Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Brain Res ; 242(5): 1149-1160, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38489023

RESUMEN

Hypofunctioning of NMDA receptors, and the resulting shift in the balance between excitation and inhibition, is considered a key process in the pathophysiology of schizophrenia. One important manifestation of this phenomenon is changes in neural oscillations, those above 30 Hz (i.e., gamma-band oscillations), in particular. Although both preclinical and clinical studies observed increased gamma activity following acute administration of NMDA receptor antagonists, the relevance of this phenomenon has been recently questioned given the reduced gamma oscillations typically observed during sensory and cognitive tasks in schizophrenia. However, there is emerging, yet contradictory, evidence for increased spontaneous gamma-band activity (i.e., at rest or under baseline conditions). Here, we use the sub-chronic phencyclidine (PCP) rat model for schizophrenia, which has been argued to model the pathophysiology of schizophrenia more closely than acute NMDA antagonism, to investigate gamma oscillations (30-100 Hz) in the medial prefrontal cortex of anesthetized animals. While baseline gamma oscillations were not affected, oscillations induced by train stimulation of the posterior dorsal CA1 (pdCA1) field of the hippocampus were enhanced in PCP-treated animals (5 mg/kg, twice daily for 7 days, followed by a 7-day washout period). This effect was reversed by pharmacological enhancement of endocannabinoid levels via systemic administration of URB597 (0.3 mg/kg), an inhibitor of the catabolic enzyme of the endocannabinoid anandamide. Intriguingly, the pharmacological blockade of CB1 receptors by AM251 unmasked a reduced gamma oscillatory activity in PCP-treated animals. The findings are consistent with the observed effects of URB597 and AM251 on behavioral deficits reminiscent of the symptoms of schizophrenia and further validate the potential for cannabinoid-based drugs as a treatment for schizophrenia.


Asunto(s)
Amidohidrolasas , Benzamidas , Carbamatos , Fenciclidina , Piperidinas , Esquizofrenia , Animales , Masculino , Ratas , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Ácidos Araquidónicos/metabolismo , Ácidos Araquidónicos/farmacología , Benzamidas/farmacología , Carbamatos/farmacología , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Ritmo Gamma/fisiología , Ritmo Gamma/efectos de los fármacos , Fenciclidina/farmacología , Piperidinas/farmacología , Alcamidas Poliinsaturadas/metabolismo , Alcamidas Poliinsaturadas/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Pirazoles/farmacología , Ratas Sprague-Dawley , Esquizofrenia/fisiopatología , Esquizofrenia/metabolismo , Esquizofrenia/tratamiento farmacológico
2.
Eur J Pharmacol ; 957: 175982, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37572942

RESUMEN

Ischemic stroke is a leading cause of death and disability, and medical treatments for ischemic stroke are very limited. URB597 is a potent and selective inhibitor of fatty acid amide hydrolase (FAAH). However, the effect of URB597 on ischemic stroke and the underlying molecular mechanisms remain little known. In this study, focal cerebral ischemia was induced by transient middle cerebral artery occlusion in mice. Our results showed that URB597 dose-dependently improved neurological function and reduced brain infarct volume and brain edema 24 h after brain ischemia. The most effective dose was 1 mg/kg and the therapeutic time window was within 3 h after ischemic stroke. To further investigate the underlying mechanism, necroptosis and autophagy flux were detected by Western blot and/or immunofluorescence staining with or without chloroquine, an autophagic flux inhibitor. Our results showed that URB597 promoted autophagic flux and reduced neuronal necroptosis after brain ischemia and these effects could be abolished by chloroquine. In addition, we found that peroxisome proliferator-activated receptor α (PPARα) antagonist GW6471 partly abolished the effect of URB597 against brain ischemia and URB597 upregulated the expressions of PPARα. In conclusion, URB597 exerts a neuroprotective effect in a dose- and time-dependent manner, and this effect may be related to its restoration of autophagic flux and inhibition of neuronal necroptosis. PPARα is involved in the neuroprotective effect of URB597. This study provides novel evidence that URB597 may be a promising agent for the clinical treatment of ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Ratas , Ratones , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , PPAR alfa/metabolismo , Necroptosis , Ratas Sprague-Dawley , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Autofagia , Cloroquina/farmacología , Cloroquina/uso terapéutico
3.
Biomed Pharmacother ; 165: 115194, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37499453

