Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.259
Filtrar
1.
Front Oncol ; 14: 1433225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351348

RESUMEN

Purpose: The 3D U-Net deep neural network structure is widely employed for dose prediction in radiotherapy. However, the attention to the network depth and its impact on the accuracy and robustness of dose prediction remains inadequate. Methods: 92 cervical cancer patients who underwent Volumetric Modulated Arc Therapy (VMAT) are geometrically augmented to investigate the effects of network depth on dose prediction by training and testing three different 3D U-Net structures with depths of 3, 4, and 5. Results: For planning target volume (PTV), the differences between predicted and true values of D98, D99, and Homogeneity were statistically 1.00 ± 0.23, 0.32 ± 0.72, and -0.02 ± 0.02 for the model with a depth of 5, respectively. Compared to the other two models, these parameters were also better. For most of the organs at risk, the mean and maximum differences between the predicted values and the true values for the model with a depth of 5 were better than for the other two models. Conclusions: The results reveal that the network model with a depth of 5 exhibits superior performance, albeit at the expense of the longest training time and maximum computational memory in the three models. A small server with two NVIDIA GeForce RTX 3090 GPUs with 24 G of memory was employed for this training. For the 3D U-Net model with a depth of more than 5 cannot be supported due to insufficient training memory, the 3D U-Net neural network with a depth of 5 is the commonly used and optimal choice for small servers.

2.
Sci Rep ; 14(1): 23237, 2024 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369017

RESUMEN

In the domain of medical imaging, the advent of deep learning has marked a significant progression, particularly in the nuanced area of periodontal disease diagnosis. This study specifically targets the prevalent issue of scarce labeled data in medical imaging. We introduce a novel unsupervised few-shot learning algorithm, meticulously crafted for classifying periodontal diseases using a limited collection of dental panoramic radiographs. Our method leverages UNet architecture for generating regions of interest (RoI) from radiographs, which are then processed through a Convolutional Variational Autoencoder (CVAE). This approach is pivotal in extracting critical latent features, subsequently clustered using an advanced algorithm. This clustering is key in our methodology, enabling the assignment of labels to images indicative of periodontal diseases, thus circumventing the challenges posed by limited datasets. Our validation process, involving a comparative analysis with traditional supervised learning and standard autoencoder-based clustering, demonstrates a marked improvement in both diagnostic accuracy and efficiency. For three real-world validation datasets, our UNet-CVAE architecture achieved up to average 14% higher accuracy compared to state-of-the-art supervised models including the vision transformer model when trained with 100 labeled images. This study not only highlights the capability of unsupervised learning in overcoming data limitations but also sets a new benchmark for diagnostic methodologies in medical AI, potentially transforming practices in data-constrained scenarios.


Asunto(s)
Aprendizaje Profundo , Enfermedades Periodontales , Radiografía Panorámica , Humanos , Enfermedades Periodontales/diagnóstico por imagen , Radiografía Panorámica/métodos , Algoritmos , Aprendizaje Automático no Supervisado , Procesamiento de Imagen Asistido por Computador/métodos
3.
Cancers (Basel) ; 16(20)2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39456576

RESUMEN

This study modifies the U-Net architecture for pixel-based segmentation to automatically classify lesions in laryngeal endoscopic images. The advanced U-Net incorporates five-level encoders and decoders, with an autoencoder layer to derive latent vectors representing the image characteristics. To enhance performance, a WGAN was implemented to address common issues such as mode collapse and gradient explosion found in traditional GANs. The dataset consisted of 8171 images labeled with polygons in seven colors. Evaluation metrics, including the F1 score and intersection over union, revealed that benign tumors were detected with lower accuracy compared to other lesions, while cancers achieved notably high accuracy. The model demonstrated an overall accuracy rate of 99%. This enhanced U-Net model shows strong potential in improving cancer detection, reducing diagnostic errors, and enhancing early diagnosis in medical applications.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39447592

