Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Mitochondrion ; 78: 101929, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986923

RESUMEN

Type 2 diabetes (T2D) is a chronic metabolic disease that accounts for more than 90% of diabetic patients. Its main feature is hyperglycemia due to insulin resistance or insulin deficiency. With changes in diet and lifestyle habits, the incidence of T2D in adolescents has burst in recent decades. The deterioration in the exposure to the environmental pollutants further aggravates the prevalence of T2D, and consequently, it imposes a significant economic burden. Therefore, early prevention and symptomatic treatment are essential to prevent diabetic complications. Mitochondrial number and electron transport chain activity are decreased in the patients with T2D. Voltage-Dependent Anion Channel 1 (VDAC1), as a crucial channel protein on the outer membrane of mitochondria, regulates signal transduction between mitochondria and other cellular components, participating in various biological processes. When VDAC1 exists in oligomeric form, it additionally facilitates the entry and exit of macromolecules into and from mitochondria, modulating insulin secretion. We summarize and highlight the interplay between VDAC1 and T2D, especially in the environmental pollutants-related T2D, shed light on the potential therapeutic implications of targeting VDAC1 monomers and oligomers, providing a new possible target for the treatment of T2D.

2.
Reprod Toxicol ; 128: 108646, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880403

RESUMEN

OBJECTIVE: To investigate the impact of maternal smoking on chronic obstructive pulmonary disease (COPD) progression in offspring. METHODS: Using female C57BL/6 J mice, a maternal cigarette smoke exposure (CSE) model was established. Mice were exposed to cigarette smoke for 2 hours/day, 7 days/week, with a minimum 4-hour interval between exposures. Experimental groups included control (Con), pregnancy exposure (AS), pre-pregnancy exposure (SA), and pre-pregnancy + pregnancy exposure (SS). Lung function tests (Penh, PAU, TVb, EF50, Tr) were conducted on male offspring at 7 weeks. Histopathology, electron microscopy, and protein level changes were examined. RESULTS: Lung function tests revealed significant impairments in Penh, PAU, TVb, EF50, and Tr in offspring across all exposure scenarios. Specifically, AS experienced significant lung function impairment and mitochondrial dysfunction in offspring, with noticeable pulmonary lesions and increased apoptosis. SA showed similar or even more severe lung function impairment and cellular apoptosis. SS exhibited the most pronounced effects, with the highest levels of lung dysfunction, mitochondrial damage, and apoptosis. Histopathological analysis showed pulmonary lesions in offspring exposed to maternal CSE. Flow cytometry revealed increased apoptosis and reduced mitochondrial membrane potential in offspring lung cells. Electron microscopy confirmed mitochondrial dysfunction. Upregulation of apoptotic proteins and downregulation of anti-apoptotic protein Bcl-2 were found in offspring lung tissue exposed to maternal CSE. CONCLUSION: Maternal smoking induces impaired lung function, pulmonary lesions, and mitochondrial dysfunction in offspring, regardless of exposure timing and duration. Additionally, it alters expression of apoptosis-related proteins in offspring lung tissue, potentially contributing to COPD susceptibility.

3.
Ecotoxicol Environ Saf ; 281: 116647, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944014

RESUMEN

As a persistent organic pollutant, perfluorooctane sulfonate (PFOS) has a serious detrimental impact on human health. It has been suggested that PFOS is associated with liver inflammation. However, the underlying mechanisms are still unclear. Here, PFOS was found to elevate the oligomerization tendency of voltage-dependent anion channel 1 (VDAC1) in the mice liver and human normal liver cells L-02. Inhibition of VDAC1 oligomerization alleviated PFOS-induced nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome activation. Cytoplasmic membrane VDAC1 translocated to mitochondria was also observed in response to PFOS. Therefore, the oligomerization of VDAC1 occurred mainly in the mitochondria. VDAC1 was found to interact with the ATP synthase beta subunit (ATP5B) under PFOS treatment. Knockdown of ATP5B or immobilization of ATP5B to the cytoplasmic membrane alleviated the increased VDAC1 oligomerization and NLRP3 inflammasome activation. Therefore, our results suggested that PFOS induced NLRP3 inflammasome activation through VDAC1 oligomerization, a process dependent on ATP5B to transfer VDAC1 from the plasma membrane to the mitochondria. The findings offer novel perspectives on the activation of the NLRP3 inflammasome, the regulatory mode on VDAC1 oligomerization, and the mechanism of PFOS toxicity.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Canal Aniónico 1 Dependiente del Voltaje , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Animales , Ácidos Alcanesulfónicos/toxicidad , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Fluorocarburos/toxicidad , Humanos , Ratones , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Línea Celular , Ratones Endogámicos C57BL , Hígado/efectos de los fármacos , Hígado/metabolismo , Contaminantes Ambientales/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo
4.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892302

