Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35742975

RESUMEN

Photosynthetically active radiation (PAR) is an important environmental cue inducing the production of many secondary metabolites involved in plant oxidative stress avoidance and tolerance. To examine the complex role of PAR irradiance and specific spectral components on the accumulation of phenolic compounds (PheCs), we acclimated spring barley (Hordeum vulgare) to different spectral qualities (white, blue, green, red) at three irradiances (100, 200, 400 µmol m-2 s-1). We confirmed that blue light irradiance is essential for the accumulation of PheCs in secondary barley leaves (in UV-lacking conditions), which underpins the importance of photoreceptor signals (especially cryptochrome). Increasing blue light irradiance most effectively induced the accumulation of B-dihydroxylated flavonoids, probably due to the significantly enhanced expression of the F3'H gene. These changes in PheC metabolism led to a steeper increase in antioxidant activity than epidermal UV-A shielding in leaf extracts containing PheCs. In addition, we examined the possible role of miRNAs in the complex regulation of gene expression related to PheC biosynthesis.


Asunto(s)
Hordeum , Rayos Ultravioleta , Flavonoides/metabolismo , Hordeum/genética , Hordeum/metabolismo , Luz , Fenoles/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
2.
Plants (Basel) ; 10(7)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202535

RESUMEN

Excessive ultraviolet B (UV-B) irradiation is one of the most serious threats leading to severe crop production losses. It is known that secondary metabolite biosynthesis plays an important role in plant defense and forms a protective shield against excessive UV-B irradiation. The contents of stilbenes and other plant phenolics are known to sharply increase after UV-B irradiation, but there is little direct evidence for the involvement of stilbenes and other plant phenolics in plant UV-B protection. This study showed that foliar application of trans-resveratrol (1 and 5 mM) and trans-piceid (5 mM) considerably increased tolerance to a shock of UV-B (10 min at 1800 µW cm-2 of irradiation intensity) of four-week-old Arabidopsis thaliana plants that are naturally incapable of stilbene production. Application of trans-resveratrol and trans-piceid increased the leaf survival rates by 1-2%. This stilbene-induced improvement in UV-B tolerance was higher than after foliar application of the stilbene precursors, p-coumaric and trans-cinnamic acids (only 1-3%), but less than that after treatment with octocrylene (19-24%), a widely used UV-B absorber. Plant treatment with trans-resveratrol increased expression of antioxidant and stress-inducible genes in A.thaliana plants and decreased expression of DNA repair genes. This study directly demonstrates an important positive role of stilbenes in plant tolerance to excessive UV-B irradiation, and offers a new approach for plant UV-B protection.

3.
Biomolecules ; 11(4)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921320

RESUMEN

Spider silk is a natural fiber with remarkable strength, toughness, and elasticity that is attracting attention as a biomaterial of the future. Golden orb-weaving spiders (Trichonephila clavata) construct large, strong webs using golden threads. To characterize the pigment of golden T. clavata dragline silk, we used liquid chromatography and mass spectrometric analysis. We found that the major pigment in the golden dragline silk of T. clavata was xanthurenic acid. To investigate the possible function of the pigment, we tested the effect of xanthurenic acid on bacterial growth using gram-negative Escherichia coli and gram-positive Bacillus subtilis. We found that xanthurenic acid had a slight antibacterial effect. Furthermore, to investigate the UV tolerance of the T. clavata threads bleached of their golden color, we conducted tensile deformation tests and scanning electron microscope observations. However, in these experiments, no significant effect was observed. We therefore speculate that golden orb-weaving spiders use the pigment for other purposes, such as to attract their prey in the sunlight.


Asunto(s)
Antibacterianos/análisis , Pigmentos Biológicos/análisis , Seda/química , Arañas/metabolismo , Xanturenatos/análisis , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antibacterianos/efectos de la radiación , Bacillus subtilis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Pigmentos Biológicos/farmacología , Pigmentos Biológicos/efectos de la radiación , Seda/metabolismo , Rayos Ultravioleta , Xanturenatos/metabolismo , Xanturenatos/farmacología , Xanturenatos/efectos de la radiación
4.
J Exp Bot ; 72(11): 4161-4179, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33595636