RESUMEN

The endocannabinoid system is prominently implicated in the control of cocaine reinforcement due to its relevant role in synaptic plasticity and neurotransmitter modulation in the mesocorticolimbic system. The inhibition of fatty acid amide hydrolase (FAAH), and the resulting increase in anandamide and other N-acylethanolamines, represents a promising strategy for reducing drug seeking. In the present study, we aimed to assess the effects of the FAAH inhibitor URB597 (1 mg/kg) on crucial features of cocaine addictive-like behaviour in mice. Therefore, we tested the effects of URB597 on acquisition of cocaine (0.6 mg/kg/inf) self-administration, compulsive-like cocaine intake and cue-induced drug-seeking behaviour during withdrawal. URB597 reduced cocaine intake under conditioned punishment while having no impact on acquisition. This result was associated to increased cannabinoid receptor 1 gene expression in the ventral striatum and medium spiny neurons activation in the nucleus accumbens shell. Moreover, URB597 mitigated cue-induced drug-seeking behaviour during prolonged abstinence and prevented the withdrawal-induced increase in FAAH gene expression in the ventral striatum. In this case, URB597 decreased activation of medium spiny neurons in the nucleus accumbens core. Our findings evidence the prominent role of endocannabinoids in the development of cocaine addictive-like behaviours and support the potential of FAAH inhibition as a therapeutical target for the treatment of cocaine addiction.


Asunto(s)
Trastornos Relacionados con Cocaína , Síndrome de Abstinencia a Sustancias , Animales , Ratones , Amidohidrolasas , Castigo , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Trastornos Relacionados con Cocaína/tratamiento farmacológico
4.
J Neuroinflammation ; 20(1): 108, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149645

RESUMEN

BACKGROUND: Frontotemporal dementia (FTD) is a heterogeneous group of early onset and progressive neurodegenerative disorders, characterized by degeneration in the frontal and temporal lobes, which causes deterioration in cognition, personality, social behavior and language. Around 45% of the cases are characterized by the presence of aggregates of the RNA-binding protein TDP-43. METHODS: In this study, we have used a murine model of FTD that overexpresses this protein exclusively in the forebrain (under the control of the CaMKIIα promoter) for several biochemical, histological and pharmacological studies focused on the endocannabinoid system. RESULTS: These mice exhibited at postnatal day 90 (PND90) important cognitive deficits, signs of emotional impairment and disinhibited social behaviour, which were, in most of cases, maintained during the first year of life of these animals. Motor activity was apparently normal, but FTD mice exhibited higher mortality. Their MRI imaging analysis and their ex-vivo histopathological evaluation proved changes compatible with atrophy (loss of specific groups of pyramidal neurons: Ctip2- and NeuN-positive cells) and inflammatory events (astroglial and microglial reactivities) in both cortical (medial prefrontal cortex) and subcortical (hippocampus) structures at PND90 and also at PND365. The analysis of the endocannabinoid system in these mice proved a decrease in the hydrolysing enzyme FAAH in the prefrontal cortex and the hippocampus, with an increase in the synthesizing enzyme NAPE-PLD only in the hippocampus, responses that were accompanied by modest elevations in anandamide and related N-acylethanolamines. The potentiation of these elevated levels of anandamide after the pharmacological inactivation of FAAH with URB597 resulted in a general improvement in behaviour, in particular in cognitive deterioration, associated with the preservation of pyramidal neurons of the medial prefrontal cortex and the CA1 layer of the hippocampus, and with the reduction of gliosis in both structures. CONCLUSIONS: Our data confirmed the potential of elevating the endocannabinoid tone as a therapy against TDP-43-induced neuropathology in FTD, limiting glial reactivity, preserving neuronal integrity and improving cognitive, emotional and social deficits.


Asunto(s)
Demencia Frontotemporal , Enfermedad de Pick , Masculino , Ratones , Animales , Demencia Frontotemporal/genética , Endocannabinoides/uso terapéutico , Ratones Transgénicos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
5.
Int Immunopharmacol ; 114: 109586, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36700769

RESUMEN

BACKGROUND: Arachidonoyl ethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG) are the most studies endocannabinoids. AEA and 2-AG are degraded by fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) enzymes, respectively. FAAH and MAGL enzymes are widely expressed in many tissues, including kidney. Recent works have depicted that AEA and 2-AG levels are associated with ischemia-reperfusion (IR) injury. In this study, we investigated the effects of MAGL inhibitor KML29 and FAAH inhibitor URB597 against kidney IR injury. METHODS: The kidneys of the rats underwent ischemia for 45 min and then reperfusion for 24 h. KML29 and URB597 were administered intraperitoneally with kidney IR to two different treatment groups. RESULTS: IR application increased serum blood urea nitrogen (BUN), creatinine (Cre), interleukin-18 (IL-18), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) levels, while these parameters were decreased following KML29 and URB597 administration. KML29 and URB597 administration also reduced the increased toll-like receptor-4 (TRL-4), phosphorylated-NF-κB, phosphorylated-IκB-α, tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1ß), interleukin-6 (IL-6), caspase-3 levels and histopathological damage in kidney tissue. CONCLUSIONS: Our results reveal that MAGL inhibitor KML29 and FAAH inhibitor URB597 have a protective effect on kidney IR injury by preventing apoptosis and inflammation. Inhibition of MAGL and FAAH may be a new therapeutic strategy to prevent kidney IR injury.