RESUMEN

Urban air pollution, a significant environmental hazard, is linked to adverse health outcomes and increased mortality across various diseases. This study investigates the neurotoxic effects of particulate matter (PM), specifically PM2.5 and PM10, by examining their role in inducing oxidative stress and subsequent neuronal cell death. We highlight the novel finding that PM increases mitochondrial ROS production via stimulating NOX4 activity, not through its expression level in Neuro-2A cells. Additionally, PMs provoke ROS production via increasing the expression and activity of NOX2 in SH-SY5Y human neuroblastoma cells, implying differential regulation of NOX proteins. This increase in mitochondrial ROS triggers the opening of the mitochondrial permeability transition pore (mPTP), leading to apoptosis through key mediators, including caspase3, BAX, and Bcl2. Notably, the voltage-dependent anion-selective channel 1 (VDAC1) increases at 1 µg/mL of PM2.5, while PM10 triggers an increase from 10 µg/mL. At the same concentration (100 µg/mL), PM2.5 causes 1.4 times higher ROS production and 2.4 times higher NOX4 activity than PM10. The cytotoxic effects induced by PMs were alleviated by NOX inhibitors GKT137831 and Apocynin. In SH-SY5Y cells, both PM types increase ROS and NOX2 levels, leading to cell death, which Apocynin rescues. Variability in NADPH oxidase sources underscores the complexity of PM-induced neurotoxicity. Our findings highlight NOX4-driven ROS and mitochondrial dysfunction, suggesting a potential therapeutic approach for mitigating PM-induced neurotoxicity.


Asunto(s)
Apoptosis , Mitocondrias , NADPH Oxidasa 4 , Neuronas , Material Particulado , Especies Reactivas de Oxígeno , Material Particulado/toxicidad , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Línea Celular Tumoral , Estrés Oxidativo/efectos de los fármacos , Animales , Ratones , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética
5.
Oncol Lett ; 28(2): 374, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38910902

RESUMEN

Circular RNAs (circRNAs) are a subclass of non-coding RNAs that are important for the regulation of gene expression in eukaryotic organisms. CircRNAs exert various regulatory roles in cancer progression. However, the role of hsa_circ_0064636 in osteosarcoma (OS) remains poorly understood. In the present study, the expression of hsa_circ_0064636 in OS cell lines was measured by reverse transcription-quantitative PCR (RT-qPCR). Differentially expressed mRNAs and microRNAs (miRNA or miRs) were screened using mRNA(GSE16088) and miRNA(GSE65071) expression datasets for OS. miRNAs that can potentially interact with hsa_circ_0064636 were predicted using RNAhybrid, TargetScan and miRanda. Subsequently, RNAhybrid, TargetScan, miRanda, miRWalk, miRMap and miRNAMap were used for target gene prediction based on the overlapping miRNAs to construct a circ/miRNA/mRNA interaction network. Target genes were subjected to survival analysis using PROGgeneV2, resulting in a circRNA/miRNA/mRNA interaction sub-network with prognostic significance. miRNA and circRNA in the subnetwork may also have survival significance, but relevant data are lacking and needs to be further proved. RT-qPCR demonstrated that hsa_circ_0064636 expression was significantly increased in OS cell lines. miR-326 and miR-503-5p were identified to be target miRNAs of hsa_circ_0064636. Among the target genes obtained from the miR-326 and miR-503-5p screens, ubiquitination factor E4A (UBE4A) and voltage dependent anion channel 1 (VDAC1) were respectively identified to significantly affect prognosis; only miR-326 targets UBE4A and only miR-503 targets VDAC1. To conclude, these aforementioned findings suggest that hsa_circ_0064636 may be involved in the development of OS by sponging miR-503-5p and miR-326to inhibit their effects, thereby regulating the expression of VDAC1 and UBE4A.

6.
J Cell Sci ; 137(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38786982

RESUMEN

Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are high-conductance channels that allow the regulated redistribution of Ca2+ from the endoplasmic reticulum (ER) to the cytosol and, at specialized membrane contact sites (MCSs), to other organelles. Only a subset of IP3Rs release Ca2+ to the cytosol in response to IP3. These 'licensed' IP3Rs are associated with Kras-induced actin-interacting protein (KRAP, also known as ITPRID2) beneath the plasma membrane. It is unclear whether KRAP regulates IP3Rs at MCSs. We show, using simultaneous measurements of Ca2+ concentration in the cytosol and mitochondrial matrix, that KRAP also licenses IP3Rs to release Ca2+ to mitochondria. Loss of KRAP abolishes cytosolic and mitochondrial Ca2+ signals evoked by stimulation of IP3Rs via endogenous receptors. KRAP is located at ER-mitochondrial membrane contact sites (ERMCSs) populated by IP3R clusters. Using a proximity ligation assay between IP3R and voltage-dependent anion channel 1 (VDAC1), we show that loss of KRAP reduces the number of ERMCSs. We conclude that KRAP regulates Ca2+ transfer from IP3Rs to mitochondria by both licensing IP3R activity and stabilizing ERMCSs.


