Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998136

RESUMEN

A three-dimensional porous bacterial cellulose/graphene oxide (BC/GO) composite hydrogel (BC/GO) was synthesized with multi-layer graphene oxide (GO) as the modifier and bacterial cellulose as the skeleton via an ultrasonic shaking process to absorb lead ions effectively. The characteristics of BC/GO were investigated through TEM, SEM, FT-IR, NMR and Zeta potential experiments. Compared to bacterial cellulose, the ultrasonic method and the carboxyl groups stemming from GO helped to enhance the availability of O(3)H of BC, in addition to the looser three-dimensional structure and enriched oxygen-containing groups, leading to a significantly higher adsorption capacity for Pb(II). In this paper, the adsorption behavior of BC/GO is influenced by the GO concentration, adsorption time, and initial concentration. The highest adsorption capacity for Pb(II) on BC/GO found in this study was 224.5 mg/g. The findings implied that the pseudo-second-order model explained the BC/GO adsorption dynamics and that the data of its adsorption isotherm fit the Freundlich model. Because of the looser three-dimensional structure, the complexation of carboxyl groups, and the enhanced availability of O(3)H, bacterial cellulose exhibited a much better adsorption capacity.

2.
Sci Rep ; 14(1): 16064, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992117

RESUMEN

Mentha haplocalyx essential oil (MEO) has demonstrated inhibitory effects on Fusarium oxysporum. Despite its environmentally friendly properties as a natural product, the limited water solubility of MEO restricts its practical application in the field. The use of nanoemulsion can improve bioavailability and provide an eco-friendly approach to prevent and control Panax notoginseng root rot. In this study, Tween 80 and anhydrous ethanol (at a mass ratio of 3) were selected as carriers, and the ultrasonic method was utilized to produce a nanoemulsion of MEO (MNEO) with an average particle size of 26.07 nm. Compared to MTEO (MEO dissolved in an aqueous solution of 2% DMSO and 0.1% Tween 80), MNEO exhibited superior inhibition against F. oxysporum in terms of spore germination and hyphal growth. Transcriptomics and metabolomics results revealed that after MNEO treatment, the expression levels of certain genes related to glycolysis/gluconeogenesis, starch and sucrose metabolism were significantly suppressed along with the accumulation of metabolites, leading to energy metabolism disorder and growth stagnation in F. oxysporum. In contrast, the inhibitory effect from MTEO treatment was less pronounced. Furthermore, MNEO also demonstrated inhibition on meiosis, ribosome function, and ribosome biogenesis in F. oxysporum growth process. These findings suggest that MNEO possesses enhanced stability and antifungal activity, which effectively hinders F. oxysporum through inducing energy metabolism disorder, meiotic stagnation, as well as ribosome dysfunction, thus indicating its potential for development as a green pesticide for prevention and control P. notoginseng root rot caused by F.oxyosporum.


Asunto(s)
Emulsiones , Fusarium , Mentha , Aceites Volátiles , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Aceites Volátiles/farmacología , Aceites Volátiles/química , Mentha/química , Antifúngicos/farmacología , Antifúngicos/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
3.
Materials (Basel) ; 17(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38399157

RESUMEN

The paper concerns destructive and non-destructive (NDT) evaluation of the effect of the addition of superabsorbent polymer (SAP) used as a carrier of mixing water and a means of internal curing on the durability of concrete. The research concerns testing of five concretes-an ordinary reference concrete and four concretes differing in the content of mixing water introduced into the concrete mix in the form of pre-saturated SAP particles (25%, two variants of 50% and 75% of the total mixing water in the form of SAP hydrogel). The research consisted of 4 stages of tests. The subsequent stages involved the analysis of the effect of using SAP as a carrier of mixing water on the particular characteristics of concrete mix and hardened concrete, i.e., consistency and density of concrete mix (1st stage), carbonation tested using two indicators-phenolphthalein and thymol phenolphthalein (2nd stage), and finally: the homogeneity of the concretes' structure by means of ultrasonic method (determination of ultrasonic pulse velocity) 28 days after production (3rd stage) and 3 years after production (4th stage). The ultrasonic pulse (or wave) velocity was then correlated with the content of water applied in the form of SAP hydrogel. The statistical analysis of results showed that the method of introducing the mixing water into the concrete mix in the form of pre-absorbed superabsorbent polymer, although it changed the concrete mix consistency, did not significantly affect the concrete ability to resist carbonation. Meanwhile, after 3 years, the densification of the microstructure of concrete with SAP has been observed.