RESUMEN

With the development of deep learning in the field of medical image segmentation, various network segmentation models have been developed. Currently, the most common network models in medical image segmentation can be roughly categorized into pure convolutional networks, Transformer-based networks, and networks combining convolution and Transformer architectures. However, when dealing with complex variations and irregular shapes in medical images, existing networks face issues such as incomplete information extraction, large model parameter sizes, high computational complexity, and long processing times. In contrast, models with lower parameter counts and complexity can efficiently, quickly, and accurately identify lesion areas, significantly reducing diagnosis time and providing valuable time for subsequent treatments. Therefore, this paper proposes a lightweight network named MCI-Net, with only 5.48M parameters, a computational complexity of 4.41, and a time complexity of just 0.263. By performing linear modeling on sequences, MCI-Net permanently marks effective features and filters out irrelevant information. It efficiently captures local-global information with a small number of channels, reduces the number of parameters, and utilizes attention calculations with exchange value mapping. This achieves model lightweighting and enables thorough interaction of local-global information within the computation, establishing an overall semantic relationship of local-global information. To verify the effectiveness of the MCI-Net network, we conducted comparative experiments with other advanced representative networks on five public datasets: X-ray, Lung, ISIC-2016, ISIC-2018, and capsule endoscopy and gastrointestinal segmentation. We also performed ablation experiments on the first four datasets. The experimental results outperformed the other compared networks, confirming the effectiveness of MCI-Net. This research provides a valuable reference for achieving lightweight, accurate, and high-performance medical image segmentation network models.

5.
Abdom Radiol (NY) ; 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39446167

RESUMEN

An adnexal mass, also known as a pelvic mass, is a growth that develops in or near the uterus, ovaries, fallopian tubes, and supporting tissues. For women suspected of having ovarian cancer, timely and accurate detection of a malignant pelvic mass is crucial for effective triage, referral, and follow-up therapy. While various deep learning techniques have been proposed for identifying pelvic masses, current methods are often not accurate enough and can be computationally intensive. To address these issues, this manuscript introduces an optimized Siamese circle-inspired neural network with deep linear graph attention (SCINN-DLGN) model designed for pelvic mass classification. The SCINN-DLGN model is intended to classify pelvic masses into three categories: benign, malignant, and healthy. Initially, real-time MRI pelvic mass images undergo pre-processing using semantic-aware structure-preserving median morpho-filtering to enhance image quality. Following this, the region of interest (ROI) within the pelvic mass images is segmented using an EfficientNet-based U-Net framework, which reduces noise and improves the accuracy of segmentation. The segmented images are then analysed using the SCINN-DLGN model, which extracts geometric features from the ROI. These features are classified into benign, malignant, or healthy categories using a deep clustering algorithm integrated into the linear graph attention model. The proposed system is implemented on a Python platform, and its performance is evaluated using real-time MRI pelvic mass datasets. The SCINN-DLGN model achieves an impressive 99.9% accuracy and 99.8% recall, demonstrating superior efficiency compared to existing methods and highlighting its potential for further advancement in the field.

6.
Comput Biol Med ; 183: 109273, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39442441

RESUMEN

Brain tumor diagnostics rely heavily on Magnetic Resonance Imaging (MRI) for accurate diagnosis and treatment planning due to its non-invasive nature and detailed soft tissue visualization. Integrating multiple MRI modalities enhances diagnostic precision by providing complementary perspectives on tumor characteristics and spatial relationships. However, acquiring specific modalities like T1 Contrast Enhanced (T1CE) can be challenging, as they require contrast agents and longer scan times, which can cause discomfort, particularly in vulnerable patient groups such as the elderly, pregnant women, and infants. In the medical imaging domain, researchers face significant challenges in developing robust models due to data scarcity and data sparsity. Data scarcity, arising from limited access to diverse datasets, complex annotation processes, privacy concerns, and the difficulty of acquiring certain modalities in some patient groups, impedes the development of comprehensive brain tumor segmentation models. Data sparsity, driven by the highly imbalanced distribution between tumor subregions and background levels in annotated labels, complicates accurate segmentation. The study addresses these challenges by generating synthetic T1CE scans from T1 using an image-to-image translation framework, thereby reducing the reliance on hard-to-acquire modalities. A novel patch-based data sampling approach, Adaptive Random Patch Selection (ARPS), is introduced to combat data sparsity, ensuring detailed segmentation of intricate tumor structures while maintaining context through overlapping patches and context-aware sampling strategies. The impact of these synthetic images on segmentation performance is also assessed, emphasizing their role in addressing situations where certain modalities cannot be acquired. When integrated into the nnUNet model, this approach achieves a dice similarity coefficient (DSC) of 86.47, demonstrating its efficacy in handling complex MRI scans of brain tumors. An ablation study is also conducted to assess the individual contributions of the translated images and the proposed data sampling approach. This comprehensive evaluation allows us to understand the effectiveness of ARPS and the potential synergy between multi-modal translation and brain tumor segmentation.