Asunto(s)
Calcio , Retículo Endoplásmico , Receptores de Inositol 1,4,5-Trifosfato , Mitocondrias , Animales , Humanos , Calcio/metabolismo , Señalización del Calcio , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Células HeLa , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Lectinas Tipo C , Proteínas de la Membrana , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética
7.
Mol Neurobiol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819635

RESUMEN

An increase in α-synuclein (α-syn) levels and mutations in proteins associated with mitochondria contribute to the development of familial Parkinson's disease (PD); however, the involvement of α-syn and mitochondria in idiopathic PD remains incompletely understood. The voltage-dependent anion channel I (VDAC1) protein, which serves as a crucial regulator of mitochondrial function and a gatekeeper, plays a pivotal role in governing cellular destiny through the control of ion and respiratory metabolite flux. The ability of resveratrol (RES), which is a potent phytoalexin with antioxidant and anti-inflammatory properties, to regulate VDAC1 in PD is unknown. The objective of this study was to evaluate the role of VDAC1 in the pathological process of PD and to explore the mechanism by which resveratrol protects dopaminergic neurons by regulating VDAC1 to maintain the mitochondrial permeability transition pore (mPTP) and calcium ion balance. The effects of RES on the motor and cognitive abilities of A53T mice were evaluated by using small animal behavioral tests. Various techniques, including immunofluorescence staining, transmission electron microscopy, enzyme-linked immunoadsorption, quantitative polymerase chain reaction (PCR), and Western blotting, among others, were employed to assess the therapeutic impact of RES on neuropathy associated with PD and its potential in regulating mitochondrial VDAC1. The findings showed that RES significantly improved motor and cognitive dysfunction and restored mitochondrial function, thus reducing oxidative stress levels in A53T mice. A significant positive correlation was observed between the protein expression level of VDAC1 and mitochondrial α-syn expression, as well as disease progression, whereas no such correlation was found in VDAC2 and VDAC3. Administration of RES resulted in a significant decrease in the protein expression of VDAC1 and in the protein expression of α-syn both in vivo and in vitro. In addition, we found that RES prevents excessive opening of the mPTP in dopaminergic neurons. This may prevent the abnormal aggregation of α-syn in mitochondria and the release of mitochondrial apoptosis signals. Furthermore, the activation of VDAC1 reversed the resveratrol-induced decrease in the accumulation of α-syn in the mitochondria. These findings highlight the potential of VDAC1 as a therapeutic target for PD and identify the mechanism by which resveratrol alleviates PD-related pathology by modulating mitochondrial VDAC1.

8.
Eur J Pharmacol ; 971: 176524, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38561102

RESUMEN

The present study aimed to explore how resveratrol (Res) confers myocardial protection by attenuating ferroptosis. In vivo and in vitro myocardial ischemia/reperfusion injury (MIRI) models were established, with or without Res pretreatment. The results showed that Res pretreatment effectively attenuated MIRI, as evidenced by increased cell viability, reduced lactate dehydrogenase activity, decreased infarct size, and maintained cardiac function. Moreover, Res pretreatment inhibited MIRI-induced ferroptosis, as shown by improved mitochondrial integrity, increased glutathione level, decreased prostaglandin-endoperoxide synthase 2 level, inhibited iron overload, and abnormal lipid peroxidation. Of note, Res pretreatment decreased or increased voltage-dependent anion channel 1/glutathione peroxidase 4 (VDAC1/GPX4) expression, which was increased or decreased via anoxia/reoxygenation (A/R) treatment, respectively. However, the overexpression of VDAC1 via pAd/VDAC1 and knockdown of GPX4 through Si-GPX4 reversed the protective effect of Res in A/R-induced H9c2 cells, whereas the inhibition of GPX4 with RSL3 abolished the protective effect of Res on mice treated with ischemia/reperfusion.Interestingly, knockdown of VDAC1 by Si-VDAC1 promoted the protective effect of Res on A/R-induced H9c2 cells and the regulation of GPX4. Finally, the direct interaction between VDAC1 and GPX4 was determined using co-immunoprecipitation. In conclusion, Res pretreatment could protect the myocardium against MIRI-induced ferroptosis via the VDAC1/GPX4 signaling pathway.