4.
Ultrason Sonochem ; 92: 106241, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36470127

RESUMEN

Under ultrasonication, cuprous oxide (Cu2O) microparticles (<5 µm) were fragmented into nanoparticles (NPs, ranging from 10 to 30 nm in diameter), and interacted strongly with alkali lignin (Mw = 10 kDa) to form a nanocomposite. The ultrasonic wave generates strong binding interaction between lignin and Cu2O. The L-Cu nanocomposite exhibited synergistic effects with enhanced antibiofilm activities against E. coli, multidrug-resistant (MDR) E. coli, S. aureus (SA), methicillin-resistant SA, and P. aeruginosa (PA). The lignin-Cu2O (L-Cu) nanocomposite also imparted notable eradication of such bacterial biofilms. Experimental evidence unraveled the destruction of bacterial cell walls by L-Cu, which interacted strongly with the bacterial membrane. After exposure to L-Cu, the bacterial cells lost the integrated structural morphology. The estimated MIC for biofilm inhibition for the five tested pathogens was 1 mg/mL L-Cu (92 % lignin and 8 % Cu2ONPs, w/w %). The MIC for bacterial eradication was noticeably lower; 0.3 mg/mL (87 % lignin + 13 % Cu2ONPs, w/w %) for PA and SA, whereas this value was appreciably higher for MDR E. coli (0.56 mg/mL, 86 % lignin and 14 % Cu2O NPs). Such results highlighted the potential of L-Cu as an alternative to neutralize MDR pathogens.


Asunto(s)
Antibacterianos , Nanocompuestos , Antibacterianos/química , Staphylococcus aureus , Lignina/farmacología , Escherichia coli , Ultrasonido , Bacterias , Biopelículas , Nanocompuestos/química , Pruebas de Sensibilidad Microbiana
5.
Polymers (Basel) ; 14(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080590

RESUMEN

Novel composite based on rubber and modified bentonite clay (Clay) was investigated. The modified bentonite clay was developed by dispersing in ethanol solutions (Et-OH) using ultrasonic method. The effect of Et-OH on the dispersion of bentonite clay at various mixing temperatures in case of different type of rubber matrix, i.e., natural rubber (NR), epoxidized natural rubber (ENR25, ENR50) on dynamic mechanical rheology, Payne effect, XRD and mechanical properties of rubber composites were studied in detail. The bentonite clay dispersion in Et-OH at a mixing temperature of 80 °C improves the intercalation and exfoliation in rubber chains. Bentonite clay is highly intercalated in ENR 50-Clay composite, which can be confirmed from its superior mechanical properties. The results indicated that sonication of bentonite clay in Et-OH improves the interlayer spacing of bentonite clay by partial intercalation of rubber matrix.

6.
Ultrasonics ; 125: 106796, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35749868

RESUMEN

The laser-ultrasonic method for nondestructive assessment of a microcracking degree in laboratory specimens of orthoclase and plagioclase feldspars is proposed. The influence of the local concentration of microcracks on the spectral efficiency of backscattering of pulses of longitudinal ultrasonic waves in the studied specimens (the so-called "structural noise power") is studied. A specially designed laser-ultrasonic transducer used in experiments combines laser excitation of probe broadband ultrasonic pulses in a black polyethylene film and piezoelectric detection of both probe pulses and that scattered in the specimen. We study specimens of a potash feldspar and soda-calcium plagioclase with nonuniformly distributed local microcracks. The cracking domains were identified by optical microscopy as well as using the attenuation coefficient of longitudinal ultrasonic waves measured in these domains. The increase in the ultrasonic attenuation coefficient was associated with a higher concentration of microcracks, which efficiently scatter acoustic waves. At the same time, the domains with a higher ultrasonic attenuation exhibited an increased structural noise power. The direct correlation between the growth of the structural noise power and a higher local concentration of microcracks can be used as a basis of a system of nondestructive ultrasonic monitoring of occurrence and evolution of local microcracks in rocks and geomaterials under external loads of different nature.