Asunto(s)
Monoacilglicerol Lipasas , Daño por Reperfusión , Animales , Ratas , Amidohidrolasas , Endocannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Riñón/metabolismo , Monoacilglicerol Lipasas/metabolismo , Monoglicéridos , FN-kappa B , Daño por Reperfusión/tratamiento farmacológico , Receptor Toll-Like 4
6.
Br J Pharmacol ; 180(10): 1316-1338, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36526591

RESUMEN

BACKGROUND AND PURPOSE: Devising novel strategies to therapeutically favour inflammation resolution and provide neuroprotection is an unmet clinical need. Enhancing endocannabinoid tone by inhibiting the catabolic enzyme fatty acid amide hydrolase (FAAH), or stimulating melatonin receptors has therapeutic potential to treat neuropathological states in which neuroinflammation plays a central role. EXPERIMENTAL APPROACH: A rodent hippocampal explant model of inflammatory injury was used to assess the effects of UCM1341, a dual-acting compound with FAAH inhibitory action and agonist activity at melatonin receptors, against neuroinflammatory damage. FAAH activity was measured by a radiometric assay, and N-acylethanolamine levels were assessed by HPLC-MS/MS methods. FAAH distribution, evolution of inflammation and the contribution of UCM1341 to the expression of proteins controlling macrophage behaviour were investigated by biochemical and confocal analyses. KEY RESULTS: UCM1341 exhibited greater neuroprotection against neuroinflammatory degeneration, compared with the reference compounds URB597 (FAAH inhibitor) and melatonin. During neuroinflammation, UCM1341 augmented the levels of anandamide and N-oleoylethanolamine, but not N-palmitoylethanolamine, up-regulated PPAR-α levels, attenuated demyelination and prevented the release of TNF-α. UCM1341 modulated inflammatory responses by contributing to microglia/macrophage polarization, stimulating formation of lipid-laden macrophages and regulating expression of proteins controlling cholesterol metabolism and efflux. The neuroprotective effects of UCM1341 were prevented by PPARα, TRPV1 and melatonin receptor antagonists. CONCLUSION AND IMPLICATIONS: UCM1341, by enhancing endocannabinoid and melatoninergic signalling, benefits neuroprotection and stimulates inflammation resolution pathways. Our findings provide an encouraging prospect of therapeutically targeting endocannabinoid and melatoninergic systems in inflammatory demyelinating states in the CNS.


Asunto(s)
Endocannabinoides , Enfermedades Neuroinflamatorias , Ratas , Animales , Endocannabinoides/metabolismo , Receptores de Melatonina , Neuroprotección , Espectrometría de Masas en Tándem , Amidohidrolasas , Inflamación/tratamiento farmacológico , Alcamidas Poliinsaturadas/metabolismo
7.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555739

RESUMEN

Early life stress (ELS) increases predisposition to depression. We compared the effects of treatment with the fatty acid amide hydrolase (FAAH) inhibitor URB597, and the selective serotonin reuptake inhibitor paroxetine, on ELS-induced depressive-like behavior and the expression of microRNAs (miRs) associated with depression in the medial prefrontal cortex (mPFC), hippocampal CA1 area, lateral habenula and dorsal raphe in rats. We also examined the mRNA expression of serotonergic (htr1a and slc6a4) and endocannabinoid (cnr1, cnr2 and faah) targets in the mPFC following ELS and pharmacological treatment. Adult males and females exposed to the 'Limited Bedding and Nesting' ELS paradigm demonstrated a depressive-like phenotype and late-adolescence URB597 treatment, but not paroxetine, reversed this phenotype. In the mPFC, ELS downregulated miR-16 in males and miR-135a in females and URB597 treatment restored this effect. In ELS females, the increase in cnr2 and decrease in faah mRNAs in the mPFC were reversed by URB597 treatment. We show for the first time that URB597 reversed ELS-induced mPFC downregulation in specific miRs and stress-related behaviors, suggesting a novel mechanism for the beneficial effects of FAAH inhibition. The differential effects of ELS and URB597 on males and females highlight the importance of developing sex-specific treatment approaches.