Asunto(s)
Ferroptosis , Daño por Reperfusión Miocárdica , Animales , Ratones , Miocitos Cardíacos , Resveratrol/farmacología , Canal Aniónico 1 Dependiente del Voltaje , Isquemia , Hipoxia , Daño por Reperfusión Miocárdica/prevención & control , Reperfusión
9.
Cell Mol Biol Lett ; 29(1): 47, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589823

RESUMEN

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS: An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS: The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION: Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.


Asunto(s)
Glucosafosfato Deshidrogenasa , Músculo Liso Vascular , Canal Aniónico 1 Dependiente del Voltaje , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Becaplermina/genética , Becaplermina/metabolismo , Proliferación Celular , Proteína X Asociada a bcl-2/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Músculo Liso Vascular/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Neointima/genética , Neointima/metabolismo , Neointima/patología , Apoptosis , Miocitos del Músculo Liso/metabolismo , Movimiento Celular/genética , Células Cultivadas , Fenotipo
10.
Ann Neurosci ; 31(1): 63-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38584978

RESUMEN

Background: Alzheimer's disease (AD) is a widespread neurodegenerative disorder with a significant global impact, affecting approximately 50 million individuals, and projections estimate that up to 152 million people will be affected by 2050. AD is characterized by beta-amyloid plaques and tau tangles in the brain, leading to cognitive decline. Summary: Recent research on AD has made significant strides, including the development of an "amyloid clock" biomarker that tracks AD progression through positron emission tomography (PET) scans. Surf4 and other genes have been discovered to play a role in regulating beta-amyloid toxicity, while inhibiting the enzyme hexokinase-2 has shown positive results in preclinical studies. New brain mapping techniques have identified early brain-based causes of cognitive changes in AD, and biomarkers such as neuronal pentraxin protein Nptx2 and astrocytic 7-subunit of the nicotinic acetylcholine receptors (7nAChRs) show potential for early detection. Other approaches, such as replenishing the enzyme Tip60, selectively degrading the modified protein p-p38 with PRZ-18002, and targeting the protein voltage-dependent anion channel-1 (VDAC1), have shown promise in enhancing cognitive function and preventing pathophysiological alterations linked to AD. Baseline blood samples and other biomarkers such as urine formic acid, p-tau 198, microRNAs, and glial fibrillary acidic protein (GFAP) have also been discovered for early detection and intervention of AD. Additionally, recent FDA approvals for medications such as aducanumab and lecanemab provide options for reducing AD symptoms and improving function, while clinical trials for dementia vaccines show promise for the nasal and beta-amyloid 40 vaccines as well as vaccinations targeting tau. Key Messages: These advancements in AD research, including biomarker discovery and the development of disease-modifying treatments, are crucial steps towards improving the lives of those affected by AD and finding a cure for this debilitating disease.

11.
Cells ; 13(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38607066

RESUMEN

The strategy for treating bladder cancer (BC) depends on whether there is muscle invasion or not, with the latter mostly treated with intravesical therapy, such as with bacillus Calmette-Guérin (BCG). However, BCG treatment is unsuccessful in 70% of patients, who are then subjected to radical cystectomy. Although immune-checkpoint inhibitors have been approved as a second-line therapy for a subset of BC patients, these have failed to meet primary endpoints in clinical trials. Thus, it is crucial to find a new treatment. The mitochondrial gatekeeper protein, the voltage-dependent anion channel 1 (VDAC1), mediates metabolic crosstalk between the mitochondria and cytosol and is involved in apoptosis. It is overexpressed in many cancer types, as shown here for BC, pointing to its significance in high-energy-demanding cancer cells. The BC cell lines UM-UC3 and HTB-5 express high VDAC1 levels compared to other cancer cell lines. VDAC1 silencing in these cells using siRNA that recognizes both human and mouse VDAC1 (si-m/hVDAC1-B) reduces cell viability, mitochondria membrane potential, and cellular ATP levels. Here, we used two BC mouse models: subcutaneous UM-UC3 cells and chemically induced BC using the carcinogen N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Subcutaneous UM-UC3-derived tumors treated with si-m/hVDAC1 showed inhibited tumor growth and reprogrammed metabolism, as reflected in the reduced expression of metabolism-related proteins, including Glut1, hexokinase, citrate synthase, complex-IV, and ATP synthase, suggesting reduced metabolic activity. Furthermore, si-m/hVDAC1-B reduced the expression levels of cancer-stem-cell-related proteins (cytokeratin-14, ALDH1a), modifying the tumor microenvironment, including decreased angiogenesis, extracellular matrix, tumor-associated macrophages, and inhibited epithelial-mesenchymal transition. The BBN-induced BC mouse model showed a clear carcinoma, with damaged bladder morphology and muscle-invasive tumors. Treatment with si-m/hVDAC1-B encapsulated in PLGA-PEI nanoparticles that were administered intravesically directly to the bladder showed a decreased tumor area and less bladder morphology destruction and muscle invasion. Overall, the obtained results point to the potential of si-m/hVDAC1-B as a possible therapeutic tool for treating bladder cancer.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Canal Aniónico 1 Dependiente del Voltaje , Humanos , Animales , Ratones , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Vacuna BCG , Mitocondrias/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Adenosina Trifosfato/metabolismo , Microambiente Tumoral
12.
Phytomedicine ; 128: 155313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520833