7.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1230-1236, 2022 Mar.
Artículo en Chino | MEDLINE | ID: mdl-35343149

RESUMEN

A new quercetin nanocrystals self-stabilized Pickering emulsion(QT-NSSPE) was prepared by high-pressure homogenization combined with probe ultrasonic method. The influences of oil fraction, quercetin(QT) concentration, and pH of water phase on the formation of QT-NSSPE were investigated. On this basis, the QT-NSSPE prepared under optimal conditions was evaluated in terms of microstructure, stability, and in vitro release and the droplet size and drug loading were 15.82 µm and 4.87 mg·mL~(-1), respectively. The shell structure formed by quercetin nanocrystals(QT-NC) on the emulsion droplet surface was observed under a scanning electron microscope(SEM). X-ray diffraction(XRD) showed that the crystallinity of adsorbed QT-NC decreased significantly as compared with the raw QT. There were not significant changes of QT-NSSPE properties after 30 days of storage at room temperature. The in vitro release experiment confirmed that QT-NSSPE has a higher accumulative release rate than the raw QT. All these results indicated that QT-NSSPE has a great stability and a satisfactory in vitro release behavior, which is a promising new oral delivery system for QT.


Asunto(s)
Nanopartículas , Quercetina , Emulsiones/química , Tamaño de la Partícula , Agua/química
8.
Ultrason Sonochem ; 80: 105824, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763211

RESUMEN

To harvest the photon energy, a sequenceof perovskite-type oxides of LaCoxFe1-xO3 (0 ≤x≤1) nanostructures with distinct 'Cobalt' doping at the position of B-site are successfully prepared via a simple ultrasonic approach as photocatalyst. The crystallinity, phase identification, microstructure, and morphology of perovskite nanocomposites were analyzed to better understand their physicochemical properties. The catalytic efficiency was assessedusing Congo Red (CR) dye by visible light irradiation for 30 min. Applying terephthalic acid as a probe molecule, the formation of hydroxyl radicals during the processes was investigated. The photocatalytic efficacy was measured by varying different Co/Fe stoichiometric molar ratios and noticed the order of sequence is 0.2 > 0.6 > 0.4 > 0.8 > 0.5 > 0 > 1 after 30 min of reaction time. Finally using LaCo0.2Fe0.8O3 nanostructures, cycling studies (n = 3) were performed to determine its photostability and reusability. The photocatalytic methodology proposed in this study was discussed extensively.

9.
Materials (Basel) ; 14(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806993

RESUMEN

Microstructure development of concrete, mortar, and paste scale of cement-based material (CBM) during the early hydration stage has a significant impact on CBM's physical, mechanical, and durability characteristics at the high maturity state. The research was carried out using compositions with increased autogenous shrinkage and extended early age period, proposed within the RRT+ programme of the COST Action TU1404. The electrical conductivity method, used to follow the solidification process of CBM, is capable of determining the initial and final setting time, and the end of the solidification process acceleration stage for the paste and mortar scale. Simultaneous ultrasonic P- and S-wave transmission measurements revealed that the ratio of velocities VP/VS is highly dependent on the presence of aggregates-it is considerably higher for the paste scale compared to the mortar and concrete scale. The deviation from the otherwise roughly constant ratio VP/VS for each scale may indicate cracks in the material. The non-linear correlation between the dynamic and static elastic moduli valid over the three scales was confirmed. Additionally, it was found that the static E-modulus correlates very well with the square of the VS and that the VS is highly correlated to the cube compressive strength-but a separate trendline exists for each CBM scale.

10.
Enzyme Microb Technol ; 143: 109716, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33375976

RESUMEN

A high- power ultrasonic method was used to prepare bilirubin oxidase nanoparticles (BOxNPs) which were immobilized on polyethylene (PE) film. The characterization of PE film bound to BOxNPs and BOxNPs was carried out using "Dynamic Light Scattering (DLS)," "Transmission Electron Microscopy (TEM)," and "Scanning Electron Microscopy (SEM)." The PE film was treated with nitric acid (HNO3) for its activation. BOxNPs bound to PE film exhibited optimal activity (pH-8), incubation time (11 s) with temperature 35 °C. A linear relationship was observed between the bilirubin concentrations (0.02-250 µM), with an apparent Km value and Vmax for PE- bound BOxNPs, at 0.015 µM and 2.56 µmol/mL/min. The mean recoveries of added serum bilirubin were 94.5 % at a level of 5 mM whereas 98.5 % were observed at 10 mM which showed the satisfactory reliability of BOxNPs immobilized on PE film. The coefficient of variation for serum bilirubin ranged between 4.52%-5.25%, measured on the first day (within batch) and after seven days of storage (between batch).This current method has showed a good correlation for bilirubin values when compared to the standard enzymatic colorimetric method using free enzyme. BOxNPs bound to PE film were reutilized 150 times with storage at 4 °C for 120 days.


