Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Curr Issues Mol Biol ; 46(7): 6757-6768, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39057045

RESUMEN

Recurrent respiratory papillomatosis (RRP) is a benign disease of the upper aerodigestive tract caused by human papillomavirus (HPV) types 6 and 11. The clinical course is unpredictable and some patients, especially younger children, experience a high rate of recurrence with a significant impact on their quality of life. The molecular mechanisms of HPV infection in keratinocytes have been extensively studied throughout the years, with particular regard to its role in causing malignant tumors, like cervical cancer and head and neck carcinomas. A minor but not negligible amount of the literature has investigated the molecular landscape of RRP patients, and some papers have studied the role of angiogenesis (the growth of blood vessels from pre-existing vasculature) in this disease. A central role in this process is played by vascular endothelial growth factor (VEGF), which activates different signaling cascades on multiple levels. The increased knowledge has led to the introduction of the VEGF inhibitor bevacizumab in recent years as an adjuvant treatment in some patients, with good results. This review summarizes the current evidence about the role of VEGF in the pathophysiology of RRP, the molecular pathways activated by binding with its receptors, and the current and future roles of anti-angiogenic treatment.

2.
Ecotoxicol Environ Saf ; 278: 116444, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728943

RESUMEN

Silicosis is a disease characterized by lung inflammation and fibrosis caused by long-term inhalation of free silicon dioxide (SiO2). Recent studies have found that a large number of lymphatic hyperplasia occurs during the occurrence and development of silicosis. miRNAs play an important role in lymphangiogenesis. However, the regulation and mechanism of miRNAs on lymphangiogenesis in silicosis remain unclear. In this study, lymphangiogenesis was observed in silicosis rats, and VEGF-C-targeted miRNAs were screened, and the effect of miRNAs on the formation of human lymphatic endothelial cells (HLECs) tubular structure was investigated in vitro. The results showed that SiO2 promoted the expressions of Collagen Ι and α-SMA, TNF-α, IL-6 and VEGF-C increased first and then decreased, and promoted the formation of lymphatic vessels. Bioinformatics methods screened miR-455-3p for targeted binding to VEGF-C, and dual luciferase reporter genes confirmed VEGF-C as the target gene of miR-455-3p, and miR-455-3p was down-regulated in the lung tissue of silicosis rats. Transfection of miR-455-3p Inhibitors down-regulated the expression level of miR-455-3p and up-regulated the expression levels of VEGF-C and VEGFR-3 in HLECs, enhanced migration ability and increased tube formation. Transfection of miR-455-3p Mimics showed an opposite trend. These results suggest that miR-455-3p further regulates the tubular structure formation of HLECs by regulating VEGF-C/VEGFR3. Therefore, targeting miR-455-3p may provide a new therapeutic strategy for SiO2-induced silicosis injury.


Asunto(s)
Linfangiogénesis , MicroARNs , Silicosis , Factor C de Crecimiento Endotelial Vascular , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Animales , Humanos , Masculino , Ratas , Células Endoteliales/efectos de los fármacos , Linfangiogénesis/efectos de los fármacos , MicroARNs/genética , Ratas Sprague-Dawley , Dióxido de Silicio/toxicidad , Silicosis/patología , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Biomed Pharmacother ; 175: 116741, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744218

RESUMEN

Cadmium (Cd) is a widespread environmental toxicant that poses significant threat to public health. After intake, Cd is distributed throughout the body via blood and lymphatic circulation. However, the effect of Cd on lymphatic vessels has not been revealed. In this study, mice were exposed to 10 µM cadmium chloride through drinking water immediately after corneal alkali burn. In vivo analyses showed that Cd treatment enhances the alkali burn-induced corneal lymphangiogenesis, which is characterized by increased expression of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), prospero-related homeobox 1 (PROX-1) and vascular endothelial growth factor receptor 3 (VEGFR3). In vitro, the proliferation and migration of human dermal lymphatic endothelial cells (HDLECs) are increased by 1 µM Cd treatment, while inhibited by 10 µM Cd treatment. At a concentration of 1 µM, Cd specifically induces phosphorylation of signal transducer and activator of transcription 3 (STAT3), but has no effect on the MAPK, AKT, or NF-κB signaling pathway. In the presence of the STAT3 inhibitor STATTIC, Cd fails to induce HDLECs proliferation and migration. In addition, Cd upregulates VEGFR3 expression and its gene promoter activity in a STAT3-dependent manner. Our study suggests that low-dose Cd promotes lymphangiogenesis through activation of the STAT3 signaling pathway.