RESUMEN

BACKGROUND: The occurrence of hyperlipidemia is significantly influenced by lipid synthesis, which is regulated by sterol regulatory element binding proteins (SREBPs), thus the development of drugs that inhibit lipid synthesis has become a popular treatment strategy for hyperlipidemia. Alisol B (ALB), a triterpenoid compound extracted from Alisma, has been reported to ameliorate no-nalcoholic steatohepatitis (NASH) and slow obesity. However, the effect of ALB on hyperlipidemia and mechanism are unclear. PURPOSE: To examine the therapeutic impact of ALB on hyperlipidemia whether it inhibits SREBPs to reduce lipid synthesis. STUDY DESIGN: HepG2, HL7702 cells, and C57BL/6J mice were used to explore the effect of ALB on hyperlipidemia and the molecular mechanism in vivo and in vitro. METHODS: Hyperlipidemia models were established using western diet (WD)-fed mice in vivo and oleic acid (OA)-induced hepatocytes in vitro. Western blot, real-time PCR and other biological methods verified that ALB regulated AMPK/mTOR/SREBPs to inhibit lipid synthesis. Cellular thermal shift assay (CETSA), molecular dynamics (MD), and ultrafiltration-LC/MS analysis were used to evaluate the binding of ALB to voltage-dependent anion channel protein-1 (VDAC1). RESULTS: ALB decreased TC, TG, LDL-c, and increased HDL-c in blood, thereby ameliorating liver damage. Gene set enrichment analysis (GSEA) indicated that ALB inhibited the biosynthesis of cholesterol and fatty acids. Consistently, ALB inhibited the protein expression of n-SREBPs and downstream genes. Mechanistically, the impact of ALB on SREBPs was dependent on the regulation of AMPK/mTOR, thereby impeding the transportation of SREBPs from endoplasmic reticulum (ER) to golgi apparatus (GA). Further investigations indicated that the activation of AMPK by ALB was independent on classical upstream CAMKK2 and LKB1. Instead, ALB resulted in a decrease in ATP levels and an increase in the ratios of ADP/ATP and AMP/ATP. CETSA, MD, and ultrafiltration-LC/MS analysis indicated that ALB interacted with VDAC1. Molecular docking revealed that ALB directly bound to VDAC1 by forming hydrogen bonds at the amino acid sites S196 and H184 in the ATP-binding region. Importantly, the thermal stabilization of ALB on VDAC1 was compromised when VDAC1 was mutated at S196 and H184, suggesting that these amino acids played a crucial role in the interaction. CONCLUSION: Our findings reveal that VDAC1 serves as the target of ALB, leading to the inhibition of lipid synthesis, presents potential target and candidate drugs for hyperlipidemia.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Colestenonas , Hiperlipidemias , Serina-Treonina Quinasas TOR , Canal Aniónico 1 Dependiente del Voltaje , Animales , Humanos , Masculino , Ratones , Alisma/química , Proteínas Quinasas Activadas por AMP/metabolismo , Colestenonas/farmacología , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hiperlipidemias/tratamiento farmacológico , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
13.
Int J Med Sci ; 21(4): 755-764, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464835

