Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(27): e2400937, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38634714

RESUMEN

Alkali metal-air batteries (AMABs) promise ultrahigh gravimetric energy densities, while the inherent poor cycle stability hinders their practical application. To address this challenge, most previous efforts are devoted to advancing the air cathodes with high electrocatalytic activity. Recent studies have underlined the solid-liquid-gas triple-phase interface around the anode can play far more significant roles than previously acknowledged by the scientific community. Besides the bottlenecks of uncontrollable dendrite growth and gas evolution in conventional alkali metal batteries, the corrosive gases, intermediate oxygen species, and redox mediators in AMABs cause more severe anode corrosion and structural collapse, posing greater challenges to the stabilization of the anode triple-phase interface. This work aims to provide a timely perspective on the anode interface engineering for durable AMABs. Taking the Li-air battery as a typical example, this critical review shows the latest developed anode stabilization strategies, including formulating electrolytes to build protective interphases, fabricating advanced anodes to improve their anti-corrosion capability, and designing functional separator to shield the corrosive species. Finally, the remaining scientific and technical issues from the prospects of anode interface engineering are highlighted, particularly materials system engineering, for the practical use of AMABs.

2.
Nanomicro Lett ; 15(1): 75, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976391

RESUMEN

Lithium-sulfur batteries with liquid electrolytes have been obstructed by severe shuttle effects and intrinsic safety concerns. Introducing inorganic solid-state electrolytes into lithium-sulfur systems is believed as an effective approach to eliminate these issues without sacrificing the high-energy density, which determines sulfide-based all-solid-state lithium-sulfur batteries. However, the lack of design principles for high-performance composite sulfur cathodes limits their further application. The sulfur cathode regulation should take several factors including the intrinsic insulation of sulfur, well-designed conductive networks, integrated sulfur-electrolyte interfaces, and porous structure for volume expansion, and the correlation between these factors into account. Here, we summarize the challenges of regulating composite sulfur cathodes with respect to ionic/electronic diffusions and put forward the corresponding solutions for obtaining stable positive electrodes. In the last section, we also outlook the future research pathways of architecture sulfur cathode to guide the develop high-performance all-solid-state lithium-sulfur batteries.

3.
Small ; 19(23): e2207675, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36897005

RESUMEN

The poor oxygen diffusion and sluggish oxygen reduction reaction (ORR) kinetics at multiphase interfaces in the cathode suppress the practical application of zinc-air batteries. Developing effective strategies to tackle the issue is of great significance for overcoming the performance bottleneck but remains challenging. Here, a multiscale hydrophobic surface is designed on the iron single-atom catalyst via a gas-phase fluorination-assisted method inspired by the structure of gas-trapping mastoids on lotus leaves. The hydrophobic Fe-FNC attains a higher peak power density of up to 226 mW cm-2 , a long durability of up close to 140 h, and better cyclic durability of up to 300 cycles compared to the corresponding Pt/C-based Zn-air battery. Experiments and theoretical calculations indicate that the formed more triple-phase interfaces and exposed isolated Fe-N4 sites are proposed as the governing factors in boosting electrocatalytic ORR activity and remarkable cycling durability for Zn-air batteries.

4.
Angew Chem Int Ed Engl ; 62(19): e202302128, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36849633

RESUMEN

Gas-liquid-solid triple-phase interfaces (TPI) are essential for promoting electrochemical CO2 reduction, but it remains challenging to maximize their efficiency while integrating other desirable properties conducive to electrocatalysis. Herein, we report the elaborate design and fabrication of a superhydrophobic, conductive, and hierarchical wire membrane in which core-shell CuO nanospheres, carbon nanotubes (CNT), and polytetrafluoroethylene (PTFE) are integrated into a wire structure (designated as CuO/F/C(w); F, PTFE; C, CNT; w, wire) to maximize their respective functions. The realized architecture allows almost all CuO nanospheres to be exposed with effective TPI and good contact to conductive CNT, thus increasing the local CO2 concentration on the CuO surface and enabling fast electron/mass transfer. As a result, the CuO/F/C(w) membrane attains a Faradaic efficiency of 56.8 % and a partial current density of 68.9 mA cm-2 for multicarbon products at -1.4 V (versus the reversible hydrogen electrode) in the H-type cell, far exceeding 10.1 % and 13.4 mA cm-2 for bare CuO.

5.
Small ; 18(50): e2205323, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36319467

RESUMEN

The electrochemical CO2 reduction reaction (CO2 RR) is a promising strategy for closing the carbon cycle. Increasing the current density ( J) for CO2 RR products is a critical requirement for the social implementation of this technology. Herein, nanoscale tin-oxide-modified copper-oxide foam is hybridized with a carbon-based gas-diffusion electrode (GDE). Using the resultant electrode, the Jformate is increased to -1152 mA cm-2 at -1.2 V versus RHE in 1 m KOH, which is the highest value for CO2 -to-formate electrolysis. The formate faradaic efficiency (FEformate ) reaches ≈99% at -0.6 V versus RHE. The achievement of ultra-high-rate formate production is attributable to the following factors: i) homogeneously-modified Sn atoms suppressing H2 evolution and ii) the hydrophobic carbon nanoparticles on GDEs penetrating the macroporous structure of the foam causing the increase in the thickness of triple-phase interface. Additionally, the FEformate remains at ≈70% under a high J of -1.0 A cm-2 for more than 20 h.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...