Asunto(s)
Movimiento Celular , Proliferación Celular , Linfangiogénesis , Factor de Transcripción STAT3 , Transducción de Señal , Linfangiogénesis/efectos de los fármacos , Animales , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Ratones , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Cadmio/toxicidad , Masculino , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Relación Dosis-Respuesta a Droga , Ratones Endogámicos C57BL , Córnea/efectos de los fármacos , Córnea/metabolismo , Córnea/patología
4.
Cardiovasc Res ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713105

RESUMEN

AIMS: Rare, deleterious genetic variants in FLT4 are associated with Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease (CHD). Distinct genetic variants in FLT4 are also an established cause of Milroy disease, the most prevalent form of primary hereditary lymphoedema. Phenotypic features of these two conditions are non-overlapping, implying pleiotropic cellular mechanisms during development. METHODS AND RESULTS: Here, we show that FLT4 variants identified in TOF patients, when expressed in primary human endothelial cells, cause aggregation of FLT4 protein in the perinuclear endoplasmic reticulum, activating proteostatic and metabolic signalling, whereas lymphoedema-associated FLT4 variants and wildtype FLT4 do not. FLT4 TOF variants display characteristic gene expression profiles in key developmental signalling pathways, revealing a role for FLT4 in cardiogenesis distinct from its role in lymphatic development. Inhibition of proteostatic signalling abrogates these effects, identifying potential avenues for therapeutic intervention. Depletion of flt4 in zebrafish caused cardiac phenotypes of reduced heart size and altered heart looping. These phenotypes were rescued with coinjection of wildtype human FLT4 mRNA, but incompletely or not at all by mRNA harbouring FLT4 TOF variants. CONCLUSIONS: Taken together, we identify a pathogenic mechanism for FLT4 variants predisposing to TOF that is distinct from the known dominant negative mechanism of Milroy-causative variants. FLT4 variants give rise to conditions of the two circulatory subdivisions of the vascular system via distinct developmental pleiotropic molecular mechanisms. TRANSLATIONAL PERSPECTIVE: Proteostatic dysfunction, if confirmed as a mechanism of CHD pathogenesis for other predisposing genes, may identify pathways to therapeutic interventions. Distinguishing mechanistically how variants in FLT4 give rise to CHD may have potential to individualise genetic counselling in affected families.

5.
Proc Natl Acad Sci U S A ; 121(18): e2317760121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652741

RESUMEN

The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we identified that decorin down-regulated a cluster of tumor-associated genes involved in lymphatic vessel (LV) development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of LVs, were markedly suppressed at both the mRNA and protein levels, and this suppression correlated with a significant reduction in tumor LVs. We further identified that soluble decorin, but not its homologous proteoglycan biglycan, inhibited LV sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with vascular endothelial growth factor receptor 3 (VEGFR3), the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we identified that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a biological factor with antilymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.


Asunto(s)
Decorina , Linfangiogénesis , Decorina/metabolismo , Decorina/genética , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Regulación Neoplásica de la Expresión Génica
6.
J Orthop Translat ; 45: 66-74, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511124