Asunto(s)
Amidohidrolasas , MicroARNs , Estrés Psicológico , Animales , Femenino , Masculino , Ratas , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Benzamidas/farmacología , Benzamidas/uso terapéutico , Endocannabinoides/metabolismo , MicroARNs/genética , Estrés Psicológico/genética , Estrés Psicológico/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-36231760

RESUMEN

The endocannabinoid (eCB) system is critically involved in the modulation of synaptic transmission in the central nervous system, playing an important role in the control of emotional responses, neurodevelopment and synaptic plasticity among other functions. The eCB system is also present in the retina, with studies indicating changes in function after application of cannabinoid receptor agonists, antagonists and in knockout models. Whether eCBs are tonically released in the retina and their physiological functions is, however, still unknown. We investigated the role of the eCB system in the modulation of response strength of retinal ganglion cells (RGCs) to light stimulation, their receptive field organization, contrast sensitivity and excitability properties by performing whole-cell patch-clamp recordings in mouse RGCs before and after bath application of URB597, an inhibitor of the enzyme that degrades the eCB anandamide. Our results show that URB597 application leads to a reduction in the strength of synaptic inputs onto RGCs but paradoxically increases RGC excitability. In addition, URB597 was shown to modulate receptive field organization and contrast sensitivity of RGCs. We conclude that tonically released eCBs modulate retinal signaling by acting on traditional cannabinoid receptors (CB1R/CB2R) as well as on non-cannabinoid receptor targets. Thus, a thorough understanding of the effects of drugs that alter the endogenous cannabinoid levels and of exogenous cannabinoids is necessary to fully comprehend the impact of their medical as well as recreational use on vision.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Endocannabinoides , Animales , Benzamidas , Carbamatos/farmacología , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Ratones , Retina
9.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R749-R762, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36154489

RESUMEN

The complexity of neuropathic pain and its associated comorbidities, including dysautonomia, make it difficult to treat. Overlap of anatomical regions and pharmacology of sympathosensory systems in the central nervous system (CNS) provide targets for novel treatment strategies. The dorsal periaqueductal gray (dPAG) is an integral component of both the descending pain modulation system and the acute stress response and is critically involved in both analgesia and the regulation of sympathetic activity. Local manipulation of the endocannabinoid signaling system holds great promise to provide analgesia without excessive adverse effects and also influence autonomic output. Inhibition of fatty acid amide hydrolase (FAAH) increases brain concentrations of the endocannabinoid N-arachidonoylethanolamine (AEA) and reduces pain-related behaviors in neuropathic pain models. Neuropathic hyperalgesia and reduced sympathetic tone are associated with increased FAAH activity in the dPAG, which suggests the hypothesis that inhibition of FAAH in the dPAG will normalize pain sensation and autonomic function in neuropathic pain. To test this hypothesis, the effects of systemic or intra-dPAG FAAH inhibition on hyperalgesia and dysautonomia developed after spared nerve injury (SNI) were assessed in male and female rats. Administration of the FAAH inhibitor PF-3845 into the dPAG reduces hyperalgesia behavior and the decrease in sympathetic tone induced by SNI. Prior administration of the CB1 receptor antagonist AM281, attenuated the antihyperalgesic and sympathetic effects of FAAH inhibition. No sex differences were identified. These data support an integrative role for AEA/CB1 receptor signaling in the dPAG contributing to the regulation of both hyperalgesia behavior and altered sympathetic tone in neuropathic pain.


Asunto(s)
Neuralgia , Disautonomías Primarias , Femenino , Masculino , Animales , Ratas , Endocannabinoides/farmacología , Hiperalgesia/tratamiento farmacológico , Sustancia Gris Periacueductal/metabolismo , Receptor Cannabinoide CB1 , Amidohidrolasas/metabolismo , Neuralgia/tratamiento farmacológico , Alcamidas Poliinsaturadas/uso terapéutico
10.
Biomedicines ; 10(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35892688

RESUMEN

Inhibition of fatty acid amide hydrolase (FAAH), which increases anandamide levels, has been suggested as a potential treatment for stress-related conditions. We examined whether the stress-preventing effects of the FAAH inhibitor URB597 on behavior are mediated via ß-catenin in the nucleus accumbens (NAc). Male rats were exposed to the shock and reminders model of PTSD and then treated with URB597 (0.4 mg/kg; i.p.). They were tested for anxiety- (freezing, startle response), depression-like behaviors (despair, social preference, anhedonia), and memory function (T-maze, social recognition). We also tested the involvement of the CB1 receptor (CB1r), ß-catenin, and metabotropic glutamate receptor subtype 5 (mGluR5) proteins. URB597 prevented the shock- and reminders-induced increase in anxiety- and depressive-like behaviors, as well as the impaired memory via the CB1r-dependent mechanism. In the NAc, viral-mediated ß-catenin overexpression restored the behavior of rats exposed to stress and normalized the alterations in protein levels in the NAc and the prefrontal cortex. Importantly, when NAc ß-catenin levels were downregulated by viral-mediated gene transfer, the therapeutic-like effects of URB597 were blocked. We suggest a potentially novel mechanism for the therapeutic-like effects of FAAH inhibition that is dependent on ß-catenin activation in the NAc in a PTSD rat model.