7.
Quant Imaging Med Surg ; 14(10): 7249-7264, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39429586

RESUMEN

Background: The precise identification of the position and form of a tumor mass can improve early diagnosis and treatment. However, due to the complicated tumor categories and varying sizes and forms, the segregation of brain gliomas and their internal sub-regions is still very challenging. This study sought to design a new deep-learning network based on three-dimensional (3D) U-Net to address its shortcomings in brain tumor segmentation (BraTS) tasks. Methods: We developed a 3D dilated multi-scale residual attention U-Net (DMRA-U-Net) model for magnetic resonance imaging (MRI) BraTS. It used dilated convolution residual (DCR) modules to better process shallow features, multi-scale convolution residual (MCR) modules in the bottom encoding path to create richer and more comprehensive feature expression while reducing overall information loss or blurring, and a channel attention (CA) module between the encoding and decoding paths to address the problem of retrieving and preserving important features during the processing of deep feature maps. Results: The BraTS 2018-2021 datasets served as the training and evaluation datasets for this study. Further, the proposed architecture was assessed using metrics such as the dice similarity coefficient (DSC), Hausdorff distance (HD), and sensitivity (Sens). The DMRA U-Net model segments the whole tumor (WT), and the tumor core (TC), and the enhancing tumor (ET) regions of brain tumors. Using the suggested architecture, the DSCs were 0.9012, 0.8867, and 0.8813, the HDs were 28.86, 13.34, and 10.88 mm, and the Sens was 0.9429, 0.9452, and 0.9303 for the WT, TC, and ET regions, respectively. Compared to the traditional 3D U-Net, the DSC of the DMRA U-Net increased by 4.5%, 2.5%, and 0.8%, the HD of the DMRA U-Net decreased by 21.83, 16.42, and 10.00, the Sens of the DMRA U-Net increased by 0.4%, 0.7%, and 1.4% for the WT, TC, and ET regions, respectively. Further, the results of the statistical comparison of the performance indicators revealed that our model performed well generally in the segmentation of the WT, TC, and ET regions. Conclusions: We developed a promising tumor segmentation model. Our solution is open sourced and is available at: https://github.com/Gold3nk/dmra-unet.

8.
Biomedicines ; 12(10)2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39457700

RESUMEN

Background: Brain tumors are highly complex, making their detection and classification a significant challenge in modern medical diagnostics. The accurate segmentation and classification of brain tumors from MRI images are crucial for effective treatment planning. This study aims to develop an advanced neural network architecture that addresses these challenges. Methods: We propose L-net, a novel architecture combining U-net for tumor boundary segmentation and a convolutional neural network (CNN) for tumor classification. These two units are coupled such a way that the CNN classifies the MRI images based on the features extracted by the U-net while segmenting the tumor, instead of relying on the original input images. The model is trained on a dataset of 3064 high-resolution MRI images, encompassing gliomas, meningiomas, and pituitary tumors, ensuring robust performance across different tumor types. Results: L-net achieved a classification accuracy of up to 99.6%, surpassing existing models in both segmentation and classification tasks. The model demonstrated effectiveness even with lower image resolutions, making it suitable for diverse clinical settings. Conclusions: The proposed L-net model provides an accurate and unified approach to brain tumor segmentation and classification. Its enhanced performance contributes to more reliable and precise diagnosis, supporting early detection and treatment in clinical applications.