RESUMEN

Background: The musculoskeletal system contains an extensive network of lymphatic vessels. Decreased lymph flow of the draining collecting lymphatics usually occurs in clinic after traumatic fractures. However, whether defects in lymphatic drainage can affect fracture healing is unclear. Methods: To investigate the effect of lymphatic dysfunction on fracture healing, we used a selective VEGFR3 tyrosine kinase inhibitor to treat tibial fractured mice for 5 weeks versus a vehicle-treated control. To ensure successfully establishing deceased lymphatic drainage model for fractured mice, we measured lymphatic clearance by near infrared indocyanine green lymphatic imaging (NIR-ICG) and the volume of the draining popliteal lymph nodes (PLNs) by ultrasound at the whole phases of fracture healing. In addition, hindlimb edema from day 0 to day 7 post-fracture, pain sensation by Hargreaves test at day 1 post-fracture, bone histomorphometry by micro-CT and callus composition by Alcian Blue-Hematoxylin/Orange G staining at day 14 post-fracture, and bone quality by biomechanical testing at day 35 post-fracture were applied to evaluate fracture healing. To promote fracture healing via increasing lymphatic drainage, we then treated fractured mice with anti-mouse podoplanin (PDPN) neutralizing antibody or isotype IgG antibody for 1 week to observe lymphatic drainage function and assess bone repair as methods described above. Results: Compared to vehicle-treated group, SAR-treatment group significantly decreased lymphatic clearance and the volume of draining PLNs. SAR-treatment group significantly increased soft tissue swelling, and reduced bone volume (BV)/tissue volume (TV), trabecular number (Tb.N), woven bone and biomechanical properties of fracture callus. In addition, anti-PDPN treated group significantly reduced the number of CD41+ platelets in PLNs and increased the number of pulsatile lymphatic vessels, lymphatic clearance and the volume of PLNs. Moreover, anti-PDPN treated group significantly reduced hindlimb edema and pain sensation and increased BV/TV, trabecular number (Tb.Th), woven bone and biomechanical properties of fracture callus. Conclusions: Inhibition of proper lymphatic drainage function delayed fracture healing. Use of a anti-PDPN neutralizing antibody reduced lymphatic platelet thrombosis (LPT), increased lymphatic drainage and improved fracture healing. The translational potential of this article: (1) We demonstrated lymphatic drainage function is crucial for fracture healing. (2) To unblock the lymphatic drainage and prevent the risk of bleeding and mortality by blood thinner, we demonstrated PDPN neutralizing antibody is a novel and safe way forward in the treatment of bone fracture healing by eliminating LPT and increasing lymphatic drainage.

7.
Front Immunol ; 15: 1349500, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464522

RESUMEN

Lymphatic vessels have been increasingly appreciated in the context of immunology not only as passive conduits for immune and cancer cell transport but also as key in local tissue immunomodulation. Targeting lymphatic vessel growth and potential immune regulation often takes advantage of vascular endothelial growth factor receptor-3 (VEGFR-3) signaling to manipulate lymphatic biology. A receptor tyrosine kinase, VEGFR-3, is highly expressed on lymphatic endothelial cells, and its signaling is key in lymphatic growth, development, and survival and, as a result, often considered to be "lymphatic-specific" in adults. A subset of immune cells, notably of the monocyte-derived lineage, have been identified to express VEGFR-3 in tissues from the lung to the gut and in conditions as varied as cancer and chronic kidney disease. These VEGFR-3+ macrophages are highly chemotactic toward the VEGFR-3 ligands VEGF-C and VEGF-D. VEGFR-3 signaling has also been implicated in dictating the plasticity of these cells from pro-inflammatory to anti-inflammatory phenotypes. Conversely, expression may potentially be transient during monocyte differentiation with unknown effects. Macrophages play critically important and varied roles in the onset and resolution of inflammation, tissue remodeling, and vasculogenesis: targeting lymphatic vessel growth and immunomodulation by manipulating VEGFR-3 signaling may thus impact macrophage biology and their impact on disease pathogenesis. This mini review highlights the studies and pathologies in which VEGFR-3+ macrophages have been specifically identified, as well as the activity and polarization changes that macrophage VEGFR-3 signaling may elicit, and affords some conclusions as to the importance of macrophage VEGFR-3 signaling in disease.


Asunto(s)
Linfangiogénesis , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Linfangiogénesis/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Macrófagos/metabolismo
8.
J Int Med Res ; 52(3): 3000605241234558, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38518198

