Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Vet Ophthalmol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118265

RESUMEN

OBJECTIVE: To investigate the therapeutic effect of 275 nm wavelength ultraviolet C (UV-C) light for treatment of bacterial keratitis in canine corneas using an affordable, broadly available modified handheld device. METHODS: UV-C therapy (UVCT) was evaluated in two experiments: in vitro using triplicates of three bacterial genera (Staphylococcus, Streptococcus, Pseudomonas spp., and a mix of all species) where the UVCT was performed at a distance of 10, 15, and 20 mm with 1 or 2 doses (4 h apart) for 5, 15, or 30 s; ex vivo model where healthy canine corneal buttons were inoculated superficially and deep (330 µm) with the same bacterial isolates and treated at a 10 mm distance for 15 s with one dose of 22.5 mJ/cm2. Fluorescent marker (STYO9-PI) was used to label (green = live bacteria, red = dead bacteria), and confocal microscopy was used to image the bacteria. RESULTS: In vitro results showed all plates treated with UVCT had 100% bactericidal effect for all isolates with single dose of 15 s at 10 mm distance or two doses, 4 h apart at 15 mm and was ineffective with single dose at 15-20 mm. The ex vivo results confirmed a significant decrease in bacterial load for all isolates on samples inoculated superficially but were inconclusive for intrastromal ones. CONCLUSIONS: UVCT confirmed the therapeutic potential for all tested isolates, for both in vitro and ex vivo experiments using a single exposure of 15 s. While safety studies are underway, clinical trials are warranted.

2.
Biomed Chromatogr ; : e5975, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105236

RESUMEN

In this research, the study utilized the root, leaf, and petiole parts of in vitro grown Salvia hispanica plants as explants. Following UV-C treatment applied to developing callus, methanol extracts were obtained and analyzed using liquid chromatography-mass spectrometry (LC/MS) to investigate their anticancer properties. First, the seeds of S. hispanica were soaked in commercial bleach for 6 min to ensure surface sterilization. The most effective antimicrobial activity on Gram-negative bacteria, with a zone diameter (11 ± 0.82 mm), was noticed in callus extracts obtained from the petiole explant in the second protocol against Klebsiella pneumoniae EMCS bacteria. Anticancer activities on SH-SY5Y human neuroblastoma cells were investigated by using 1000, 500, 250, 125, 62.5, 31.25, 15.62, and 78.12 µg/mL doses of the extracts, and the most effective cytotoxic activity was determined at the 1000 µg/mL dose of the extracts obtained from both protocols. The extracts were determined to inhibit hCAI, hCAII, AChE, and BChE enzymes. The content of 53 different phytochemical components of the extracts was analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Rosmarinic acid, quinic acid, and caffeic acid were found in the highest concentration. The comprehensive LC-MS/MS analysis of S. hispanica extracts revealed a diverse array of phytochemical compounds, highlighting its potential for therapeutic applications.

3.
Food Chem ; 459: 140259, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089197

RESUMEN

2-Aminoacetophenone is an off-flavor that can result from tryptophan degradation via riboflavin-photosensitized reaction. This study investigates the impact of light exposure, provided by a UV-C source, oxygen concentrations and transition metals on the formation of 2-aminoacetophenone in model wine containing tryptophan and riboflavin. Irrespective of oxygen and transition metals, >85% of tryptophan were degraded via first-order kinetics to unknown product(s). However, longer light exposure and more oxygen caused 2-aminoacetophenone concentrations to increase. Transition metals decelerated the 2-aminoacetophenone formation and acetaldehyde was formed suggesting photo-Fenton reaction occurred as a competitive reaction. The degradation rate of riboflavin inclined with less oxygen and in the presence of transition metals due to the depletion of oxygen by photo-Fenton reaction. Oxygen plays an important role in the regeneration of riboflavin and therefore must be seen as an intensifier for light-induced 2-aminoacetophenone formation. This paper provides new insights into riboflavin-photosensitized reactions.