RESUMEN

Plants in dryland ecosystems experience extreme daily and seasonal fluctuations in light, temperature, and water availability. We used an in situ field experiment to uncover the effects of natural and reduced levels of ultraviolet radiation (UV) on maximum PSII quantum efficiency (Fv/Fm), relative abundance of photosynthetic pigments and antioxidants, and the transcriptome in the desiccation-tolerant desert moss Syntrichia caninervis. We tested the hypotheses that: (i) S. caninervis plants undergo sustained thermal quenching of light [non-photochemical quenching (NPQ)] while desiccated and after rehydration; (ii) a reduction of UV will result in improved recovery of Fv/Fm; but (iii) 1 year of UV removal will de-harden plants and increase vulnerability to UV damage, indicated by a reduction in Fv/Fm. All field-collected plants had extremely low Fv/Fm after initial rehydration but recovered over 8 d in lab-simulated winter conditions. UV-filtered plants had lower Fv/Fm during recovery, higher concentrations of photoprotective pigments and antioxidants such as zeaxanthin and tocopherols, and lower concentrations of neoxanthin and Chl b than plants exposed to near natural UV levels. Field-grown S. caninervis underwent sustained NPQ that took days to relax and for efficient photosynthesis to resume. Reduction of solar UV radiation adversely affected recovery of Fv/Fm following rehydration.


Asunto(s)
Desecación , Rayos Ultravioleta , Biología , Clorofila , Ecosistema , Fotosíntesis
5.
Syst Appl Microbiol ; 43(6): 126130, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32882650

RESUMEN

Azospirillum brasilense Az19 is a plant-beneficial bacterium capable of protecting plants from the negative effects of drought. The objective of this study was to determine and analyze the genomic sequence of strain Az19 as a means of identifying putative stress-adaptation mechanisms. A high-quality draft genome of ca. 7 Mb with a predicted coding potential of 6710 genes was obtained. Phylogenomic analyses confirmed that Az19 belongs to the brasilense clade and is closely related to strains Az39 and REC3. Functional genomics revealed that the denitrification pathway of Az19 is incomplete, which was in agreement with a reduced growth on nitrate under low O2 concentrations. Putative genes of the general stress response and oxidative stress-tolerance, as well as synthesis of exopolysaccharides, carotenoids, polyamines and several osmolytes, were detected. An additional poly-beta-hydroxybutyrate (PHB) synthase coding gene was found in Az19 genome, but the accumulation of PHB did not increase under salinity. The detection of exclusive genes related to DNA repair led to discover that strain Az19 also has improved UV-tolerance, both in vitro and in planta. Finally, the analysis revealed the presence of multiple kaiC-like genes, which could be involved in stress-tolerance and, possibly, light responsiveness. Although A. brasilense has been a model for the study of beneficial plant-associated rhizobacteria, the evidence collected in this current study suggests, for the first time in this bacterial group, an unexpected possibility of adaptation to the phyllosphere.


Asunto(s)
Adaptación Fisiológica , Azospirillum brasilense/genética , Genoma Bacteriano , Hojas de la Planta/microbiología , Azospirillum brasilense/fisiología , Desnitrificación/genética , Sequías , Hidroxibutiratos/metabolismo , Anotación de Secuencia Molecular , Filogenia , Raíces de Plantas/microbiología , Triticum/microbiología , Zea mays/microbiología
6.
Fungal Biol ; 124(8): 714-722, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32690253

RESUMEN

We investigated the comparative susceptibility to heat and UV-B radiation of blastospores and aerial conidia of Metarhizium spp. (Metarhizium robertsii IP 146, Metarhizium anisopliae s.l. IP 363 and Metarhizium acridum ARSEF 324) and Beauveria bassiana s.l. (IP 361 and CG 307). Conidia and blastospores were produced in solid or liquid Adámek-modified medium, respectively, and then exposed to heat (45 ± 0.2 °C) in a range of 0 (control) to 360 min; the susceptibility of fungal propagules to heat exposures was assessed to express relative viability. Similarly, both propagules of each isolate were also exposed to a range of 0 (control) to 8.1 kJ m-2 under artificial UV-B radiation. Our results showed that fungal isolates, propagule types and exposure time or dose of the stressor source play critical roles in fungal survival challenged with UV-B and heat. Conidia of ARSEF 324, IP 363, IP 146 and IP 361 exposed to heat survived significantly longer than their blastospores, except for blastospores of CG 307. Conidia and blastospores of IP 146 and IP 363 were equally tolerant to UV-B radiation. We claim that blastospores of certain isolates may be promising candidates to control arthropod pests in regions where heat and UV-B are limiting environmental factors.