RESUMEN

OBJECTIVE: To investigate the roles and underlying mechanisms of vascular endothelial growth factor receptor-3 (VEGFR-3) in gastric cancer (GC). METHODS: VEGFR-3 gene expression profiles in human gastric adenocarcinoma (GAC) tissues were analysed using The Cancer Genome Atlas database. Human GC cell lines and were used for in vitro studies. Mouse models of GC and distant metastasis were used for in vivo studies. Silencing of VEGFR-3 gene expression was achieved using small interfering RNA. RESULTS: VEGFR-3 gene expression was significantly elevated in GAC tissues and GC cells. Higher VEGFR-3 expression was positively correlated with more advanced stages and a greater number of metastatic lymph nodes. In vitro studies in GC cells showed that knockdown of VEGFR-3 gene expression significantly suppressed cell proliferation and migration, but promoted apoptosis. In vivo investigations revealed that silencing of VEGFR-3 gene expression exhibited significant inhibition on tumour growth and metastasis. Further mechanistic studies showed that VEGFR-3 exerted its pathological roles by affecting the key molecules in the apoptotic and epithelial-mesenchymal transition pathways. CONCLUSION: The molecular pathways associated with VEGFR-3-mediated pathological effects could be targets in the development of novel approaches for the diagnosis, prognosis and treatment of GC.


Asunto(s)
Neoplasias Gástricas , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica/genética , Pronóstico , Neoplasias Gástricas/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/farmacología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-38321898

RESUMEN

OBJECTIVE: Non-small cell lung cancer (NSCLC) is still a solid tumor with high malignancy and poor prognosis. Vascular endothelial growth factor receptor 3 (FLT4, VEGFR3) is overexpressed in NSCLC cells, making it a potential target for NSCLC treatment. In this study, we aimed to explore the anti-cancer effects of dauricine on NSCLC cells and its mechanism targeting FLT4. METHODS: We found that dauricine inhibited the growth of NCI-H1299 cells by blocking the cycle in the G2/M phase through flow cytometry analysis. In addition, dauricine also inhibited the migration of NCI-H1299 cells by wound healing assay and transwell migration assay. More importantly, our empirical analysis found the anti-cancer effect of dauricine on NCI-H1299 cells and the protein level of FLT4 had a distinctly positive correlation, and this effect was weakened after FLT4 knockdown. RESULTS: It is suggested that dauricine suppressed the growth and migration of NCI-H1299 cells by targeting FLT4. Furthermore, dauricine inhibited FLT4 downstream pathways, such as PTEN/AKT/mTOR and Ras/MEK1/2/ERK1/2, thereby regulating cell migration-related molecule MMP3 and cell cycle-related molecules (CDK1, pCDK1-T161, and cyclin B1). CONCLUSION: Dauricine may be a promising FLT4 inhibitor for the treatment of NSCLC.

10.
Eur J Nucl Med Mol Imaging ; 51(8): 2338-2352, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38411667

RESUMEN

PURPOSE: Vascular endothelial growth factor receptor 3 (VEGFR-3) plays a critical role in tumor lymphangiogenesis and metastasis, holding promise as a promising therapeutic target for solid tumors. TMVP1 (LARGR) is a 5-amino acid peptide previously identified in our laboratory from bacterial peptide display system that specifically targets VEGFR-3. Radiolabeled TMVP1 can be used for non-invasive imaging of VEGFR-3 expressing tumors. Homodimeric peptides have better targeting ability than monomeric peptides, and it is worth exploring whether homodimers of TMVP1 ((TMVP1)2) can achieve better imaging effects. This study aimed to explore the peptide properties and tumor assessment value of [68Ga]Ga-labeled (TMVP1)2. METHODS: In this study, we developed a TMVP1 homodimer that was conjugated with 1,4,7-triazacyclononane-N, N', N″-triacetic acid (NOTA) via tetraethyleneglycol (PEG4) and triglyicine (Gly3) spacer, and labeled with 68Ga, to construct [68Ga]Ga-NOTA-(TMVP1)2. Binding of VEGFR-3 by TMVP1 and (TMVP1)2, respectively, was modeled by molecular docking. The affinity of [68Ga]Ga-NOTA-(TMVP1)2 for VEGFR-3 and its ability to bind to cells were evaluated. MicroPET imaging and biodistribution studies of [68Ga]Ga-NOTA-(TMVP1)2 were performed in subcutaneous C33A cervical cancer xenografts. Five healthy volunteers and eight patients with cervical cancer underwent whole-body PET/CT acquisition 30-45 min after intravenous injection of [68Ga]Ga-NOTA-(TMVP1)2. RESULTS: Both molecular docking and cellular experiments showed that homodimeric TMVP1 had a higher affinity for VEGFR-3 than monomeric TMVP1. [68Ga]Ga-NOTA-(TMVP1)2 was excreted mainly through the renal route and partly through the liver route. In mice bearing C33A xenografts, [68Ga]Ga-NOTA-(TMVP1)2 specifically localized in the tumor (2.32 ± 0.10% ID/g). Pretreatment of C33A xenograft mice with the unlabeled peptide NOTA-(TMVP1)2 reduced the enrichment of [68Ga]Ga-NOTA-(TMVP1)2 in tumors (0.58 ± 0.01% ID/g). [68Ga]Ga-NOTA-(TMVP1)2 proved to be safe in all healthy volunteers and recruited patients, with no side effects or allergies noted. In cervical cancer patients, a majority of the [18F]-FDG identified lesions (18/22, 81.8%) showed moderate to high signal intensity on [68Ga]Ga-NOTA-(TMVP1)2. SUVmax and SUVmean were 2.32 ± 0.77 and 1.61 ± 0.48, respectively. With normal muscle (gluteus maximus) as background, tumor-to-background ratios were 3.49 ± 1.32 and 3.95 ± 1.64 based on SUVmax and SUVmean, respectively. CONCLUSION: The favorable characterizations of [68Ga]Ga-NOTA-(TMVP1)2 such as convenient synthesis, high specific activity, and high tumor uptake enable the evaluation of VEGFR-3 in cervical cancer patients and warrant further clinical studies. TRIAL REGISTRATION: ChiCTR-DOD-17012458. Registered August 23, 2017 (retrospectively registered).