Asunto(s)
Acetofenonas , Oxígeno , Riboflavina , Triptófano , Rayos Ultravioleta , Vino , Riboflavina/química , Triptófano/química , Vino/análisis , Acetofenonas/química , Oxígeno/química , Cinética , Elementos de Transición/química
4.
Sci Rep ; 14(1): 15328, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961237

RESUMEN

In the present study, the effect of chloride ions on the oxidative degradation of an alcohol ethoxylate (Brij 30) by persulfate (PS)/UV-C was experimentally explored using Brij 30 aqueous solution (BAS) and a domestic wastewater treatment plant effluent spiked with Brij 30. Brij 30 degradation occurred rapidly during the early stages of oxidation without affecting the water/wastewater matrix. Mineralization of intermediates of Brij 30 degradation markedly influenced by presence of chloride ions. Chloride ions at concentrations up to 50 mg/L accelerated the mineralization through reactions involving reactive chlorine species, which reduced the sink of SO4·- by Cl- scavenging at both initial pH of 6.0 and 3.0 in the case of BAS. The fastest mineralization was achieved under acidic conditions. The WWTP effluent matrix significantly influenced mineralization efficacy of the intermediates. Co-existence of HCO 3 - and Cl- anions accelerated the mineralization of degradation products. Organic matter originating from the WWTP effluent itself had an adverse effect on the mineralization rate. The positive effects of organic and inorganic components present in the WWTP effluent were ranked in the following order of increasing influence: (Organic matter originating from the effluent + Cl- + HCO 3 - ) < (Cl-) < (Cl- + HCO 3 - ).

5.
Photochem Photobiol Sci ; 23(8): 1521-1531, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38995521

RESUMEN

The defensive role performed by exogenously supplied ascorbic acid in the cyanobacterium Nostoc muscorum Meg1 against damages produced by UV-C radiation exposure was assessed in this study. Exposure to UV-C (24 mJ/cm2) significantly enhanced reactive oxygen species (ROS) (50%) along with peroxidation of lipids (21%) and protein oxidation (22%) in the organism. But, addition of 0.5 mM ascorbic acid prior to UV-C exposure showed reduction in ROS production (1.7%) and damages to lipids and proteins (1.5 and 2%, respectively). Light and transmission electron microscopic studies revealed that ascorbic acid not only protected filament breakage but also restricted severe ultrastructural changes and cellular damages in the organism. Although the growth of the organism was repressed up to 9% under UV-C treatment within 15 days, a pre-treatment with ascorbic acid led to growth enhancement by 42% in the same period. Various growth parameters such as photo-absorbing pigments (phycoerythrin, phycocyanin, allophycocyanin, chlorophyll a, and carotenoids), water splitting complex (WSC), D1 protein, RuBisCO, glutamine synthetase and nitrogenase activities in the UV-C treated organism were seen to be relatively intact in the presence of ascorbic acid. Thus, a detailed analysis undertaken in the present study was able to demonstrate that ascorbic acid not only act as first responder against harmful UV-C radiation by down-regulating ROS production, it also accelerated the growth performance in the organism in the post UV-C incubation period as an immediate response to an adverse experience presented in the form of UV-C radiation exposure.


Asunto(s)
Ácido Ascórbico , Especies Reactivas de Oxígeno , Rayos Ultravioleta , Ácido Ascórbico/farmacología , Ácido Ascórbico/química , Especies Reactivas de Oxígeno/metabolismo , Nostoc muscorum/efectos de los fármacos , Nostoc muscorum/metabolismo , Nostoc muscorum/química , Peroxidación de Lípido/efectos de los fármacos , Proteínas Bacterianas/metabolismo
6.
Am J Infect Control ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945300

RESUMEN

BACKGROUND: We aimed to evaluate the performance of ceiling-mounted UV-C lamps. METHODS: This study was conducted in an empty room with UV-C lamps in the biocontainment unit of a tertiary care hospital in South Korea. Each pathogen (Staphylococcus aureus, Escherichia coli, Candida krusei, Bacillus cereus, and Mycobacterium peregrinum) was inoculated on blood agar plates and placed in 20 selected places from the UV-C lamp, and irradiation was applied for 15 min. As a control group, the bacterial solution was diluted 10,000 times and UV was not applied. RESULTS: A mean ± SD of 5.95 ± 0.91 log reduction was observed with UV irradiation compared with the control. The log reduction was greatest for S. aureus [median, 7.05 (IQR, 6.49-7.26)] and least for M. peregrinum [median, 4.88 (IQR, 4.58-5.24)]. The degree of log reduction was inversely proportional to the square of the distance from the UV-C lamp (R2 = -0.12, P < .001). CONCLUSIONS: In this study, ceiling-mounted UV-C demonstrated effective disinfection of at least 4-log reduction of the test organisms within a 4-m distance. Mounted UV-C lighting is a considerable option for improving surface disinfection.