Asunto(s)
Beauveria/fisiología , Calor , Metarhizium/fisiología , Rayos Ultravioleta , Beauveria/crecimiento & desarrollo , Beauveria/efectos de la radiación , Metarhizium/crecimiento & desarrollo , Metarhizium/efectos de la radiación , Control Biológico de Vectores , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de la radiación
7.
Front Microbiol ; 11: 816, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431679

RESUMEN

Filamentous yeast species belonging to the closely related Saprochaete clavata and Magnusiomyces spicifer were recently found to dominate biofilm communities on the retentate and permeate surface of Reverse Osmosis (RO) membranes used in a whey water treatment system after CIP (Cleaning-In-Place). Microscopy revealed that the two filamentous yeast species can cover extensive areas due to their large cell size and long hyphae formation. Representative strains from these species were here further characterized and displayed similar physiological and biochemical characteristics. Both strains tested were able to grow in twice RO-filtrated permeate water and metabolize the urea present. Little is known about the survival characteristics of these strains. Here, their tolerance toward heat (60, 70, and 80°C) and Ultraviolet light (UV-C) treatment at 255 nm using UV-LED was assessed as well as their ability to form biofilm and withstand cleaning associated stress. According to the heat tolerance experiments, the D60°C of S. clavata and M. spicifer is 16.37 min and 7.24 min, respectively, while a reduction of 3.5 to >4.5 log (CFU/mL) was ensured within 5 min at 70°C. UV-C light at a dose level 10 mJ/cm2 had little effect, while doses of 40 mJ/cm2 and upward ensured a ≥4log reduction in a static laboratory scale set-up. The biofilm forming potential of one filamentous yeast and one budding yeast, Sporopachydermia lactativora, both isolated from the same biofilm, was compared in assays employing flat-bottomed polystyrene microwells and peg lids, respectively. In these systems, employing both nutrient rich as well as nutrient poor media, only the filamentous yeast was able to create biofilm. However, on RO membrane coupons in static systems, both the budding yeast and a filamentous yeast were capable of forming single strain biofilms and when these coupons were exposed to different simulations of CIP treatments both the filamentous and budding yeast survived these. The dominance of these yeasts in some filter systems tested, their capacity to adhere and their tolerance toward relevant stresses as demonstrated here, suggest that these slow growing yeasts are well suited to initiate microbial biofouling on surfaces in low nutrient environments.

8.
Fungal Biol ; 124(5): 304-310, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32389292

RESUMEN

Seven indigenous entomopathogenic fungal isolates were identified as promising biocontrol agents of key citrus pests including false codling moth, Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae), citrus thrips, Scirtothrips aurantii Faure (Thysanoptera: Thripidae) and citrus mealybug, Planococcus citri (Risso) (Hemiptera: Pseudococcidae) under laboratory conditions. Even though field trials using the two most virulent isolates (Beauveria bassiana G Ar 17 B3 and Metarhizium anisopliae FCM Ar 23 B3) against soil-dwelling life stages of T. leucotreta were positive, foliar application against citrus mealybugs and thrips, has been disappointing. Thus, the UV sensitivity of the seven initial promising isolates (four B. bassiana and three M. anisopliae) in comparison with two commercial isolates (M. anisopliae ICIPE 69 and B. bassiana PPRI 5339) and their formulated products were investigated in this study. All isolates investigated were highly sensitive to UV radiation, and a 2 h exposure to simulated full-spectrum solar radiation at 0.3 W/m2 killed conidia of all tested isolates. Nonetheless, variability in susceptibility was found amongst isolates after exposure for 1 h. The most virulent M. anisopliae isolate, FCM Ar 23 B3, was the most susceptible to UV radiation with <3 % relative germination, 48-51 h post-exposure. Whilst isolates of the two mycoinsecticides showed similar susceptibility to UV radiation, their formulated products (vegetable oil and emulsifiable concentrate) were tolerant, when tested for 1 h. These findings indicate that a suitable UV protectant formulation of these fungi or a different application strategy will be required for success against P. citri and S. aurantii.