9.
Bioengineering (Basel) ; 11(10)2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39451407

RESUMEN

This paper presents a deep-learning architecture for segmenting retinal fluids in patients with Diabetic Macular Oedema (DME) and Age-related Macular Degeneration (AMD). Accurate segmentation of multiple fluid types is critical for diagnosis and treatment planning, but existing techniques often struggle with precision. We propose an encoder-decoder network inspired by U-Net, processing enhanced OCT images and their edge maps. The encoder incorporates Residual and Inception modules with an autoencoder-based multiscale attention mechanism to extract detailed features. Our method shows superior performance across several datasets. On the RETOUCH dataset, the network achieved F1 Scores of 0.82 for intraretinal fluid (IRF), 0.93 for subretinal fluid (SRF), and 0.94 for pigment epithelial detachment (PED). The model also performed well on the OPTIMA and DUKE datasets, demonstrating high precision, recall, and F1 Scores. This architecture significantly enhances segmentation accuracy and edge precision, offering a valuable tool for diagnosing and managing retinal diseases. Its integration of dual-input processing, multiscale attention, and advanced encoder modules highlights its potential to improve clinical outcomes and advance retinal disease treatment.

10.
Sensors (Basel) ; 24(20)2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39460247

RESUMEN

This study proposed an improved full-scale aggregated MobileUNet (FA-MobileUNet) model to achieve more complete detection results of oil spill areas using synthetic aperture radar (SAR) images. The convolutional block attention module (CBAM) in the FA-MobileUNet was modified based on morphological concepts. By introducing the morphological attention module (MAM), the improved FA-MobileUNet model can reduce the fragments and holes in the detection results, providing complete oil spill areas which were more suitable for describing the location and scope of oil pollution incidents. In addition, to overcome the inherent category imbalance of the dataset, label smoothing was applied in model training to reduce the model's overconfidence in majority class samples while improving the model's generalization ability. The detection performance of the improved FA-MobileUNet model reached an mIoU (mean intersection over union) of 84.55%, which was 17.15% higher than that of the original U-Net model. The effectiveness of the proposed model was then verified using the oil pollution incidents that significantly impacted Taiwan's marine environment. Experimental results showed that the extent of the detected oil spill was consistent with the oil pollution area recorded in the incident reports.


Asunto(s)
Monitoreo del Ambiente , Contaminación por Petróleo , Radar , Contaminación por Petróleo/análisis , Monitoreo del Ambiente/métodos , Taiwán , Algoritmos
11.
Diagnostics (Basel) ; 14(19)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39410638

RESUMEN

Background/Objectives: Lung and cardiovascular diseases are leading causes of mortality worldwide, yet early detection remains challenging due to the subtle symptoms. Digital clubbing, characterized by the bulbous enlargement of the fingertips, serves as an early indicator of these diseases. This study aims to develop an automated system for detecting digital clubbing using deep-learning models for real-time monitoring and early intervention. Methods: The proposed system utilizes the YOLOv8 model for object detection and U-Net for image segmentation, integrated with the ESP32-CAM development board to capture and analyze finger images. The severity of digital clubbing is determined using a custom algorithm based on the Lovibond angle theory, categorizing the condition into normal, mild, moderate, and severe. The system was evaluated using 1768 images and achieved cloud-based and real-time processing capabilities. Results: The system demonstrated high accuracy (98.34%) in real-time detection with precision (98.22%), sensitivity (99.48%), and specificity (98.22%). Cloud-based processing achieved slightly lower but robust results, with an accuracy of 96.38%. The average processing time was 0.15 s per image, showcasing its real-time potential. Conclusions: This automated system provides a scalable and cost-effective solution for the early detection of digital clubbing, enabling timely intervention for lung and cardiovascular diseases. Its high accuracy and real-time capabilities make it suitable for both clinical and home-based health monitoring.