11.
Psychopharmacology (Berl) ; 239(9): 2753-2769, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35650304

RESUMEN

RATIONALE: The endocannabinoid modulation of fear and anxiety due to the on-demand synthesis and degradation is supported by a large body of research. Although it has been proposed that anandamide (AEA) in the substantia nigra pars reticulata (SNpr) seems to be important for the organisation of innate fear-related behaviours, a role for endogenous AEA has yet to be clarified. METHODS: Mice were treated with the fatty acid amide hydrolase (FAAH) selective inhibitor URB597 at different concentrations (0.01, 0.1, 1 nmol/0.1 µL) in the SNpr and confronted by rattlesnakes (Crotalus durissus terrificus). The most effective dose of URB597 (1 nmol) was also preceded by microinjections of the CB1 receptor antagonist AM251 (0.1 nmol) into the SNpr, and mice were then confronted by the venomous snake. RESULTS: URB597 (0.1 and 1 nmol) in the SNpr decreased the expression of defensive behaviours such as defensive attention, escape, and time spent inside the burrow of mice confronted by rattlesnakes. Moreover, pretreatment of SNpr with AM251 suppressed these antiaversive effects of URB597 in this midbrain structure. CONCLUSION: Overall, these data clearly indicate that the panicolytic consequences of endogenous AEA enhancement in the SNpr are mediated by CB1 receptor signalling.


Asunto(s)
Crotalinae , Porción Reticular de la Sustancia Negra , Animales , Ácidos Araquidónicos , Crotalinae/metabolismo , Crotalus/metabolismo , Endocannabinoides/metabolismo , Ratones , Alcamidas Poliinsaturadas , Receptor Cannabinoide CB1/metabolismo , Sustancia Negra/metabolismo
12.
Curr Issues Mol Biol ; 44(5): 2401-2416, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35678693

RESUMEN

The endocannabinoid system (ECS) plays an important role in pain processing and modulation. Since the specific effects of endocannabinoids within the orofacial area are largely unknown, we aimed to determine whether an increase in the endocannabinoid concentration in the cerebrospinal fluid (CSF) caused by the peripheral administration of the FAAH inhibitor URB597 and tooth pulp stimulation would affect the transmission of impulses between the sensory and motor centers localized in the vicinity of the third and fourth cerebral ventricles. The study objectives were evaluated on rats using a method that allowed the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation and URB597 treatment. The amplitude of ETJ was a measure of the effect of endocannabinoids on the neural structures. The concentrations of the endocannabinoids tested (AEA and 2-AG) were determined in the CSF, along with the expression of the cannabinoid receptors (CB1 and CB2) in the tissues of the mesencephalon, thalamus, and hypothalamus. We demonstrated that anandamide (AEA), but not 2-arachidonoylglycerol (2-AG), was significantly increased in the CSF after treatment with a FAAH inhibitor, while tooth pulp stimulation had no effect on the AEA and 2-AG concentrations in the CSF. We also found positive correlations between the CSF AEA concentration and cannabinoid receptor type 1 (CB1R) expression in the brain, and between 2-AG and cannabinoid receptor type 2 (CB2R), and negative correlations between the CSF concentration of AEA and brain CB2R expression, and between 2-AG and CB1R. Our study shows that endogenous AEA, which diffuses through the cerebroventricular ependyma into CSF and exerts a modulatory effect mediated by CB1Rs, alters the properties of neurons in the trigeminal sensory nuclei, interneurons, and motoneurons of the hypoglossal nerve. In addition, our findings may be consistent with the emerging concept that AEA and 2-AG have different regulatory mechanisms because they are involved differently in orofacial pain. We also suggest that FAAH inhibition may offer a therapeutic approach to the treatment of orofacial pain.