Asunto(s)
Beauveria , Metarhizium , Rayos Ultravioleta , Animales , Beauveria/efectos de la radiación , Agentes de Control Biológico/efectos de la radiación , Citrus/microbiología , Metarhizium/efectos de la radiación
9.
J Invertebr Pathol ; 169: 107280, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751556

RESUMEN

Conidial pigments of filamentous fungi play vital roles in fungal biotic/abiotic stress tolerance and are usually synthesized by polyketide synthases or other pigment synthesis proteins. Beauveria bassiana, an important insect pathogenic fungus used worldwide for pest biocontrol, produces white conidia on artificial media, while no conidial pigment has been observed or reported in it. However, real-time PCR and promoter-report analyses reveal a polyketide gene of B. bassiana (named BbpksP), homologous to melanin synthesis genes, is specifically expressed in aerial conidia. We show that deletion of BbpksP does not result in changes in conidial yield, germination rate or colony radial growth; however, the defect impairs conidial cell wall structure. A dense electron layer appears in the outer edge of the cell envelope in wild-type conidia, as observed by TEM, but this dense layer is absent in the ΔBbpksP mutant. The lack of BbpksP gene also reduces the UV-B tolerance of B. bassiana conidia. Bioassay reveals that deletion of BbpksP decreased virulence of B. bassiana against Galleria mellonella larvae via topical infection. These data indicate that the product(s) of BbpksP contributes to the integrity of the B. bassiana conidial cell wall and further affects the tolerance of UV-B stress and insecticidal activity.


Asunto(s)
Beauveria/genética , Pared Celular/fisiología , Proteínas Fúngicas/genética , Sintasas Poliquetidas/genética , Tolerancia a Radiación/genética , Esporas Fúngicas/genética , Beauveria/enzimología , Beauveria/efectos de la radiación , Pared Celular/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Sintasas Poliquetidas/metabolismo , Rayos Ultravioleta/efectos adversos
10.
Microorganisms ; 7(11)2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752335

RESUMEN

Life in salt pans with varying chemical compositions require special adaptation strategies at both the physiological and molecular level. The Marakkanam salt pan in South India is characterized with a high fluctuation in salinity (19-490 ppt), Ultravioletradiation, and heavy metal concentrations. Several bacterial species have been isolated and identified in the view of phylogenetic analysis and for the subsequent production of industrially important enzymes. However, limited information exists on the genomic basis of their survival under variable environmental conditions. To this extent, we sequenced the whole genome of the Salinivibrio sp. HTSP, a moderately halophilic bacterium. We analysed the physiological and genomic attributes of Salinivibrio sp. HTSP to elucidate the strategies of adaptation under various abiotic stresses. The genome size is estimated to be 3.39 Mbp with a mean G + C content of 50.6%, including 3150 coding sequences. The genome possessed osmotic stress-related coding sequences, and genes involved in different pathways of DNA repair mechanisms and genes related to the resistance to toxic metals were identified. The periplasmic stress response genes and genes of different oxidative stress mechanisms were also identified. The tolerance capacity of the bacterial isolates to heavy metals, UV-radiation, and salinity was also confirmed through appropriate laboratory experiments under controlled conditions.

11.
Front Microbiol ; 10: 1233, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231331

RESUMEN

DNA methylation plays a crucial role for gene regulation among eukaryotes, but its regulatory function is less documented in bacteria. In the cyanobacterium Synechocystis sp. PCC 6803 five DNA methyltransferases have been identified. Among them, M.Ssp6803II is responsible for the specific methylation of the first cytosine in the frequently occurring motif GGCC, leading to N4-methylcytosine (GGm4CC). The mutation of the corresponding gene sll0729 led to lowered chlorophyll/phycocyanin ratio and slower growth. Transcriptomics only showed altered expression of sll0470 and sll1526, two genes encoding hypothetical proteins. Moreover, prolonged cultivation revealed instability of the initially obtained phenotype. Colonies with normal pigmentation and wild-type-like growth regularly appeared on agar plates. These colonies represent suppressor mutants, because the sll0729 gene was still completely inactivated and the GGCC sites remained unmethylated. The suppressor strains showed smaller cell size, lowered DNA content per cell, and decreased tolerance against UV compared to wild type. Promoter assays revealed that the transcription of the sll0470 gene was still stimulated in the suppressor clones. Proteomics identified decreased levels of DNA topoisomerase 4 subunit A in suppressor cells. Collectively, these results indicate that GGm4CC methylation is involved in the regulation of gene expression, in the fine-tuning of DNA replication, and DNA repair mechanisms.