12.
Ultrasonics ; 145: 107479, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39366205

RESUMEN

In ultrasound image diagnosis, single plane-wave imaging (SPWI), which can acquire ultrasound images at more than 1000 fps, has been used to observe detailed tissue and evaluate blood flow. SPWI achieves high temporal resolution by sacrificing the spatial resolution and contrast of ultrasound images. To improve spatial resolution and contrast in SPWI, coherent plane-wave compounding (CPWC) is used to obtain high-quality ultrasound images, i.e., compound images, by coherent addition of radio frequency (RF) signals acquired by transmitting plane waves in different directions. Although CPWC produces high-quality ultrasound images, their temporal resolution is lower than that of SPWI. To address this problem, some methods have been proposed to reconstruct a ultrasound image comparable to a compound image from RF signals obtained by transmitting a small number of plane waves in different directions. These methods do not fully consider the properties of RF signals, resulting in lower image quality compared to a compound image. In this paper, we propose methods to reconstruct high-quality ultrasound images in SPWI by considering the characteristics of RF signal of a single plane wave to obtain ultrasound images with image quality comparable to CPWC. The proposed methods employ encoder-decoder models of 1D U-Net, 2D U-Net, and their combination to generate the high-quality ultrasound images by minimizing the loss that considers the point spread effect of plane waves and frequency spectrum of RF signals in training. We also create a public large-scale SPWI/CPWC dataset for developing and evaluating deep-learning methods. Through a set of experiments using the public dataset and our dataset, we demonstrate that the proposed methods can reconstruct higher-quality ultrasound images from RF signals in SPWI than conventional method.

13.
Heliyon ; 10(19): e38287, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39397908

RESUMEN

The primary challenge in diagnosing ocular diseases in canines based on images lies in developing an accurate and reliable machine learning method capable of effectively segmenting and diagnosing these conditions through image analysis. Addressing this challenge, the study focuses on developing and rigorously evaluating a machine learning model for diagnosing ocular diseases in canines, employing the U-Net neural network architecture as a foundational element of this investigation. Through this extensive evaluation, the authors identified a model that exhibited good reliability, achieving prediction scores with an Intersection over Union (IoU) exceeding 80 %, as measured by the Jaccard index. The research methodology encompassed a systematic exploration of various neural network backbones (VGG, ResNet, Inception, EfficientNet) and the U-Net model, combined with an extensive model selection process and an in-depth analysis of a custom training dataset consisting of historical images of different medical symptoms and diseases in dog eyes. The results indicate a fairly high degree of accuracy in the segmentation and diagnosis of ocular diseases in canines, demonstrating the model's effectiveness in real-world applications. In conclusion, this potentially makes a significant contribution to the field by utilizing advanced machine-learning techniques to develop image-based diagnostic routines in veterinary ophthalmology. This model's successful development and validation offer a promising new tool for veterinarians and pet owners, enhancing early disease detection and improving health outcomes for canine patients.

14.
BMC Med Imaging ; 24(1): 275, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394589

RESUMEN

Early screening methods for the thyroid gland include palpation and imaging. Although palpation is relatively simple, its effectiveness in detecting early clinical signs of the thyroid gland may be limited, especially in children, due to the shorter thyroid growth time. Therefore, this constitutes a crucial foundational work. However, accurately determining the location and size of the thyroid gland in children is a challenging task. Accuracy depends on the experience of the ultrasound operator in current clinical practice, leading to subjective results. Even among experts, there is poor agreement on thyroid identification. In addition, the effective use of ultrasound machines also relies on the experience of the ultrasound operator in current clinical practice. In order to extract sufficient texture information from pediatric thyroid ultrasound images while reducing the computational complexity and number of parameters, this paper designs a novel U-Net-based network called DC-Contrast U-Net, which aims to achieve better segmentation performance with lower complexity in medical image segmentation. The results show that compared with other U-Net-related segmentation models, the proposed DC-Contrast U-Net model achieves higher segmentation accuracy while improving the inference speed, making it a promising candidate for deployment in medical edge devices in clinical applications in the future.