13.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563056

RESUMEN

Endocannabinoids act as analgesic agents in a number of headache models. However, their effectiveness varies with the route of administration and the type of pain. In this study, we assessed the role of the fatty acid amide hydrolase inhibitor URB597 in an animal model of orofacial pain based on tooth pulp stimulation. More specifically, we assessed the effects of intracerbroventricular (i.c.v.) and intraperitoneal (i.p.) administration of URB597 on the amplitude of evoked tongue jerks (ETJ) in rats. The levels of the investigated mediators anandamide (AEA), 2-arachidonyl glycerol (2-AG), Substance P (SP), calcitonin-gene-related peptide (CGRP), endomorphin-2 (EM-2) and fatty acid amide hydrolase (FAAH) inhibitor by URB597 and receptors cannabinoid type-1 receptors (CB1R), cannabinoid type-2 receptors (CB2R) and µ-opioid receptors (MOR) were determined in the mesencephalon, thalamus and hypothalamus tissues. We have shown that increasing endocannabinoid AEA levels by both central and peripheral inhibition of FAAH inhibitor by URB597 has an antinociceptive effect on the trigemino-hypoglossal reflex mediated by CB1R and influences the activation of the brain areas studied. On the other hand, URB597 had no effect on the concentration of 2-AG in the examined brain structures and caused a significant decrease in CB2R mRNA expression in the hypothalamus only. Tooth pulp stimulation caused in a significant increase in SP, CGRP and EM-2 gene expression in the midbrain, thalamus and hypothalamus. In contrast, URB597 administered peripherally one hour before stimulation decreased the mRNA level of these endogenous neuropeptides in comparison with the control and stimulation in all examined brain structures. Our results show that centrally and peripherally administered URB597 is effective at preventing orofacial pain by inhibiting AEA catabolism and reducing the level of CGRP, SP and EM-2 gene expression and that AEA and 2-AG have different species and model-specific regulatory mechanisms. The data presented in this study may represent a new promising therapeutic target in the treatment of orofacial pain.


Asunto(s)
Benzamidas , Péptido Relacionado con Gen de Calcitonina , Carbamatos , Percepción del Dolor , Amidohidrolasas/genética , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Carbamatos/farmacología , Carbamatos/uso terapéutico , Endocannabinoides/metabolismo , Dolor Facial/tratamiento farmacológico , Percepción del Dolor/efectos de los fármacos , Alcamidas Poliinsaturadas/metabolismo , ARN Mensajero , Ratas , Receptor Cannabinoide CB1/efectos de los fármacos , Receptores de Cannabinoides/efectos de los fármacos
14.
Biomed Pharmacother ; 149: 112925, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35477218

RESUMEN

Anxiety and stress disorders are often characterized by an inability to extinguish learned fear responses. Orexins/hypocretins are involved in the modulation of aversive memories, and dysregulation of this system may contribute to the aetiology of anxiety disorders characterized by pathological fear. The mechanisms by which orexins regulate fear are unknown. Here we investigated the role of the endogenous cannabinoid system in the impaired fear extinction induced by orexin-A (OXA) in male mice. The selective inhibitor of 2-arachidonoylglycerol (2-AG) biosynthesis O7460 abolished the fear extinction deficits induced by OXA. Accordingly, increased 2-AG levels were observed in the amygdala and hippocampus of mice treated with OXA that do not extinguish fear, suggesting that high levels of this endocannabinoid are related to poor extinction. Impairment of fear extinction induced by OXA was associated with increased expression of CB2 cannabinoid receptor (CB2R) in microglial cells of the basolateral amygdala. Consistently, the intra-amygdala infusion of the CB2R antagonist AM630 completely blocked the impaired extinction promoted by OXA. Microglial and CB2R expression depletion in the amygdala with PLX5622 chow also prevented these extinction deficits. These results show that overactivation of the orexin system leads to impaired fear extinction through 2-AG and amygdalar CB2R. This novel mechanism could be of relevance for the development of novel potential approaches to treat diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder, panic anxiety and phobias.


Asunto(s)
Cannabinoides , Miedo , Amígdala del Cerebelo , Animales , Extinción Psicológica , Masculino , Ratones , Orexinas/farmacología , Receptor Cannabinoide CB2
15.
Schizophr Bull ; 48(4): 795-803, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35092675

RESUMEN

NMDA receptor blockade in rodents is commonly used to induce schizophrenia-like behavioral abnormalities, including cognitive deficits and social dysfunction. Aberrant glutamate and GABA transmission, particularly in adolescence, is implicated in these behavioral abnormalities. The endocannabinoid system modulates glutamate and GABA transmission, but the impact of endocannabinoid modulation on cognitive and social dysfunction is unclear. Here, we asked whether late-adolescence administration of the anandamide hydrolysis inhibitor URB597 can reverse behavioral deficits induced by early-adolescence administration of the NMDA receptor blocker MK-801. In parallel, we assessed the impact of MK-801 and URB597 on mRNA expression of glutamate and GABA markers. We found that URB597 prevented MK-801-induced novel object recognition deficits and social interaction abnormalities in adult rats, and reversed glutamate and GABA aberrations in the prelimbic PFC. URB597-mediated reversal of MK-801-induced social interaction deficits was mediated by the CB1 receptor, whereas the reversal of cognitive deficits was mediated by the CB2 receptor. This was paralleled by the reversal of CB1 and CB2 receptor expression abnormalities in the basolateral amygdala and prelimbic PFC, respectively. Together, our findings show that interfering with NMDA receptor function in early adolescence has a lasting impact on phenotypes resembling the negative symptoms and cognitive deficits of schizophrenia and on glutamate and GABA marker expression in the PFC. Prevention of behavioral and molecular abnormalities by late-adolescence URB597 via CB1 and CB2 receptors suggests that endocannabinoid stimulation may have therapeutic potential in addressing treatment-resistant symptoms.