12.
Appl Microbiol Biotechnol ; 103(3): 1351-1362, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30610282

RESUMEN

The Ser/Thr protein phosphatase Ppt1 (yeast)/PP5 (humans) has been implicated in signal transduction-mediated growth and differentiation, DNA damage/repair, cell cycle progression, and heat shock responses. Little, however, is known concerning the functions of Ppt1/PP5 in filamentous fungi. In this study, the Ppt1 gene MaPpt1 was characterized in the insect pathogenic fungus, Metarhizium acridum. The MaPpt1 protein features a three-tandem tetratricopeptide repeat (TPR) domain and a peptidyl-prolyl cis-trans isomerase-like (PP2Ac) domain. Subcellular localization using an MaPpt1::eGFP fusion protein revealed that MaPpt1 was localized in the cytoplasm of spores, but gathered at the septa in growing hyphae. Targeted gene inactivation of MaPpt1 in M. acridum resulted in unexpected reprogramming of normal aerial conidiation to microcycle conidiation. Although overall vegetative growth was unaffected, a significant increase in conidial yield was noted in ΔMaPpt1. Stress-responsive phenotypes and virulence were largely unaffected in ΔMaPpt1. Exceptionally, ΔMaPpt1 displayed increased UV tolerance compared to wild type. Digital gene expression data revealed that MaPpt1 mediates transcription of sets of genes involved in conidiation, polarized growth, cell cycle, cell proliferation, DNA replication and repair, and some important signaling pathways. These data indicate a unique role for Ppt1 in filamentous fungal development and differentiation.


Asunto(s)
Metarhizium/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Proliferación Celular/genética , Reparación del ADN/genética , Replicación del ADN/genética , Eliminación de Gen , Metarhizium/metabolismo , Transducción de Señal/genética , Rayos Ultravioleta
13.
J Agric Food Chem ; 67(2): 563-577, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30562017

RESUMEN

Plants have inherent tolerance to UV stress. However, very limited information is available about how wheat perceives and defends against UV disaster. To obtain the molecular mechanisms underlying UV tolerance of wheat, the phenotypic and transcriptomic responses of ZN168 and ZKM138 with contrasting UV tolerance were characterized. Compared with ZKM138, ZN168 showed significantly less UV damage. High-throughput sequencing revealed that UV stress inhibited the expression of genes related to photosynthesis and carbon fixation and a less degree for ZN168 than ZKM138. The distinctive performance of ZN168 is mediated by the selective expression of genes involved in multiple defense responses. Besides, metabolome analysis on grains suggested that UV radiation had a significant effect on anthocyanin accumulation. This study will enable us to exploit genes pinpointed as the targets of genetic engineering, thereby improving the UV tolerance of wheat. Furthermore, the anthocyanin-enriched wheat can be excellent resources to act as functional food.


Asunto(s)
Proteínas de Plantas/genética , Transcriptoma/efectos de la radiación , Triticum/genética , Triticum/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/efectos de la radiación , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Rayos Ultravioleta
14.
Front Microbiol ; 9: 2658, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30467498

RESUMEN

Coniothyrium minitans is a sclerotial parasite, which has been investigated for commercial control of crop diseases caused by Sclerotinia sclerotiorum. Previously, we obtained a T-DNA insertional mutant, ZS-1TN24363, which did not produce melanin during conidiation. To understand the function of melanin in C. minitans, we cloned the gene that was disrupted by the T-DNA insertion, and found that this gene, called CmMR1, encoded a putative protein of 1,011 amino acids, which is a homolog of the transcription factor MR. Full-length CmMR1 contains 3,167 bp, with three exons and two introns. To confirm that the disrupted gene is responsible for the melanin-deficiency of the mutant, CmMR1 was disrupted and three targeted knockout mutants were obtained. Biological assays showed that the phenotype of the targeted knockout mutants was similar to that of the T-DNA insertional mutant. Furthermore, gene complementation confirmed that CmMR1 is responsible for the mutant phenotype. CmMR1 disruption did not affect hyphal growth, conidiation, and parasitization of C. minitans, however, the ROS accumulation increased and tolerance to UV light decreased significantly in the mutants. Our result may enhance the understanding of melanin in the ecology of C. minitans on molecular level.