Asunto(s)
Radioisótopos de Galio , Compuestos Heterocíclicos con 1 Anillo , Neoplasias del Cuello Uterino , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/metabolismo , Humanos , Femenino , Animales , Ratones , Compuestos Heterocíclicos con 1 Anillo/química , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/química , Radioisótopos de Galio/química , Línea Celular Tumoral , Compuestos Heterocíclicos/química , Distribución Tisular , Péptidos/química , Péptidos/farmacocinética , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Radiofármacos/química , Persona de Mediana Edad , Multimerización de Proteína , Trazadores Radiactivos
11.
Cell Rep ; 42(12): 113507, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38041815

RESUMEN

The expression of pro-lymphangiogenic VEGF-C in primary tumors is associated with sentinel lymph node metastasis in most solid cancer types. However, the impact of VEGF-C on distant organ metastasis remains unclear. Perivascular tumor-associated macrophages (TAMs) play a crucial role in guiding hematogenous spread of cancer cells by establishing metastatic pathways within the tumor microenvironment. This process supports breast cancer cell intravasation and metastatic dissemination. We show here that VEGF-C-expressing TAMs reduce the dissemination of mammary cancer cells to the lungs while concurrently increasing lymph node metastasis. These TAMs express podoplanin and interact with normalized tumor blood vessels expressing VEGFR3. Moreover, clinical data suggest inverse association between VEGF-C-expressing TAMs and breast cancer malignancy. Thus, our study elucidates the paradoxical role of VEGF-C-expressing TAMs in redirecting cancer cells to preferentially disseminate to lymph nodes rather than to lungs, partially achieved by normalizing tumor blood vessels and promoting lymphangiogenesis.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Metástasis Linfática , Neoplasias de la Mama/patología , Macrófagos Asociados a Tumores/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Linfangiogénesis , Microambiente Tumoral
12.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762426

RESUMEN

In recent years, the study of lymphangiogenesis and fibrotic diseases has made considerable achievements, and accumulating evidence indicates that lymphangiogenesis plays a key role in the process of fibrosis in various organs. Although the effects of lymphangiogenesis on fibrosis disease have not been conclusively determined due to different disease models and pathological stages of organ fibrosis, its importance in the development of fibrosis is unquestionable. Therefore, we expounded on the characteristics of lymphangiogenesis in fibrotic diseases from the effects of lymphangiogenesis on fibrosis, the source of lymphatic endothelial cells (LECs), the mechanism of fibrosis-related lymphangiogenesis, and the therapeutic effect of intervening lymphangiogenesis on fibrosis. We found that expansion of LECs or lymphatic networks occurs through original endothelial cell budding or macrophage differentiation into LECs, and the vascular endothelial growth factor C (VEGFC)/vascular endothelial growth factor receptor (VEGFR3) pathway is central in fibrosis-related lymphangiogenesis. Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), as a receptor of LECs, is also involved in the regulation of lymphangiogenesis. Intervention with lymphangiogenesis improves fibrosis to some extent. In the complex organ fibrosis microenvironment, a variety of functional cells, inflammatory factors and chemokines synergistically or antagonistically form the complex network involved in fibrosis-related lymphangiogenesis and regulate the progression of fibrosis disease. Further clarifying the formation of a new fibrosis-related lymphangiogenesis network may potentially provide new strategies for the treatment of fibrosis disease.

