytokines, including interleukin (IL)-1ß, IL-6 and tumour necrosis factor (TNF)-α, in HMC3 cells. More importantly, we found that TCS regulated the STAT3 pathway by upregulating PKM2 via hnRNPA1. In summary, this study suggested that TCS can induce ADHD-like behaviour in offspring rats and continuously activate HMC3 microglia through the hnRNPA1-PKM2-STAT3 feedback loop, promoting inflammatory cytokine secretion.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Microglía , Factor de Transcripción STAT3 , Triclosán , Animales , Ratas , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Factor de Transcripción STAT3/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Triclosán/toxicidad , Masculino , Citocinas/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Femenino , Ratas Sprague-Dawley , Contaminantes Ambientales/toxicidad , Conducta Animal/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...