15.
Plant Sci ; 277: 267-277, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30466592

RESUMEN

Frequent exposure of plants to solar ultraviolet radiation (UV) results in damaged DNA. One mechanism of DNA repair is the light independent pathway Global Genomic Nucleotide Excision Repair (GG-NER), which repairs UV damaged DNA throughout the genome. In mammals, GG-NER DNA damage recognition is performed by the Damaged DNA Binding protein 1 and 2 (DDB1/2) complex which recruits the Xeroderma Pigmentosa group C (XPC) / RAD23D complex. In the yeast Saccharomyces cerevisiae, distinct proteins, Radiation sensitive 7 and 16 (Rad7p and Rad16p), recognize the damaged DNA strand and then recruit the XPC homologue, Rad4p, and Rad23p. The remainder of the proteins involved GG-NER are well conserved. DDB1, DDB2, XPC/RAD4, and RAD23 homologues have been described in the model plant Arabidopsis thaliana. In this study we characterize three Arabidopsis RAD7 homologues, RAD7a, RAD7b, and RAD7c. Loss of function alleles of each of the three RAD7 homologues result in increased UV sensitivity. In addition, RAD7b and RAD7c overexpression lines exhibited increased UV tolerance. Thus RAD7 homologues contribute to UV tolerance in plants as well as in yeast. This is the first time any system has been shown to utilize both the DDB1/2 and RAD7/16 damage recognition complexes.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Rayos Ultravioleta/efectos adversos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Am J Bot ; 105(6): 996-1008, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29985543

RESUMEN

PREMISE OF THE STUDY: Ultraviolet (UV) radiation influences the viability of algal spores and seed-plant pollen depending on the species, the dose, and the wavelength. In bryophytes, one of the dominant groups of plants in many habitats, UV radiation could determine their spore dispersal strategy, and such data are critical for reconstructing the ancestral state in plants and for determining the distribution range and persistence of bryophyte species. METHODS: Spores of four bryophyte species of the moss genus Orthotrichum that were either hygrochastic or xerochastic (spores dispersed under wet or dry conditions, respectively) were exposed to realistic doses of UV radiation under laboratory conditions. Spore viability was evaluated through germination experiments and, for the first time in bryophytes, ultrastructural observations. Given that the UV-B doses used were relatively higher than the UV-A doses, the UV effect was probably due more to UV-B than UV-A wavelengths. KEY RESULTS: All four species reduced their spore germination capacity in a UV dose-dependent manner, concomitantly increasing spore ultrastructural damage (cytoplasmic and plastid alterations). Most spores eventually died when exposed to the highest UV dose. Interestingly, spores of hygrochastic species were much more UV-sensitive than those of xerochastic species. CONCLUSIONS: UV tolerance determines moss spore viability, as indicated by germination capacity and ultrastructural damage, and differs between spores of species with different dispersal strategies. Specifically, the higher UV tolerance of xerochastic spores may enable them to be dispersed to longer distances than hygrochastic spores, thus extending more efficiently the distribution range of the corresponding species.


Asunto(s)
Bryopsida/efectos de la radiación , Dispersión de las Plantas , Esporas/efectos de la radiación , Bryopsida/ultraestructura , Esporas/ultraestructura , Rayos Ultravioleta
17.
Genes (Basel) ; 9(1)2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29283431

RESUMEN

In plants, exposure to solar ultraviolet (UV) light is unavoidable, resulting in DNA damage. Damaged DNA causes mutations, replication arrest, and cell death, thus efficient repair of the damaged DNA is essential. A light-independent DNA repair pathway called nucleotide excision repair (NER) is conserved throughout evolution. For example, the damaged DNA-binding protein Radiation sensitive 4 (Rad4) in Saccharomyces cerevisiae is homologous to the mammalian NER protein Xeroderma Pigmentosum complementation group C (XPC). In this study, we examined the role of the Arabidopsis thaliana Rad4/XPC homologue (AtRAD4) in plant UV tolerance by generating overexpression lines. AtRAD4 overexpression, both with and without an N-terminal yellow fluorescent protein (YFP) tag, resulted in increased UV tolerance. YFP-RAD4 localized to the nucleus, and UV treatment did not alter this localization. We also used yeast two-hybrid analysis to examine the interaction of AtRAD4 with Arabidopsis RAD23 and found that RAD4 interacted with RAD23B as well as with the structurally similar protein HEMERA (HMR). In addition, we found that hmr and rad23 mutants exhibited increased UV sensitivity. Thus, our analysis suggests a role for RAD4 and RAD23/HMR in plant UV tolerance.