13.
3 Biotech ; 13(10): 326, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37663750

RESUMEN

The cancer-promoting ligand vascular endothelial growth factor-C (VEGF-C) activates VEGF receptor-3 (VEGFR-3). The VEGF-C/VEGFR-3 axis is expressed by a range of human tumor cells in addition to lymphatic endothelial cells. Activating the VEGF-C/VEGFR-3 signaling enhances metastasis by promoting lymphangiogenesis and angiogenesis inside and around tumors. Stimulation of VEGF-C/VEGFR-3 signaling promotes tumor metastasis in tumors, such as ovarian, renal, pancreatic, prostate, lung, skin, gastric, colorectal, cervical, leukemia, mesothelioma, Kaposi sarcoma, and endometrial carcinoma. We discuss and update the role of VEGF-C/VEGFR-3 signaling in tumor development and the research is still needed to completely comprehend this multifunctional receptor.

14.
J Gastroenterol ; 58(9): 908-924, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37433897

RESUMEN

BACKGROUND: Therapies for cholangiocarcinoma are largely limited and ineffective. Herein, we examined the role of the FGF and VEGF pathways in regulating lymphangiogenesis and PD-L1 expression in intrahepatic cholangiocarcinoma (iCCA). METHODS: The lymphangiogenic functions of FGF and VEGF were evaluated in lymphatic endothelial cells (LECs) and iCCA xenograft mouse models. The relationship between VEGF and hexokinase 2 (HK2) was validated in LECs by western blot, immunofluorescence, ChIP and luciferase reporter assays. The efficacy of the combination therapy was assessed in LECs and xenograft models. Microarray analysis was used to evaluate the pathological relationships of FGFR1 and VEGFR3 with HK2 in human lymphatic vessels. RESULTS: FGF promoted lymphangiogenesis through c-MYC-dependent modulation of HK2 expression. VEGFC also upregulated HK2 expression. Mechanistically, VEGFC phosphorylated components of the PI3K/Akt/mTOR axis to upregulate HIF-1α expression at the translational level, and HIF-1α then bound to the HK2 promoter region to activate its transcription. More importantly, dual FGFR and VEGFR inhibition with infigratinib and SAR131675 almost completely inhibited lymphangiogenesis, and significantly suppressed iCCA tumor growth and progression by reducing PD-L1 expression in LECs. CONCLUSIONS: Dual FGFR and VEGFR inhibition inhibits lymphangiogenesis through suppression of c-MYC-dependent and HIF-1α-mediated HK2 expression, respectively. HK2 downregulation decreased glycolytic activity and further attenuated PD-L1 expression. Our findings suggest that dual FGFR and VEGFR blockade is an effective novel combination strategy to inhibit lymphangiogenesis and improve immunocompetence in iCCA.


Asunto(s)
Colangiocarcinoma , Linfangiogénesis , Humanos , Ratones , Animales , Antígeno B7-H1/metabolismo , Hexoquinasa/metabolismo , Hexoquinasa/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología
15.
Cell Rep ; 42(7): 112777, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37454290

RESUMEN

Lymphatic capillaries develop discontinuous cell-cell junctions that permit the absorption of large macromolecules, chylomicrons, and fluid from the interstitium. While excessive vascular endothelial growth factor 2 (VEGFR2) signaling can remodel and seal these junctions, whether and how VEGFR3 can alter lymphatic junctions remains incompletely understood. Here, we use lymphatic-specific Flt4 knockout mice to investigate VEGFR3 signaling in lymphatic junctions. We show that loss of Flt4 prevents specialized button junction formation in multiple tissues and impairs interstitial absorption. Knockdown of FLT4 in human lymphatic endothelial cells results in impaired NOTCH1 expression and activation, and overexpression of the NOTCH1 intracellular domain in Flt4 knockout vessels rescues the formation of button junctions and absorption of interstitial molecules. Together, our data reveal a requirement for VEGFR3 and NOTCH1 signaling in the development of button junctions during postnatal development and may hold clinical relevance to lymphatic diseases with impaired VEGFR3 signaling.