RESUMEN

Alcoholic liver disease (ALD) poses a substantial global health challenge, with its pathogenesis deeply rooted in mitochondrial dysfunction. Our study explores the pivotal roles of Phosphoglycerate mutase family member 5 (Pgam5) and Voltage-Dependent Anion Channel 1 (VDAC1) in the progression of ALD, providing novel insights into their interplay and impact on mitochondrial integrity. We demonstrate that Pgam5 silencing preserves hepatocyte viability and attenuates ethanol-induced apoptosis, underscoring its detrimental role in exacerbating hepatocyte dysfunction. Pgam5's influence extends to the regulation of VDAC1 oligomerization, a key process in mitochondrial permeability transition pore (mPTP) opening, mitochondrial swelling, and apoptosis initiation. Notably, the inhibition of VDAC1 oligomerization through Pgam5 silencing or pharmacological intervention (VBIT-12) significantly preserves mitochondrial function, evident in the maintenance of mitochondrial membrane potential and reduced reactive oxygen species (ROS) production. In vivo experiments using hepatocyte-specific Pgam5 knockout (Pgam5hKO) and control mice reveal that Pgam5 deficiency mitigates ethanol-induced liver histopathology, inflammation, lipid peroxidation, and metabolic disorder, further supporting its role in ALD progression. Our findings highlight the critical involvement of Pgam5 and VDAC1 in mitochondrial dysfunction in ALD, suggesting potential therapeutic targets. While promising, these findings necessitate further research, including human studies, to validate their clinical applicability and explore broader implications in liver diseases. Overall, our study provides a significant advancement in understanding ALD pathophysiology, paving the way for novel therapeutic strategies targeting mitochondrial pathways in ALD.


Asunto(s)
Hepatopatías Alcohólicas , Enfermedades Mitocondriales , Animales , Humanos , Ratones , Etanol/toxicidad , Etanol/metabolismo , Hepatopatías Alcohólicas/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
14.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474278

RESUMEN

The small GTPase RAS acts as a plasma membrane-anchored intracellular neurotrophin counteracting neuronal degeneration in the brain, but the underlying molecular mechanisms are largely unknown. In transgenic mice expressing constitutively activated V12-Ha-RAS selectively in neurons, proteome analysis uncovered a 70% decrease in voltage-dependent anion channel-1 (VDAC-1) in the cortex and hippocampus. We observed a corresponding reduction in the levels of mRNA splicing variant coding for plasma membrane-targeted VDAC-1 (pl-VDAC-1) while mRNA levels for mitochondrial membrane VDAC-1 (mt-VDAC-1) remained constant. In primary cortical neurons derived from V12-Ha-RAS animals, a decrease in pl-VDAC-1 mRNA levels was observed, accompanied by a concomitant reduction in the ferricyanide reductase activity associated with VDAC-1 protein. Application of MEK inhibitor U0126 to transgenic cortical neurons reconstituted pl-VDAC-1 mRNA to reach wild-type levels. Excitotoxic glutamate-induced cell death was strongly attenuated in transgenic V12-Ha-RAS overexpressing cortical cultures. Consistently, a neuroprotective effect could also be achieved in wild-type cortical cultures by the extracellular application of channel-blocking antibody targeting the N-terminus of VDAC-1. These results may encourage novel therapeutic approaches toward blocking pl-VDAC-1 by monoclonal antibody targeting for complementary treatments in transplantation and neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Canales Aniónicos Dependientes del Voltaje , Ratones , Animales , Canales Aniónicos Dependientes del Voltaje/metabolismo , Neuroprotección , Enfermedades Neurodegenerativas/metabolismo , Proteínas ras/metabolismo , Regulación hacia Abajo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Membrana Celular/metabolismo , Ratones Transgénicos , ARN Mensajero/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-38317750

RESUMEN

Background: Transmembrane protein 43 (TMEM43), a member of the TMEM subfamily, is encoded by a highly conserved gene and widely expressed in most species from bacteria to humans. In previous studies, TMEM43 has been found to play an important role in a variety of tumors. However, the role of TMEM43 in cancer remains unclear. Methods: We utilized the RNA sequencing (RNA-seq) and The Cancer Genome Atlas (TGCA) databases to explore and identify genes that may play an important role in the occurrence and development of hepatocellular carcinoma (HCC), such as TMEM43. The role of TMEM43 in HCC was explored through Cell Counting Kit-8 (CCK-8) cloning, flow cytometry, and Transwell experiments. The regulatory relationship between TMEM43 and voltage-dependent anion channel 1 (VDAC1) was investigated through coimmunoprecipitation (co-IP) and western blot (WB) experiments. WB was used to study the deubiquitination effect of ubiquitin-specific protease 7 (USP7) on TMEM43. Results: In this study, we utilized the RNA-seq and TGCA databases to mine data and found that TMEM43 is highly expressed in HCC. The absence of TMEM43 in cancer cells was shown to inhibit tumor development. Further research detected an important regulatory relationship between TMEM43 and VDAC1. In addition, we found that USP7 affected the progression of HCC by regulating the ubiquitination level of TMEM43 through deubiquitination. Conclusions: Our study demonstrated that USP7 participates in the growth of HCC tumors through TMEM43/VDAC1.Our results suggest that USP7/TMEM43/VDAC1 may have predictive value and represent a new treatment strategy for HCC.