Asunto(s)
Maleato de Dizocilpina , Endocannabinoides , Animales , Ácidos Araquidónicos , Maleato de Dizocilpina/farmacología , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Expresión Génica , Glutamatos , Hidrólisis , Masculino , Alcamidas Poliinsaturadas , Ratas , Receptor Cannabinoide CB2/metabolismo , Receptores de N-Metil-D-Aspartato , Ácido gamma-Aminobutírico/metabolismo
16.
Neurol Res ; 44(5): 446-454, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34781846

RESUMEN

The interaction between L-type voltage-dependent Ca2+ channels and the endocannabinoid system (eCs) in synaptic plasticity is controversial. In the present research, the impact of acute administration of URB597, as an endocannabinoid breakdown inhibitor, was evaluated after chronic injection of verapamil, as a Ca2+ channels blocker, on inducing long-term potentiation (LTP) in the rat's hippocampal dentate gyrus (DG). Treatment of male Wistar rats was done using intraperitoneal(i.p) injection of verapamil hydrochloride (n = 8) and saline (n = 10), as the solvent of verapamil once a day within 13 days. Anesthetization was done by i.p injection of urethane and the rats were located in the stereotaxic apparatus for surgery, electrode implantation, and field potential recording. After observing a steady-state baseline response, saline or URB597 were injected (n = 9). Measurement of the population spike (PS) amplitude and slope of field excitatory postsynaptic potentials (fEPSPs) in the DG region was performed as a result of perforant pathway (PP) stimulation. Our treatments could inhibit LTP. Our results indicated that the chronic administration of verapamil produced a significant decrease in the slope of fEPSP and PS amplitude. Also, acute URB597 administration decreased the slope of fEPSP and PS amplitude compared to the saline group. Moreover, URB597 administration in combination with chronic administration of verapamil produced a greater decrease in fEPSP slope and PS amplitude than the saline group. These findings indicated that verapamil and URB597 disrupted LTP induction in the DG. Moreover, an interaction was observed between Ca2+ channels and eCs. Therefore, the eCs possibly play a selective role in synaptic plasticity.


Asunto(s)
Canales de Calcio Tipo L , Cannabinoides , Animales , Giro Dentado , Estimulación Eléctrica , Endocannabinoides , Hipocampo/fisiología , Potenciación a Largo Plazo , Masculino , Neuronas , Ratas , Ratas Wistar , Verapamilo/farmacología
17.
Brain Sci ; 11(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34827417

RESUMEN

Recent studies using full-field electroretinography (ffERG) that triggers a non-specific mass response generated by several retinal sources have attributed an important role for cannabinoid receptors in mediating vision in primates. Specific cone-mediated responses evoked through the photopic flicker ERG appear to be a better way to validate the assumption that endogenous cannabinoids modulate the cone pathway, since FAAH is mainly expressed in the vervet monkey cone photoreceptors. The aim of this study is two-fold: (1) to use the photopic flicker ERG to target the cone pathway specifically, and (2) use URB597 as a selective inhibitor of the endocannabinoid degrading enzyme Fatty Acid Amide Hydrolase (FAAH) to enhance the levels of fatty acid amides, particularly anandamide. We recorded ERGs under four different flicker frequencies (15, 20, 25, and 30 Hz) in light-adapted conditions after intravitreal injections of URB597. Our results show that intravitreal injections of URB597, compared to the vehicle DMSO, increased significantly ffERG amplitudes at 30 Hz, a frequency that solely recruits cone activity. However, at 15 Hz, a frequency that activates both rods and cones, no significant difference was found in the ERG response amplitude. Additionally, we found no differences in implicit times after URB597 injections compared to DMSO vehicle. These results support the role of molecules degraded by FAAH in cone-mediated vision in non-human primates.

