RESUMEN
The study of urinary peptidome is an important area of research, which concerns the characterization of endogenous peptides, as well as the identification of biomarkers for a wide range of socially significant diseases. First of all, this relates to renal and genitourinary pathologies and/or pathologies associated with proteinuria, such as kidney diseases, bladder, prostate and ovarian cancers, diabetic nephropathy, and pre-eclampsia. Unlike proteins, peptides do not require proteolytic hydrolysis, can be analyzed in their native form and can provide certain information about occurring (patho)physiological processes. Mass spectrometry (MS)-based approaches are the most unbiased and sensitive instruments with high multiplexing capacity and provided most of the current information about endogenous urine peptides. However, despite the large number of urine peptidomic studies, there are certain issues related to the insufficient comparability of their results due to the lack of consistent approaches to their interpretation. Also the development of a custom project-specific protein library for endogenous peptides search and identification is another important point that should be noted in the context of high-throughput peptidomic analysis. Here we propose the custom-specific urinary protein database and the grouping of endogenous urinary peptides with overlapping sequences as useful tools, which can facilitate the acquisition and analysis of LC-MS peptidomic data, as well as the comparison of results of different studies, which should facilitate their more efficient further application.
Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Humanos , Masculino , Femenino , Embarazo , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Proteínas , Péptidos/metabolismo , Proteómica/métodosRESUMEN
Urine is a sample of choice for noninvasive biomarkers search because it is easily available in large amounts and its molecular composition provides information on processes in the organism. The high potential of urine peptidomics has been demonstrated for clinical purpose. Several mass spectrometry based approaches have been successfully applied for urine peptidome analysis and potential biomarkers search. Summarizing literature data and our own experience we developed a protocol for comprehensive urine peptidome analysis. The technology includes several stages and consists of urine sample preparation by size exclusion chromatography and identification of featured peptides by nano-HPLC coupled to Fourier transform ion cyclotron resonance mass spectrometry, semiquantitative and statistical data analysis.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ciclotrones/instrumentación , Fragmentos de Péptidos/orina , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Urinálisis/métodos , HumanosRESUMEN
Preeclampsia (PE) is a pregnancy complication characterized by high blood pressure and proteinuria. The disorder usually occurs after the 20th week of pregnancy and gets worse over time. PE increases the risk of poor outcomes for both the mother and the baby. In the study we applied LC-MS/MS method for the analysis of the urine peptidome of women with PE. Samples were prepared using size-exclusion chromatography method which gives more than twice peptides identities if compared with solid phase extraction. Thirty urine samples from women with mild and severe preeclampsia and the control group were analyzed. In total 1786 peptides were identified using complementary search engines (Mascot, MaxQuant and PEAKS). A high level of agreement in peptide identification was observed with previously published data. Label-free data comparison resulted in 35 peptides which reliably distinguished a particular PE group (severe or mild) from controls. Our results revealed unique identifications (correlate to alpha-1-antitrypsin, collagen alpha-1(I) chain, collagen alpha-1 (III) chain, and uromodulin, for instance) that can potentially serve as early indicators of PE.
Asunto(s)
Preeclampsia/orina , Proteoma/análisis , Adulto , Secuencia de Aminoácidos , Biomarcadores/orina , Cromatografía en Gel , Femenino , Humanos , Péptidos/orina , Embarazo , Extracción en Fase Sólida , Estadísticas no Paramétricas , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: Ovarian cancer (OvCa) is the most lethal gynecological malignancy. The emergence of high-throughput technologies, such as mass spectrometry, has allowed for a paradigm shift in the way we search for novel biomarkers. Urine-based peptidomic profiling is a novel approach that may result in the discovery of noninvasive biomarkers for diagnosing patients with OvCa. In this study, the peptidome of urine from 6 ovarian cancer patients and 6 healthy controls was deciphered. RESULTS: Urine samples underwent ultrafiltration and the filtrate was subjected to solid phase extraction, followed by fractionation using strong cation exchange chromatography. These fractions were analyzed using an Orbitrap mass spectrometer. Over 4600 unique endogenous urine peptides arising from 713 proteins were catalogued, representing the largest urine peptidome reported to date. Each specimen was processed in triplicate and reproducibility at the protein (69-76%) and peptide (58-63%) levels were noted. More importantly, over 3100 unique peptides were detected solely in OvCa specimens. One such promising biomarker was leucine-rich alpha-2-glycoprotein (LRG1), where multiple peptides were found in all urines from OvCa patients, but only one peptide was found in one healthy control urine sample. CONCLUSIONS: Mining the urine peptidome may yield highly promising novel OvCa biomarkers.