7.
Food Chem ; 456: 139906, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38852443

RESUMEN

The study investigated the impact of UV-C irradiation on peach fruit quality during postharvest storage, with a focus on aroma changes and the mechanisms involving lipoxygenase metabolism. Results showed that UV-C irradiation at a dosage of 1.5 kJ/m2 was found to preserve the quality attributes of peach fruit during ambient storage, as evidenced by high flesh firmness, inhibition of weight loss and respiration rate, as well as high values of L* and ascorbic acid. Meanwhile, UV-C irradiation led to an increase in the contents of aroma-related volatiles, particularly esters and lactones, compared to non-irradiated fruit. Our results suggested that the enhanced emission of aroma-related volatiles in UV-C irradiated peach fruit was linked to elevated levels of unsaturated fatty acids. Besides, UV-C induced the expressions and activities of enzymes in the lipoxygenase pathway, thus promoting the synthesis of esters and lactones, which contribute to the enhanced aroma in peach fruit.


Asunto(s)
Almacenamiento de Alimentos , Frutas , Odorantes , Prunus persica , Rayos Ultravioleta , Compuestos Orgánicos Volátiles , Frutas/química , Frutas/efectos de la radiación , Frutas/metabolismo , Prunus persica/química , Prunus persica/efectos de la radiación , Prunus persica/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo , Odorantes/análisis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/análisis , Lipooxigenasa/metabolismo , Irradiación de Alimentos
8.
Food Chem X ; 22: 101495, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38827021

RESUMEN

Goat milk was directly freeze-dried into milk powder after freezing and then sterilized using UV-C radiation to produce low-dose, medium-dose and high-dose UV-C radiation sterilized freeze-dried goat milk powder (LGP, MGP and HGP). UV-C sterilization effectively reduced the total bacteria count and coliform bacteria in the goat milk powder while preserving the active proteins, and maintaining the color unchanged. Additionally, LGP, MGP, and HGP all exhibited a moisture content below 5 g/100 g and water activity below 0.5. Upon reconstitution, the milk powder formed uniform and stable emulsion. During accelerated storage tests, the increased Aw did not compromise the microbial quality of milk powder, and there were no significant changes in active proteins as confirmed via SDS-PAGE results. Furthermore, the color parameters (a*, b* and ΔE) showed a strong correlation with hydroxymethyl furfural levels.

9.
Foods ; 13(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38890951

RESUMEN

Fresh-cut produce is usually produced under standardized disinfection processes, which are unavailable at the ready-to-eat stage. Currently, chemical sanitizers are used for washing, but their disinfection efficacy is limited. In this study, UV-C (1.03 kJ/m2) was combined with organic acids that are generally recognized as safe (GRAS), including citric, malic, acetic, and lactic acids (LAs), to wash lettuce and cherry tomatoes that are contaminated with Escherichia coli O157:H7 and Salmonella Typhimurium. The results showed that LA was the most effective treatment among the single treatments, with a pathogen reduction and cross-contamination incidence of 2.0-2.3 log CFU/g and 28-35%, respectively. After combining with UV-C, the disinfection efficacy and cross-contamination prevention capacity of the four GRAS acids significantly improved. Among the combination treatments, the highest pathogen reduction (2.5-2.7 log CFU/g) and the lowest cross-contamination incidence (11-15%) were achieved by LA-UV. The analyses of ascorbic acid, chlorophyll, lycopene, antioxidant capacity, and ΔE indicated that neither the single nor combination treatments negatively affected the quality properties. These results provide a potential hurdle technology for fresh produce safety improvement at the ready-to-eat stage.