Asunto(s)
Células Endoteliales , Vasos Linfáticos , Receptor Notch1 , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Linfangiogénesis/fisiología , Vasos Linfáticos/metabolismo , Ratones Noqueados , Transducción de Señal , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
16.
Cell Rep ; 42(5): 112489, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37167063

RESUMEN

Upon recognizing danger signals produced by virally infected neurons, macrophages in the central nervous system (CNS) secrete multiple inflammatory cytokines to accelerate neuron apoptosis. The understanding is limited about which key effectors regulate macrophage-neuron crosstalk upon infection. We have used neurotropic-virus-infected murine models to identify that vascular endothelial growth factor receptor 3 (VEGFR-3) is upregulated in the CNS macrophages and that virally infected neurons secrete the ligand VEGF-C. When cultured with VEGF-C-containing supernatants from virally infected neurons, VEGFR-3+ macrophages suppress tumor necrosis factor α (TNF-α) secretion to reduce neuron apoptosis. Vegfr-3ΔLBD/ΔLBD (deletion of ligand-binding domain in myeloid cells) mice or mice treated with the VEGFR-3 kinase inhibitor exacerbate the severity of encephalitis, TNF-α production, and neuron apoptosis post Japanese encephalitis virus (JEV) infection. Activating VEGFR-3 or blocking TNF-α can reduce encephalitis and neuronal damage upon JEV infection. Altogether, we show that the inducible VEGF-C/VEGFR-3 module generates protective crosstalk between neurons and macrophages to alleviate CNS viral infection.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Ligandos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Encefalitis Japonesa/metabolismo , Encefalitis Japonesa/patología , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Neuronas/metabolismo , Macrófagos/metabolismo
17.
Front Pharmacol ; 14: 1152314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37188266

RESUMEN

Introduction: Surgery and radiotherapy are key cancer treatments and the leading causes of damage to the lymphatics, a vascular network critical to fluid homeostasis and immunity. The clinical manifestation of this damage constitutes a devastating side-effect of cancer treatment, known as lymphoedema. Lymphoedema is a chronic condition evolving from the accumulation of interstitial fluid due to impaired drainage via the lymphatics and is recognised to contribute significant morbidity to patients who survive their cancer. Nevertheless, the molecular mechanisms underlying the damage inflicted on lymphatic vessels, and particularly the lymphatic endothelial cells (LEC) that constitute them, by these treatment modalities, remain poorly understood. Methods: We used a combination of cell based assays, biochemistry and animal models of lymphatic injury to examine the molecular mechanisms behind LEC injury and the subsequent effects on lymphatic vessels, particularly the role of the VEGF-C/VEGF-D/VEGFR-3 lymphangiogenic signalling pathway, in lymphatic injury underpinning the development of lymphoedema. Results: We demonstrate that radiotherapy selectively impairs key LEC functions needed for new lymphatic vessel growth (lymphangiogenesis). This effect is mediated by attenuation of VEGFR-3 signalling and downstream signalling cascades. VEGFR-3 protein levels were downregulated in LEC that were exposed to radiation, and LEC were therefore selectively less responsive to VEGF-C and VEGF-D. These findings were validated in our animal models of radiation and surgical injury. Discussion: Our data provide mechanistic insight into injury sustained by LEC and lymphatics during surgical and radiotherapy cancer treatments and underscore the need for alternative non-VEGF-C/VEGFR-3-based therapies to treat lymphoedema.