Asunto(s)
Técnicas Biosensibles , Ictericia , Nanopartículas , Bilirrubina , Enzimas Inmovilizadas , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Reproducibilidad de los Resultados
11.
Nanoscale Res Lett ; 15(1): 20, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31993763

RESUMEN

Tantalum disulfide (TaS2) two-dimensional film material has attracted wide attention due to its unique optical and electrical properties. In this work, we report the preparation of 1 T-TaS2 quantum dots (1 T-TaS2 QDs) by top-down method. Herein, we prepared the TaS2 QDs having a monodisperse grain size of around 3 nm by an effective ultrasonic liquid phase exfoliation method. Optical studies using UV-Vis, PL, and PLE techniques on the as-prepared TaS2 QDs exhibited ultraviolet absorption at 283 nm. Furthermore, we found that dimension reduction of TaS2 has led to a modification of the band gap, namely a transition from indirect to direct band gap, which is explained using first-principle calculations. By using quinine as reference, the fluorescence quantum yield is 45.6%. Therefore, our results suggest TaS2 QDs have unique and extraordinary optical properties. Moreover, the low-cost, facile method of producing high quality TaS2 QDs in this work is ideal for mass production to ensure commercial viability of devices based on this material. TaS2 quantum dots having a monodisperse grain size of around 3 nm have been prepared by an ultrasonic liquid phase exfoliation method, it has been found that the dimension reduction of TaS2 has led to a transition from indirect to direct band gap that results in the unique and extraordinary optical properties (PL QY: 45.6%).

12.
ACS Appl Mater Interfaces ; 12(2): 3032-3041, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31867947

RESUMEN

The adsorption of CO2 by conventional liquid alkanolamine adsorbents does not meet the requirements for green-friendly development in industrial applications. In this work, we constructed NH2-ß-CD-MOF for the first time through the amino-functionalization of the lowest-priced, readily available, and biocompatible ß-CD. Subsequently, the samples were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, elemental analysis, and N2 adsorption/desorption. The CO2 adsorption capacity of NH2-ß-CD-MOF was found to be 12.3 cm3/g, which is 10 times that of ß-CD-MOF. In addition, NH2-ß-CD-MOF has outstanding selective adsorption of CO2/N2 (947.52) compared with the reported materials. The adsorption mechanism of CO2 was analyzed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Furthermore, we have found that NH2-ß-CD-MOF has better water stability relative to ß-CD-MOF and γ-CD-MOF, and it can be recycled by an ultrasonic method.

13.
Front Chem ; 8: 580151, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33708757

RESUMEN

Health and environmental protection issues have become major focus areas in many research and development projects. In this context, recent MTT cytotoxicity assessments performed on carbon-doped MoSe2 nanoparticles have indicated that they exhibit excellent biocompatibility. Therefore, these nanoparticles have attracted considerable interest from researchers worldwide. Herein, we report the successful synthesis of carbon-doped MoSe2 nanoparticles using an ultrasonic method to enhance their lubrication effect for use as oil additives. Carbon-doped MoSe2 nanoparticles are smaller than untreated MoSe2 nanoparticles and can easily access the contact area to form a tribofilm, reducing the friction coefficient and generating less wear. Moreover, carbon-doped MoSe2 nanoparticles and waste water prepared with the nanoparticles display excellent biocompatibility. Hence, they can be used in practical applications such as oil additives.

14.
J Colloid Interface Sci ; 533: 539-547, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179832

RESUMEN

Janus shaped BiOCl/MoS2 composites with two dimensional configuration are successfully prepared via a facile pulse ultrasonic assisted method, which spontaneously introduces oxygen vacancies on the BiOCl surface and builds well-defined heterojuction at the BiOCl/MoS2 interfaces. The as-prepared BiOCl/MoS2 composites possess reduced band gap and defect energy levels due to the incorporation of MoS2 and the oxygen vacancies, which permits the enhanced light harvesting efficiency in the visible range. In addition, because of the formed BiS bonds at the BiOCl/MoS2 interface, the composites demonstrate improved charge separation of the photo-generated carriers. Therefore, when used as photocatalyst for Rhodamine B photodegradation, the optimized composite demonstrates a degradation rate of 0.078 min-1, which is much enhanced compared with that of pure BiOCl (0.052 min-1). Mechanism investigation indicates the degradation is a hole mediated process. In addition, the composite shows good stability and outstanding organic carbon removal efficiency, which could serve as a promising photocatalyst for water remediation under visible light.