16.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 162-173, 2024 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-38298056

RESUMEN

Voltage-dependent anion channel 1 (VDAC1) is a pore protein located in the outer mitochondrial membrane. Its channel gating mediates mitochondrial respiration and cell metabolism, and it has been identified as a critical modulator of mitochondria-mediated apoptosis. In many diseases characterized by mitochondrial dysfunction, such as cancer and neurodegenerative diseases, VDAC1 is considered a promising potential therapeutic target. However, there is limited research on the regulatory factors involved in VDAC1 protein expression in both normal and pathological states. In this study, we find that VDAC1 protein expression is up-regulated in various neuronal cell lines in response to intracellular metabolic and oxidative stress. We further demonstrate that VDAC1 expression is modulated by intracellular ATP level. Through the use of pharmacological agonists and inhibitors and small interfering RNA (siRNA), we reveal that the AMPK/PGC-1α signaling pathway is involved in regulating VDAC1 expression. Additionally, based on bioinformatics predictions and biochemical verification, we identify p53 as a potential transcription factor that regulates VDAC1 promoter activity during metabolic oxidative stress. Our findings suggest that VDAC1 expression is regulated by the AMPK/PGC-1α and p53 pathways, which contributes to the maintenance of stress adaptation and apoptotic homeostasis in neuronal cells.


Asunto(s)
Proteína p53 Supresora de Tumor , Canal Aniónico 1 Dependiente del Voltaje , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Estrés Oxidativo , Apoptosis/genética , Adenosina Trifosfato/metabolismo
17.
Int J Biol Sci ; 20(3): 831-847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250153

RESUMEN

Mitochondria are energy-producing organelles that are mobile and harbor dynamic network structures. Although mitochondria and endoplasmic reticulum (ER) play distinct cellular roles, they are physically connected to maintain functional homeostasis. Abnormal changes in this interaction have been linked to pathological states, including cardiac hypertrophy. However, the exact regulatory molecules and mechanisms are yet to be elucidated. Here, we report that ATPase family AAA-domain containing protein 3A (ATAD3A) is an essential regulator of ER-mitochondria interplay within the mitochondria-associated membrane (MAM). ATAD3A prevents isoproterenol (ISO)-induced mitochondrial calcium accumulation, improving mitochondrial dysfunction and ER stress, which preserves cardiac function and attenuates cardiac hypertrophy. We also find that ATAD3A is a new substrate of NAD+-dependent deacetylase Sirtuin 3 (SIRT3). Notably, the heart mitochondria of SIRT3 knockout mice exhibited excessive formation of MAMs. Mechanistically, ATAD3A specifically undergoes acetylation, which reduces self-oligomerization and promotes cardiac hypertrophy. ATAD3A oligomerization is disrupted by acetylation at K134 site, and ATAD3A monomer closely interacts with the IP3R1-GRP75-VDAC1 complex, which leads to mitochondrial calcium overload and dysfunction. In summary, ATAD3A localizes to the MAMs, where it protects the homeostasis of ER-mitochondria contacts, quenching mitochondrial calcium overload and keeping mitochondrial bioenergetics unresponsive to ER stress. The SIRT3-ATAD3A axis represents a potential therapeutic target for cardiac hypertrophy.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Mitocondriales , Sirtuina 3 , Animales , Ratones , Calcio , Cardiomegalia/genética , Homeostasis , Mitocondrias , Sirtuina 3/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas Mitocondriales/genética
18.
Heliyon ; 10(1): e23426, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38173512

RESUMEN

Ischemia-reperfusion (I/R) injury constitutes a significant risk factor for a range of diseases, including ischemic stroke, myocardial infarction, and trauma. Following the restoration of blood flow post-tissue ischemia, oxidative stress can lead to various forms of cell death, including necrosis, apoptosis, autophagy, and necroptosis. Recent evidence has highlighted the crucial role of mitochondrial dysfunction in I/R injury. Nevertheless, there remains much to be explored regarding the molecular signaling network governing cell death under conditions of oxidative stress. Voltage-dependent anion channel 1 (VDAC1), a major component in the outer mitochondrial membrane, is closely involved in the regulation of cell death. In a cellular model of oxygen-glucose deprivation and reoxygenation (OGD/R), which effectively simulates I/R injury in vitro, our study reveals that OGD/R induces VDAC1 oligomerization, consequently exacerbating cell death. Furthermore, we have revealed the translocation of mixed lineage kinase domain-like protein (MLKL) to the mitochondria, where it interacts with VDAC1 following OGD/R injury, leading to an increased mitochondrial membrane permeability. Notably, the inhibition of MLKL by necrosulfonamide hinders the binding of MLKL to VDAC1, primarily by affecting the membrane translocation of MLKL, and reduces OGD/R-induced VDAC1 oligomerization. Collectively, our findings provide preliminary evidence of the functional association between MLKL and VDAC1 in the regulation of necroptosis.