18.
Metab Brain Dis ; 36(8): 2579-2588, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34599739

RESUMEN

Parkinson disease (PD) is a progressive neurodegenerative disorder that is often accompanied by motor and psychiatric symptoms. Various approaches have been proposed for the treatment of PD. Here, we investigated the effect of a low dose of fatty acid amide hydrolase inhibitor URB597 (as an enhancer of endocannabinoid anandamide levels), exercise or their combination on some behavior alterations in PD mice lesioned by 6-hydroxydopamine (6-OHDA). The impact of swimming exercise (5×/week for 4 weeks) and URB597 (0.1 mg/kg, 2×/week for 4 weeks) on the anxiety-related behavior (elevated plus maze; EPM), depression-related behavior (tail suspension test; TST), and passive avoidance memory (step-down task) was examined in the sham and male NMRI mouse of PD model. The results show that URB597 prevented memory deficits and elicited antidepressant- and anxiolytic-like effects but did not affect hypolocomotion in the PD mice. However, URB597 did not have a significant effect on the performance of the sham mice in the performed tests. Moreover, swimming training abolished depressive- and anxiogenic-like behaviors and increased locomotion without affecting memory deficits in the PD mice. Meanwhile, swimming decreased immobility time and increased locomotion in the sham mice. Furthermore, URB597 in association with swimming training prevented all deficits induced in the PD mice, while this combination impaired memory and produced the positive effects on depression- and anxiety-related behaviors and locomotion of the sham mice. It is concluded that although URB597 or exercise alone had positive effects on most behavioral tests, their combination improved all parameters in the PD mice.


Asunto(s)
Enfermedad de Parkinson , Animales , Conducta Animal , Benzamidas , Carbamatos , Modelos Animales de Enfermedad , Prueba de Laberinto Elevado , Suspensión Trasera , Masculino , Ratones , Ratones Endogámicos , Oxidopamina/toxicidad
19.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299330

RESUMEN

The ability of endocannabinoid (eCB) to change functional microglial phenotype can be explored as a possible target for therapeutic intervention. Since the inhibition of fatty acid amide hydrolase (FAAH), the main catabolic enzyme of anandamide (AEA), may provide beneficial effects in mice model of Alzheimer's disease (AD)-like pathology, we aimed at determining whether the FAAH inhibitor URB597 might target microglia polarization and alter the cytoskeleton reorganization induced by the amyloid-ß peptide (Aß). The morphological evaluation showed that Aß treatment increased the surface area of BV-2 cells, which acquired a flat and polygonal morphology. URB597 treatment partially rescued the control phenotype of BV-2 cells when co-incubated with Aß. Moreover, URB597 reduced both the increase of Rho protein activation in Aß-treated BV-2 cells and the Aß-induced migration of BV-2 cells, while an increase of Cdc42 protein activation was observed in all samples. URB597 also increased the number of BV-2 cells involved in phagocytosis. URB597 treatment induced the polarization of microglial cells towards an anti-inflammatory phenotype, as demonstrated by the decreased expression of iNOS and pro-inflammatory cytokines along with the parallel increase of Arg-1 and anti-inflammatory cytokines. Taken together, these data suggest that FAAH inhibition promotes cytoskeleton reorganization, regulates phagocytosis and cell migration processes, thus driving microglial polarization towards an anti-inflammatory phenotype.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Benzamidas/farmacología , Carbamatos/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amidohidrolasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Ácidos Araquidónicos/metabolismo , Línea Celular , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Citocinas/metabolismo , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Ratones , Microglía/patología , Alcamidas Poliinsaturadas/metabolismo
20.
Int J Mol Sci ; 22(9)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063297

RESUMEN

Our study aimed to examine the effects of hypertension and the chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on vascular function and the endocannabinoid system in spontaneously hypertensive rats (SHR). Functional studies were performed on small mesenteric G3 arteries (sMA) and aortas isolated from SHR and normotensive Wistar Kyoto rats (WKY) treated with URB597 (1 mg/kg; twice daily for 14 days). In the aortas and sMA of SHR, endocannabinoid levels and cannabinoid CB1 receptor (CB1R) expression were elevated. The CB1R antagonist AM251 diminished the methanandamide-evoked relaxation only in the sMA of SHR and enhanced the vasoconstriction induced by phenylephrine and the thromboxane analog U46619 in sMA in SHR and WKY. In the sMA of SHR, URB597 elevated anandamide levels, improved the endothelium-dependent vasorelaxation to acetylcholine, and in the presence of AM251 reduced the vasoconstriction to phenylephrine and enhanced the vasodilatation to methanandamide, and tended to reduce hypertrophy. In the aortas, URB597 elevated endocannabinoid levels improved the endothelium-dependent vasorelaxation to acetylcholine and decreased CB1R expression. Our study showed that hypertension and chronic administration of URB597 caused local, resistance artery-specific beneficial alterations in the vascular endocannabinoid system, which may bring further advantages for therapeutic application of pharmacological inhibition of FAAH.


Asunto(s)
Amidohidrolasas/efectos de los fármacos , Amidohidrolasas/metabolismo , Benzamidas/farmacología , Carbamatos/farmacología , Endocannabinoides/metabolismo , Hipertensión Esencial/metabolismo , Hipertensión Esencial/terapia , Acetilcolina , Animales , Aorta , Ácidos Araquidónicos , Hipertensión/metabolismo , Masculino , Arterias Mesentéricas/efectos de los fármacos , Nitroprusiato , Alcamidas Poliinsaturadas , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores de Cannabinoides , Vasoconstricción , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...