Asunto(s)
Glándula Tiroides , Ultrasonografía , Humanos , Ultrasonografía/métodos , Glándula Tiroides/diagnóstico por imagen , Niño , Preescolar , Interpretación de Imagen Asistida por Computador/métodos , Lactante , Femenino , Redes Neurales de la Computación , Adolescente , Masculino , Algoritmos
15.
MethodsX ; 13: 102995, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39435045

RESUMEN

The segmentation of pancreas and pancreatic tumor remain a persistent challenge for radiologists. Consequently, it is essential to develop automated segmentation methods to address this task. U-Net based models are most often used among various deep learning-based techniques in tumor segmentation. This paper introduces an innovative hybrid two-stage U-Net model for segmenting both the pancreas and pancreatic tumors. The optimization technique, used in this approach, involves a combination of meta-heuristic optimization algorithms namely, Grey Wolf Border Collie Optimization (GWBCO) technique, combining the Grey Wolf Optimization algorithm and the Border Collie Optimization algorithm. Our approach is evaluated using key parameters, such as Dice Similarity Coefficient (DSC), Jaccard Index (JI), sensitivity, specificity and precision to assess its effectiveness and achieves a DSC of 93.33 % for pancreas segmentation. Additionally, the model also achieves high DSC of 91.46 % for pancreatic tumor segmentation. This method helps in improving the diagnostic accuracy and assists medical professionals to provide treatment at an early stage with precise intervention. The method offers•Two-stage U-Net model addresses both pancreas and tumor segmentation.•Combination of two metaheuristic optimization algorithms, Grey Wolf and Border Collie for enhanced performance.•High dice similarity coefficient for pancreas and tumor segmentation.

16.
J Xray Sci Technol ; 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39422983

RESUMEN

BACKGROUND: UNet has achieved great success in medical image segmentation. However, due to the inherent locality of convolution operations, UNet is deficient in capturing global features and long-range dependencies of polyps, resulting in less accurate polyp recognition for complex morphologies and backgrounds. Transformers, with their sequential operations, are better at perceiving global features but lack low-level details, leading to limited localization ability. If the advantages of both architectures can be effectively combined, the accuracy of polyp segmentation can be further improved. METHODS: In this paper, we propose an attention and convolution-augmented UNet-Transformer Network (ACU-TransNet) for polyp segmentation. This network is composed of the comprehensive attention UNet and the Transformer head, sequentially connected by the bridge layer. On the one hand, the comprehensive attention UNet enhances specific feature extraction through deformable convolution and channel attention in the first layer of the encoder and achieves more accurate shape extraction through spatial attention and channel attention in the decoder. On the other hand, the Transformer head supplements fine-grained information through convolutional attention and acquires hierarchical global characteristics from the feature maps. RESULTS: mcU-TransNet could comprehensively learn dataset features and enhance colonoscopy interpretability for polyp detection. CONCLUSION: Experimental results on the CVC-ClinicDB and Kvasir-SEG datasets demonstrate that mcU-TransNet outperforms existing state-of-the-art methods, showcasing its robustness.

17.
Neural Netw ; 181: 106765, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39357269

RESUMEN

SNNs are gaining popularity in AI research as a low-power alternative in deep learning due to their sparse properties and biological interpretability. Using SNNs for dense prediction tasks is becoming an important research area. In this paper, we firstly proposed a novel modification on the conventional Spiking U-Net architecture by adjusting the firing positions of neurons. The modified network model, named Analog Spiking U-Net (AS U-Net), is capable of incorporating the Convolutional Block Attention Module (CBAM) into the domain of SNNs. This is the first successful implementation of CBAM in SNNs, which has the potential to improve SNN model's segmentation performance while decreasing information loss. Then, the proposed AS U-Net (with CBAM&ViT) is trained by direct encoding on a comprehensive dataset obtained by merging several diabetic retinal vessel segmentation datasets. Based on the experimental results, the provided SNN model achieves the highest segmentation accuracy in retinal vessel segmentation for diabetes mellitus, surpassing other SNN-based models and most ANN-based related models. In addition, under the same structure, our model demonstrates comparable performance to the ANN model. And then, the novel model achieves state-of-the-art(SOTA) results in comparative experiments when both accuracy and energy consumption are considered (Fig. 1). At the same time, the ablative analysis of CBAM further confirms its feasibility and effectiveness in SNNs, which means that a novel approach could be provided for subsequent deployment and hardware chip application. In the end, we conduct extensive generalization experiments on the same type of segmentation task (ISBI and ISIC), the more complex multi-segmentation task (Synapse), and a series of image generation tasks (MNIST, Day2night, Maps, Facades) in order to visually demonstrate the generality of the proposed method.