19.
J Cell Physiol ; 239(4): e31190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219075

RESUMEN

Selenium (Se), as one of the essential trace elements, plays an anti-inflammatory, antioxidation, and immune-enhancing effect in the body. In addition, Se can also improve nervous system damage induced by various factors. Earlier studies have described the important role of mitochondrial dynamic imbalance in lipopolysaccharide (LPS)-induced nerve injury. The inositol 1,4,5-triphosphate receptor (IP3R)/glucose-regulated protein 75 (GRP75)/voltage-dependent anion channel 1 (VDAC1) complex is considered to be the key to regulating mitochondrial dynamics. However, it is not clear whether Selenomethionine (SeMet) has any influence on the IP3R/GRP75/VDAC1 complex. Therefore, the aim of this investigation was to determine whether SeMet can alleviate LPS-induced brain damage and to elucidate the function of the IP3R/GRP75/VDAC1 complex in it. We established SeMet and/or LPS exposure models in vivo and in vitro using laying hens and primary chicken nerve cells. We noticed that SeMet reversed endoplasmic reticulum stress (ERS) and the imbalance in mitochondrial dynamics and significantly prevented the occurrence of neuronal apoptosis. We made this finding by morphological observation of the brain tissue of laying hens and the detection of related genes such as ERS, the IP3R/GRP75/VDAC1 complex, calcium signal (Ca2+), mitochondrial dynamics, and apoptosis. Other than that, we also discovered that the IP3R/GRP75/VDAC1 complex was crucial in controlling Ca2+ transport between the endoplasmic reticulum and the mitochondrion when SeMet functions as a neuroprotective agent. In summary, our results revealed the specific mechanism by which SeMet alleviated LPS-induced neuronal apoptosis for the first time. As a consequence, SeMet has great potential in the treatment and prevention of neurological illnesses (like neurodegenerative diseases).


Asunto(s)
Apoptosis , Proteínas HSP70 de Choque Térmico , Proteínas de la Membrana , Dinámicas Mitocondriales , Neuronas , Selenometionina , Animales , Femenino , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Pollos , Lipopolisacáridos/farmacología , Selenometionina/farmacología , Canal Aniónico 1 Dependiente del Voltaje/genética , Neuronas/efectos de los fármacos
20.
J Hazard Mater ; 465: 133142, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38061129

RESUMEN

Nonalcoholic steatohepatitis (NASH) is multifactorial that lifestyle, genetic, and environmental factors contribute to its onset and progression, thereby posing a challenge for therapeutic intervention. Nanoplastic (NP) is emerged as a novel environmental metabolism disruptor but the etiopathogenesis remains largely unknown. In this study, C57BL/6 J mice were fed with normal chow diet (NCD) and high-fat diet (HFD) containing 70 nm polystyrene microspheres (NP). We found that dietary-derived NP adsorbed proteins and agglomerated during the in vivo transportation, enabling diet-induced hepatic steatosis to NASH. Mechanistically, NP promoted liver steatosis by upregulating Fatp2. Furthermore, NP stabilized the Ip3r1, and facilitated ER-mitochondria contacts (MAMs) assembly in the hepatocytes, resulting in mitochondrial Ca2+ overload and redox imbalance. The redox-sensitive Nrf2 was decreased in the liver of NP-exposed mice, which positively regulated miR26a via direct binding to its promoter region [-970 bp to -847 bp and -318 bp to -176 bp]. NP decreased miR26a simultaneously upregulated 10 genes involved in MAMs formation, lipid uptake, inflammation, and fibrosis. Moreover, miR26a inhibition elevated MAMs-tether Vdac1, which promoted the nucleus translocation of NF-κB P65 and Keap1 and functionally inactivated Nrf2, leading to a vicious cycle. Hepatocyte-specific overexpressing miR26a effectively restored ER-mitochondria miscommunication and ameliorated NASH phenotype in NP-exposed and Keap1-overexpressed mice on HFD. The hepatic MAM-tethers/Nrf2/miR26a feedback loop is an essential metabolic switch from simple steatosis to NASH and a promising therapeutic target for oxidative stress-associated liver damage and NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Microplásticos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Dieta Alta en Grasa , Oxidación-Reducción , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...