10.
J Environ Manage ; 364: 121442, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870793

RESUMEN

The widespread use of low or medium pressure mercury lamps in UV-C water disinfection should consider recent advances in UV-C LED lamps that offer a more sustainable approach and avoid its main drawbacks. The type of water and the mode of operation are critical when deciding on the treatment technology to be used. Therefore, this study investigates the potential application of UV-C LED disinfection technology in terms of kinetics, environmental assessment, and economic analysis for two scenarios: the continuous disinfection of a wastewater treatment plant (WWTP), and disinfection of harvested rainwater (RWH) in a residential household that operates intermittently. Experiments are conducted using both the new UV-C LED system and the conventional mercury lamp to disinfect real wastewater. Removal of total coliforms and Escherichia coli bacteria, with concentrations of approximately 105 and 104 CFU per 100 mL has been followed to assess the performance of both types of UV-C lamps. The experimental study provides kinetic parameters that have been further used in the environmental assessment conducted from a life cycle perspective. Additionally, considering the significant role of electricity consumption, a preliminary economic analysis has been conducted. The results indicate that first-order kinetic constants of pathogens removal with UV-C LEDs achieve 1.4 times higher values than Hg lamp. Regarding the environmental and economic assessment, for disinfection systems operating continuously, LEDs result in environmental impacts 5 times higher than Hg lamp in most categories, indicating that Hg lamps offer a viable option both from economic and environmental point of view. However, for installations with intermittent operation, LEDs emerge as the most competitive alternative, due to their ability to be turned on and off without affecting their lifespan. This study shows that UV-C LED lamps hold promise to replace conventional mercury lamps in a near future.


Asunto(s)
Desinfección , Rayos Ultravioleta , Purificación del Agua , Desinfección/métodos , Purificación del Agua/métodos , Purificación del Agua/economía , Escherichia coli/efectos de la radiación , Aguas Residuales
11.
Ann Agric Environ Med ; 31(2): 287-293, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38940114

RESUMEN

INTRODUCTION AND OBJECTIVE: Ultraviolet light in the UV-C band is known as germicidal radiation and was widely used for both sterilization of the equipment and creation of a sterile environment. The aim of the study is to assess the effectiveness of inactivation of microorganisms deposited on surfaces with various textures by UV-C radiation disinfection devices. MATERIAL AND METHODS: Five microorganisms (3 bacteria, virus, and fungus) deposited on metal, plastic, and glass surfaces with smooth and rough textures were irradiated with UV-C light emitted by low-pressure mercury lamp and ultraviolet emitting diodes (LEDs), from a distance of 0.5 m, 1 m, and 1.5 m to check their survivability after 20-minute exposure. RESULTS AND CONCLUSIONS: Both tested UV-C sources were effective in inactivation of microorganisms; however, LED emitter was more efficient in this respect than the mercury lamp. The survival rate of microorganisms depended on the UV-C dose, conditioned by the distance from UV-C source being the highest at 0.5 m and the lowest at 1.5 m. For the tested microorganisms, the highest survival rate after UV-C irradiation was usually visible on glass and plastic surfaces. This observation should be considered in all environments where the type of material (from which the elements of technical equipment are manufactured and may be contaminated by specific activities) is important for maintaining the proper level of hygiene and avoiding the unwanted and uncontrolled spread of microbiological pollution.


Asunto(s)
Bacterias , Desinfección , Hongos , Rayos Ultravioleta , Desinfección/métodos , Desinfección/instrumentación , Hongos/efectos de la radiación , Bacterias/efectos de la radiación , Bacterias/aislamiento & purificación , Virus/efectos de la radiación , Propiedades de Superficie , Viabilidad Microbiana/efectos de la radiación , Plásticos/efectos de la radiación , Plásticos/química , Vidrio/química
12.
Int J Food Microbiol ; 421: 110800, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38878705

RESUMEN

To our knowledge, this study is the first to elucidate the bactericidal efficacy of unpeeled carrots (hereafter referred to as carrots) pretreated with Ultra Violet-C (UV-C) against subsequent contamination with Listeria monocytogenes. Carrots pretreated with UV-C (240 mJ/cm2) exhibited a significant antilisterial effect within 2 h. In fact, the population of UV-C-pretreated carrots decreased from 7.94 log CFU/cm2 to levels below the limit of detection (LOD; <1.65 log CFU/cm2) within 24 h. For carrots that were not pretreated with UV-C, 3-4 log reductions were found after 24 h. Carrots pretreated with UV-C exhibited antimicrobial activity against another gram-positive pathogen, Staphylococcus aureus, but not against the gram-negative pathogens, E. coli O157:H7 and Salmonella enterica. Pretreatment with UV-C created a lasting antimicrobial effect as introducing L. monocytogenes on carrots, 72 h post-UV-C treatment, still maintained the antilisterial effect. Notably, all UV-C doses in the range of 48-240 mJ/cm2 induced a lasting antilisterial effect. The bactericidal effects against L. monocytogenes were confirmed in three varieties of washed and unwashed carrots (Danvers, Nantes, and Chantenay). Fluorescence microscopy confirmed the bactericidal effect of UV-C-pretreated carrots on the survival of L. monocytogenes. Conclusively, pretreating carrots with UV-C can reduce the population of L. monocytogenes to levels below the LOD and may further prevent pathogen growth during cold storage. Additional studies are necessary to discern the mechanism underlying the bactericidal efficacy of UV-C-pretreated carrots.