18.
Neural Netw ; 181: 106754, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39362185

RESUMEN

Accurate segmentation of thyroid nodules is essential for early screening and diagnosis, but it can be challenging due to the nodules' varying sizes and positions. To address this issue, we propose a multi-attention guided UNet (MAUNet) for thyroid nodule segmentation. We use a multi-scale cross attention (MSCA) module for initial image feature extraction. By integrating interactions between features at different scales, the impact of thyroid nodule shape and size on the segmentation results has been reduced. Additionally, we incorporate a dual attention (DA) module into the skip-connection step of the UNet network, which promotes information exchange and fusion between the encoder and decoder. To test the model's robustness and effectiveness, we conduct the extensive experiments on multi-center ultrasound images provided by 17 local hospitals. The model is trained using the federal learning mechanism to ensure privacy protection. The experimental results show that the Dice scores of the model on the data sets from the three centers are 0.908, 0.912 and 0.887, respectively. Compared to existing methods, our method demonstrates higher generalization ability on multi-center datasets and achieves better segmentation results.

19.
Sci Rep ; 14(1): 23641, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384820

RESUMEN

In low-level image processing, where the main goal is to reconstruct a clean image from a noise-corrupted version, image denoising continues to be a critical challenge. Although recent developments have led to the introduction of complex architectures to improve denoising performance, these models frequently have more parameters and higher computational demands. Here, we propose a new, simplified architecture called KU-Net, which is intended to achieve better denoising performance while requiring less complexity. KU-Net is an extension of the basic U-Net architecture that incorporates gradient information and noise residue from a Kalman filter. The network's ability to learn is improved by this deliberate incorporation, which also helps it better preserve minute details in the denoised images. Without using Image augmentation, the proposed model is trained on a limited dataset to show its resilience in restricted training settings. Three essential inputs are processed by the architecture: gradient estimations, the predicted noisy image, and the original noisy grey image. These inputs work together to steer the U-Net's encoding and decoding stages to generate high-quality denoised outputs. According to our experimental results, KU-Net performs better than traditional models, as demonstrated by its superiority on common metrics like the Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR). KU-Net notably attains a PSNR of 26.60 dB at a noise level of 50, highlighting its efficacy and potential for more widespread use in image denoising.

20.
Sci Rep ; 14(1): 23489, 2024 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379448

RESUMEN

Automated segmentation of biomedical image has been recognized as an important step in computer-aided diagnosis systems for detection of abnormalities. Despite its importance, the segmentation process remains an open challenge due to variations in color, texture, shape diversity and boundaries. Semantic segmentation often requires deeper neural networks to achieve higher accuracy, making the segmentation model more complex and slower. Due to the need to process a large number of biomedical images, more efficient and cheaper image processing techniques for accurate segmentation are needed. In this article, we present a modified deep semantic segmentation model that utilizes the backbone of EfficientNet-B3 along with UNet for reliable segmentation. We trained our model on Non-melanoma skin cancer segmentation for histopathology dataset to divide the image in 12 different classes for segmentation. Our method outperforms the existing literature with an increase in average class accuracy from 79 to 83%. Our approach also shows an increase in overall accuracy from 85 to 94%.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Semántica , Neoplasias Cutáneas , Piel , Humanos , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Procesamiento de Imagen Asistido por Computador/métodos , Piel/diagnóstico por imagen , Piel/patología , Aprendizaje Profundo , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...