18.
J Biotechnol ; 220: 86-7, 2016 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-26806489

RESUMEN

Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium which exhibited tolerance to cold and UV radiations was isolated from the glacial stream of East Rathong glacier in Sikkim Himalaya. Here we report the 4.3Mb complete genome assembly that has provided the basis for potential role of pigments as a survival strategy to combat stressed environment of cold and high UV-radiation and additionally the ability to produce cold active industrial enzymes.


Asunto(s)
Arthrobacter/genética , Genoma Bacteriano , Arthrobacter/aislamiento & purificación , Arthrobacter/efectos de la radiación , Composición de Base , Secuencia de Bases , Mapeo Cromosómico , Frío , ADN Bacteriano/genética , ADN Ribosómico/genética , Tamaño del Genoma , Cubierta de Hielo/microbiología , Datos de Secuencia Molecular , Pigmentación/fisiología , ARN Ribosómico/genética , ARN Ribosómico 16S/genética , Sikkim , Estrés Fisiológico
19.
Microbiologyopen ; 5(2): 224-43, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26687452

RESUMEN

Ustilago maydis is a phytopathogenic fungus causing corn smut disease. It also is known for its extreme tolerance to UV- and ionizing radiation. It has not been elucidated whether light-sensing proteins, and in particular photolyases play a role in its UV-tolerance. Based on homology analysis, U. maydis has 10 genes encoding putative light-responsive proteins. Four amongst these belong to the cryptochrome/photolyase family (CPF) and one represents a white collar 1 ortholog (wco1). Deletion mutants in the predicted cyclobutane pyrimidine dimer CPD- and (6-4)-photolyase were impaired in photoreactivation. In line with this, in vitro studies with recombinant CPF proteins demonstrated binding of the catalytic FAD cofactor, its photoreduction to fully reduced FADH(-) and repair activity for cyclobutane pyrimidine dimers (CPDs) or (6-4)-photoproducts, respectively. We also investigated the role of Wco1. Strikingly, transcriptional profiling showed 61 genes differentially expressed upon blue light exposure of wild-type, but only eight genes in the Δwco1 mutant. These results demonstrate that Wco1 is a functional blue light photoreceptor in U. maydis regulating expression of several genes including both photolyases. Finally, we show that the Δwco1 mutant is less tolerant against UV-B due to its incapability to induce photolyase expression.


Asunto(s)
Adaptación Biológica/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Rayos Ultravioleta , Ustilago/fisiología , Ustilago/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/química , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Familia de Multigenes , Mutación , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
20.
Fungal Genet Biol ; 83: 68-77, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26325214

RESUMEN

In fungi, ENA ATPases play key roles in osmotic and alkaline pH tolerance, although their functions in thermo- and UV-tolerances have not been explored. Entomopathogenic fungi are naturally widespread and have considerable potential in pest control. An ENA ATPase gene, MaENA1, from the entomopathogenic fungus Metarhizium acridum was functionally analyzed by deletion. MaENA1-disruption strain (ΔMaENA1) was less tolerant to NaCl, heat, and UV radiation than a wild-type strain (WT). Digital Gene Expression profiling of conidial RNAs resulted in 281 differentially expressed genes (DEGs) between the WT and ΔMaENA1 strains. Eighty-five DEGs, 56 of which were down-regulated in the ΔMaENA1 strain, were shown to be associated with heat/UV tolerance, including six cytochrome P450 superfamily genes, 35 oxidoreductase genes, 24 ion-binding genes, seven DNA repair genes, and five other genes. In addition, eight genes were components of stress responsive pathways, including the Ras-cAMP PKA pathway, the RIM101 pathway, the Ca(2+)/calmodulin pathway, the TOR pathway, and the HOG/Spc1/Sty1/JNK pathway. These results demonstrated that MaENA1 influences fungal tolerances to Na(+), heat, and UV radiation in M. acridum, and is involved in multiple mechanisms of stress tolerance. Therefore, MaENA1 is required for the adaptation and survival of entomopathogenic fungi in stressful conditions in the environment and in their hosts.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Metarhizium/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estrés Fisiológico/fisiología , Adenosina Trifosfatasas/clasificación , Cloruros/metabolismo , Cloruros/farmacología , Clonación Molecular , ADN de Hongos/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Genes Fúngicos , Calor , Metarhizium/efectos de los fármacos , Metarhizium/enzimología , Metarhizium/efectos de la radiación , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/fisiología , Esporas Fúngicas/efectos de la radiación , Rayos Ultravioleta , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...