Asunto(s)
Daucus carota , Listeria monocytogenes , Rayos Ultravioleta , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/efectos de la radiación , Daucus carota/microbiología , Microbiología de Alimentos , Staphylococcus aureus/efectos de los fármacos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Recuento de Colonia Microbiana , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/efectos de la radiación , Escherichia coli O157/crecimiento & desarrollo , Salmonella enterica/efectos de los fármacos , Salmonella enterica/efectos de la radiación , Salmonella enterica/crecimiento & desarrollo
13.
Environ Technol ; : 1-10, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753520

RESUMEN

This study investigated the disinfection efficiency of a photoreactor equipped with a helical water flow channel and ultraviolet-C (UV-C) light emitting diodes (LEDs). Theoretical simulations and biodosimetry tests were conducted to investigate the effects of coil diameter and flow rate on the reactor's performance in inactivating Escherichia coli. The interplay between hydrodynamics and UV radiation was analyzed to determine the UV fluence absorbed by the microbes. The simulations revealed that, primarily due to the specific radiation pattern of the UV LEDs, the coil diameter strongly influenced the distribution of irradiance in the water and the UV fluence received by microbes. The experimental results indicated that the photoreactor achieved the highest inactivation value of 2.8 log when the coil diameter was 48 mm for a flow rate of 40 mL/min; this log value was superior to those for coil diameters of 16, 32, 64, and 80 mm by approximately 1.9, 0.4, 0.5, and 0.7 log units, respectively. This optimal coil diameter leading to the maximal UV irradiance and the highest degree of irradiance uniformity along the flow channel. This study offers design guidelines for constructing a high-efficiency water disinfection reactor with a helical flow channel configuration.

14.
Food Sci Anim Resour ; 44(2): 372-389, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38764508

RESUMEN

This study investigated the efficacy of ultraviolet-C (UV-C) irradiation in enhancing the quality of raw bovine milk by targeting microbial populations and lipid peroxidation, both of which are key factors in milk spoilage. We categorized the raw milk samples into three groups based on initial bacterial load: low (<3 Log 10 CFU/mL), medium (3-4 Log 10 CFU/mL), and high (>4 Log 10 CFU/mL). Using a 144 W thin-film UV-C reactor, we treated the milk with a flow rate of 3 L/min. We measured the bacterial count including standard plate count, coliform count, coagulase-negative staphylococci count, and lactic acid bacteria count and lipid peroxidation (via thiobarbituric acid reactive substances assay) pre- and post-treatment. Our results show that UV-C treatment significantly reduced bacterial counts, with the most notable reductions observed in high and medium initial load samples (>4 and 3-4 Log 10 CFU/mL, respectively). The treatment was particularly effective against coliforms, showing higher reduction efficiency compared to coagulase-negative staphylococci and lactic acid bacteria. Notably, lipid peroxidation in UV-C treated milk was significantly lower than in pasteurized or untreated milk, even after 72 hours. These findings demonstrate the potential of UV-C irradiation as a pre-treatment method for raw milk, offering substantial reduction in microbial content and prevention of lipid peroxidation, thereby enhancing milk quality.