18.
Front Pharmacol ; 14: 1177282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089961

RESUMEN

Background: Retinoblastoma is currently the most common malignant tumor seen in newborns and children's eyes worldwide, posing a life-threatening hazard. Chemotherapy is an integral part of retinoblastoma treatment. However, the chemotherapeutic agents used in clinics often lead to drug resistance. Thus there is a need to investigate new chemotherapy-targeted agents. VEGFR3 inhibitors are anti-tumour-growth and could be used to develop novel retinoblastoma-targeted agents. Objective: To predict drug activity, discover influencing factors and design new drugs by building 2D, 3D-QSAR models. Method: First, linear and non-linear QSAR models were built using heuristic methods and gene expression programming (GEP). The comparative molecular similarity indices analysis (COMISA) was then used to construct 3D-QSAR models through the SYBYL software. New drugs were designed by changing drug activity factors in both models, and molecular docking experiments were performed. Result: The best linear model created using HM had an R2, S2, and R2cv of 0.82, 0.02, and 0.77, respectively. For the training and test sets, the best non-linear model created using GEP had correlation coefficients of 0.83 and 0.72 with mean errors of 0.02 and 0.04. The 3D model designed using SYBYL passed external validation due to its high Q2 (0.503), R2 (0.805), and F-value (76.52), as well as its low standard error of SEE value (0.172). This demonstrates the model's reliability and excellent predictive ability. Based on the molecular descriptors of the 2D model and the contour plots of the 3D model, we designed 100 new compounds using the best active compound 14 as a template. We performed activity prediction and molecular docking experiments on them, in which compound 14.d performed best regarding combined drug activity and docking ability. Conclusion: The non-linear model created using GEP was more stable and had a more substantial predictive power than the linear model built using the heuristic technique (HM). The compound 14.d designed in this experiment has the potential for anti-retinoblastoma treatment, which provides new design ideas and directions for retinoblastoma-targeted drugs.

19.
Biomedicines ; 11(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979635

RESUMEN

The lymphatic system is of fundamental importance in maintaining a fluid balance in the body and tissue homeostasis; it drains protein-rich lymph from the interstitial space and facilitates the release of cells that mediate the immune response. When one tissue is damaged, more cells and tissues work to repair the damaged site. Blood and lymph vessels are particularly important for tissue regeneration and healing. Angiogenesis is the process of the formation of new blood vessels and is induced by angiogenic factors such as VEGF-A; VEGF-C/D-induced lymphangiogenesis and both occur simultaneously during wound healing. After the inflammatory phase, lymphatic vessels suppress inflammation by aiding in the drainage of inflammatory mediators; thus, disorders of the lymphatic system often result in chronic and disabling conditions. It has recently been clarified that delayed wound healing, as in diabetes, can occur as a consequence of impaired lymphangiogenesis. In this review, we have highlighted recent advances in understanding the biology underlying lymphangiogenesis and its key role in wound healing, and the possibility of its pharmacological modulation as a novel therapeutic strategy for the treatment of chronic wounds.

20.
J Cell Biochem ; 124(5): 674-686, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36922713

RESUMEN

Vascular endothelial growth factor receptor 3 (VEGFR3) is expressed in cancer cell lines and exerts a critical role in cancer progression. However, the signaling pathways of VEGFR3 in ovarian cancer cell proliferation remain unclear. This study aimed to demonstrate the signaling pathways of VEGFR3 through the upregulated expression of miR-1236 in ovarian cancer cells. We found that the messenger RNA and protein of VEGFR3 were expressed in the ovarian cancer cell lines, but downregulated after microRNA-1236 (miR-1236) transfection. The inhibition of VEGFR3, using miR-1236, significantly reduced cell proliferation, clonogenic survival, migration, and invasion ability in SKOV3 and OVCAR3 cells (p < 0.01). The flow cytometry results indicated that the rate of apoptotic cells in SKOV3 (38.65%) and OVCAR3 (41.95%) cells increased following VEGFR3 inhibition. Moreover, VEGFR3 stimulation (using a specific ligand, VEGF-CS) significantly increased extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation (p < 0.01), whereas VEGFR3 suppression reduced p-ERK1/2 (67.94% in SKOV3 and 93.52% in OVCAR3) and p-AKT (59.56% in SKOV3 and 78.73% in OVCAR3) compared to the VEGF-CS treated group. This finding demonstrated that miR-1236 may act as an endogenous regulator of ERK1/2 and AKT signaling by blocking the upstream regulator of VEGFR3. Overall, we demonstrated the important role of the miR-1236/VEGFR3 axis in ovarian cancer cell proliferation by regulating the ERK1/2 and AKT signaling that might be an effective strategy against ovarian cancer.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Femenino , Humanos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias Ováricas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...