15.
Nanomedicine (Lond) ; 13(21): 2691-2708, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30398084

RESUMEN

AIM: To study of the interactions of two new ruthenium(II) complexes (C1 and C2) with calf thymus (CT)-DNA; production of RuO2 nanoparticles using the complexes precursor. MATERIALS & METHODS: Complex C1 was characterized by x-ray crystallography. The binding of the complexes with (CT)-DNA was studied using techniques that include electronic absorption spectra, fluorescence and redox behavior. The preparation of RuO2 nanoparticles was carried out by thermal decomposition. RESULTS: The interaction mode of DNA with complexes is the type of electrostatic. It was revealed that sonication of the samples, before thermal decomposition, has been affected the morphologies and sizes of the resulting nanoparticles. CONCLUSION: The complexes are capable of interaction with DNA molecules and they have a good potential to prepare nanostructures.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Nanopartículas/química , Rutenio/química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Humanos , Ligandos , Nanopartículas/ultraestructura , Oxidación-Reducción , Electricidad Estática , Ultrasonido
16.
Sensors (Basel) ; 18(10)2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30301156

RESUMEN

This article discusses the results of a series of experiments on pulse ultrasonic cure monitoring of carbon fiber reinforced plastics applied to the pultrusion process. The aim of this study is to validate the hypothesis that pulse ultrasonic cure monitoring can be applied (a) for profiles having small cross sections such as 7 mm × 0.5 m m and (b) within the environment of the pultrusion process. Ultrasonic transducers are adhesively bonded to the pultrusion tool as actuators and sensors. The time-of-flight and the amplitude of an ultrasonic wave are analyzed to deduce the current curing state of the epoxy matrix. The experimental results show that ultrasonic cure monitoring is indeed applicable even to very thin cross sections. However, significant challenges can be reported when the techniques are used during the pultrusion process.

17.
Ultrason Sonochem ; 38: 29-37, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28633829

RESUMEN

An ultrasonic method is employed to synthesize the Sn doped Zn0.95Sn0.05O quantum dots with green light emission. Sn2+ and Sn4+ ions are used to create different optical defects inside Zn0.95Sn0.05O quantum dots and the changing trend of oxygen concentration under different ultrasonic irradiation power are investigated. The photoluminescence spectra are employed to characterize the optical defects of Zn0.95Sn0.05O quantum dots. The UV-vis spectra are used to study the band gap of Zn0.95Sn0.05O quantum dots, which is influenced by their sizes. The results indicate that ultrasonic power would influence the size of Zn0.95Sn0.05O quantum dots as well as the type and quantity of defects in ZnO quantum dots. Changing trends in size of Sn2+ and Sn4+ doped Zn0.95Sn0.05O quantum dots are quite similar with each other, while the changing trends in optical defects types and concentration of Sn2+ and Sn4+ doped Zn0.95Sn0.05O quantum dots are different. The difference of the optical defects concentration changing between Sn2+ doped Zn0.95Sn0.05O quantum dots (VO defects) and Sn4+ doped Zn0.95Sn0.05O quantum dots (OZn and Oi defects) shows that the formation process of ZnO under ultrasonic irradiation wiped oxygen out.

18.
Materials (Basel) ; 9(4)2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-28773347

RESUMEN

Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members.

19.
Ultrason Sonochem ; 30: 103-12, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26611814

RESUMEN

Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

20.
Ultrason Sonochem ; 21(2): 653-62, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24120925

RESUMEN

Herein a simple and fast method is introduced for the synthesis of lanthanum orthovanadate (LaVO4) nanoparticles under ultrasound irradiation. The effect of tris(acetylacetonato)lanthanum hydrate ([La(acac)3·3H2O]) and La(OAc)3 as two different precursors on the morphology and phase purity of LaVO4 was investigated. To optimum the particle size of the products, sonication time and the kind of surfactants have been changed. The as-synthesized products were characterized by XRD, FT-IR, SEM, TEM, and EDS. Based on the obtained results, it was found that the size and shape of the sonochemically formed LaVO4 nanoparticles were dramatically dependent on the sonication time, type of surfactant and lanthanum precursor. According to the XRD results, it was observed that pure tetragonal phase lanthanum orthovanadate (t-LaVO4) could be obtained only by using [La(acac)3·3H2O] as precursor under ultrasound irradiation for 30 min. On the other hand, monoclinic phase lanthanum orthovanadate (m-LaVO4) with poor crystallinity has been produced by vigorous stirring at room temperature without sonication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...