15.
Sci Rep ; 14(1): 12560, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821987

RESUMEN

The textile dyeing and manufacturing industry is the major producer of significant amounts of wastewater that contain persistent substances such as azo dyes that require adequate remediation measures. Far ultraviolet at 222 nm light may provide an advantage for contaminants degradation as compared to conventional UV sources (254 nm). In this paper, the degradation of reactive black 5 (RB5) in artificial wastewater has been performed using a 222 nm Kr/Cl2 excimer source under direct photolysis and an advanced oxidation process using TiO2/H2O2. The solution pH, catalyst concentration, 222 nm intensity, initial concentration of dye, and addition of H2O2 influence the degradation rate constant. The molar absorption coefficient, quantum yield of RB5 at 222 nm and the electrical energy per order (EEO) from different treatment methods have been reported. RB5 shows 1.26 times higher molar absorption at 222 nm than at 254 nm. The EEO for excimer-222/H2O2 ( ∼ 13 kWh/m3) is five times lower than that of the excimer-222/TiO2 process, which makes the process energy efficient. The degradation of wastewater has been carried out at three distinct pH values (2, 6, and 10), and the pH level of 10 exhibited the highest degree of degradation. The degradation rate in the alkaline medium is 8.27 and 2.05 times higher than in the acidic or ambient medium. Since textile effluent is highly alkaline, this result is significant, as no neutralization of the wastewater is required, and direct treatment is possible. A possible degradation pathway has been established based on Fourier transform infrared spectroscopy (FTIR) and high resolution mass spectroscopy (HRMS) analysis. The phytotoxicity of the treated wastewater has also been evaluated for its suitability for reuse in agriculture. The study reveals that the excimer-222/H2O2 treated wastewater significantly enhanced the germination percentage of Raphanus sativus seed (97%) compared to dye wastewater-grown seeds (75%). This work offers crucial information for future studies on the direct and indirect photolysis of azo dyes, as well as insight into the process of RB5 degradation under Kr/Cl2 excimer radiation.

16.
Adv Mater ; 36(32): e2313037, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810365

RESUMEN

Light-emitting diodes in the UV-C spectral range (UV-C LEDs) can potentially replace bulky and toxic mercury lamps in a wide range of applications including sterilization and water purification. Several obstacles still limit the efficiencies of UV-C LEDs. Devices in flip-chip geometry suffer from a huge difference in the work functions between the p-AlGaN and high-reflective Al mirrors, whereas the absence of UV-C transparent current spreading layers limits the development of UV-C LEDs in standard geometry. Here it is demonstrated that transfer-free graphene implemented directly onto the p-AlGaN top layer by a plasma enhanced chemical vapor deposition approach enables highly efficient 275 nm UV-C LEDs in both, flip-chip and standard geometry. In flip-chip geometry, the graphene acts as a contact interlayer between the Al-mirror and the p-AlGaN enabling an external quantum efficiency (EQE) of 9.5% and a wall-plug efficiency (WPE) of 5.5% at 8 V. Graphene combined with a ≈1 nm NiOx support layer allows a turn-on voltage <5 V. In standard geometry graphene acts as a current spreading layer on a length scale up to 1 mm. These top-emitting devices exhibit a EQE of 2.1% at 8.7 V and a WPE of 1.1%.

17.
Mol Neurobiol ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649660

RESUMEN

Light-based photo-stimulation has demonstrated promising effects on stem cell behavior, particularly in optimizing neurogenesis. However, the precise parameters for achieving optimal results, including the wavelengths, light intensity, radiating energy, and underlying mechanisms, remain incompletely understood. In this study, we focused on utilizing ultraviolet-C (UV-C) at a specific wavelength of 254 nm, with an ultra-low dose at intensity of 330 µW/cm2 and a total energy of 594 mJ/cm2 per day over a period of seven days, to stimulate the proliferation and differentiation of mouse neural stem cells (NSCs). The results revealed that the application of ultra-low-dose UV-C yielded the most significant effect in promoting differentiation when compared to mixed ultraviolet (UV) and ultraviolet-A (UV-A) radiation at equivalent exposure levels. The mechanism exploration elucidated the role of Presenilin 1 in mediating the activation of ß-catenin and Notch 1 by the UV-C treatment, both of which are key factors facilitating NSCs proliferation and differentiation. These findings introduce a novel approach employing ultra-low-dose UV-C for specifically enhancing NSC differentiation, as well as the underlying mechanism. It would contribute valuable insights into brain stimulation and neurogenesis modulation for various diseases, offering potential therapeutic avenues for further exploration.

18.
Appl Microbiol Biotechnol ; 108(1): 286, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578301

RESUMEN

Ultraviolet-C light-emitting diodes (UV-C LEDs) are an emerging technology for decontamination applications in different sectors. In this study, the inactivation of bacterial biofilms was investigated by applying an UV-C LED emitting at 280 nm and by measuring both the influence of the initial cell density (load) and presence of an extracellular matrix (biofilm). Two bacterial strains exposing diverging matrix structures and biochemical compositions were used: Pseudomonas aeruginosa and Leuconostoc citreum. UV-C LED irradiation was applied at three UV doses (171 to 684 mJ/cm2) on both surface-spread cells and on 24-h biofilms and under controlled cell loads, and bacterial survival was determined. All surface-spread bacteria, between 105 and 109 CFU/cm2, and biofilms at 108 CFU/cm2 showed that bacterial response to irradiation was dose-dependent. The treatment efficacy decreased significantly for L. citreum surface-spread cells when the initial cell load was high, while no load effect was observed for P. aeruginosa. Inactivation was also reduced when bacteria were grown under a biofilm form, especially for P. aeruginosa: a protective effect could be attributed to abundant extracellular DNA and proteins in the matrix of P. aeruginosa biofilms, as revealed by Confocal Laser Scanning Microscopy observations. This study showed that initial cell load and exopolymeric substances are major factors influencing UV-C LED antibiofilm treatment efficacy. KEY POINTS: • Bacterial cell load (CFU/cm2) could impact UV-C LED irradiation efficiency • Characteristics of the biofilm matrix have a paramount importance on inactivation • The dose to be applied can be predicted based on biofilm properties.


Asunto(s)
Biopelículas , Desinfección , Matriz Extracelular , Bacterias , Matriz Extracelular de Sustancias Poliméricas , Pseudomonas aeruginosa
19.
J Toxicol Environ Health A ; 87(13): 533-540, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38660981

RESUMEN

Seed conditioning with ultraviolet light (UV-C) might (1) improve crop yield and quality, (2) reduce the use of agrochemicals during cultivation, and (3) increase plant survival in high salinity environments. The aim of this study was to examine the effects of UV-C conditioning of white oat seeds at two doses (0.85 and 3.42 kJ m-2) under salinity stress (100 mM NaCl). Seeds were sown on germination paper and kept in a germination chamber at 20°C. Germination and seedling growth parameters were evaluated after 5 and 10 days. Data demonstrated that excess salt reduced germination and initial growth of white oat seedlings. In all the variables analyzed, exposure of seeds to UV-C under salt stress exerted a positive effect compared to non-irradiated control. The attenuating influence of UV-C in germination was greater at 0.85 than at 3.42 kJ m-2. Thus, data indicate that conditioning white oat seeds in UV-C light produced greater tolerance to salt stress. These findings suggest that UV-C conditioning of white oat seeds may be considered as a simple and economical strategy to alleviate salt-induced stress.


Asunto(s)
Avena , Germinación , Semillas , Rayos Ultravioleta , Avena/efectos de los fármacos , Avena/efectos de la radiación , Avena/crecimiento & desarrollo , Semillas/efectos de la radiación , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Estrés Salino/efectos de los fármacos , Plantones/efectos de la radiación , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Cloruro de Sodio
20.
Methods Mol Biol ; 2798: 65-77, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587736

RESUMEN

Plants generate reactive oxygen species (ROS) during different metabolic processes, which play an essential role in coordinating growth and response. ROS levels are sensitive to environmental stresses and are often used as a marker for stress in plants. While various methods can detect ROS changes, histochemical staining with nitroblue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAB) is a popular method, though it has faced criticism. This staining method is advantageous as it enables both the quantification and localization of ROS and the identification of the enzymatic origin of ROS in plants, cellular compartments, or gels. In this protocol, we describe the use of NBT and DAP staining to detect ROS generation under different stresses such as nitrogen starvation, wounding, or UV-C. Additionally, we describe the use of NBT staining for detecting enzymatic generation of ROS in native and native SDS PAGE gels. Our protocol also outlines the separation and comparison of the origin of ROS generated by xanthine dehydrogenase1 (XDH1) using different substrates.


Asunto(s)
Arabidopsis , Xantina , 3,3'-Diaminobencidina , Nitroazul de Tetrazolio , Especies Reactivas de Oxígeno , Geles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...