RESUMEN
Lithium (Li) metal is widely recognized as a viable candidate for anode material in future battery technologies due to its exceptional energy density. Nevertheless, the commercial Li foils in common use are too thick (≈100 µm), resulting in a waste of Li resources. Herein, by applying the vacuum evaporation plating technology, the ultra-thin Li foils (VELi) with high purity, strong adhesion, and thickness of less than 10 µm are successfully prepared. The manipulation of evaporation temperature allows for convenient regulation of the thickness of the fabricated Li film. This physical thinning method allows for fast, continuous, and highly accurate mass production. With a current density of 0.5 mA cm-2 for a plating amount of 0.5 mAh cm-2, VELi||VELi cells can stably cycle for 200 h. The maximum utilization of Li is already more than 25%. Furthermore, LiFePO4||VELi full cells present excellent cycling performance at 1 C (1 C = 155 mAh g-1) with a capacity retention rate of 90.56% after 240 cycles. VELi increases the utilization of active Li and significantly reduces the cost of Li usage while ensuring anode cycling and multiplication performance. Vacuum evaporation plating technology provides a feasible strategy for the practical application of ultra-thin Li anodes.
RESUMEN
Perovskite single crystals have attracted tremendous attention owing to their excellent optoelectronic properties and stability compared to typical multicrystal structures. However, the growth of high-quality perovskite single crystals (PSCs) generally relies on temperature gradients or the introduction of additives to promote crystal growth. In this study, a vacuum evaporation crystallization technique is developed that allows PSCs to be grown under extremely stable conditions at constant temperature and without requiring additives to promote crystal growth. The new method enables the growth of PSCs of unprecedented quality, that is, MAPbBr3 single crystals that exhibit an ultranarrow full width at half maximum of 0.00701°, which surpasses that of all previously reported values. In addition, the MAPbBr3 single crystals deliver exceptional optoelectronic performance, including a long carrier lifetime of 1006 ns, an ultralow trap-state density of 3.67 × 109 cm-3, and an ultrahigh carrier mobility of 185.86 cm2 V-1 s-1. This method is applicable to various types of PSCs, including organic-inorganic hybrids, fully inorganic structures, and low-dimensional structures.
RESUMEN
Co magnetic films are widely used in high-frequency magnetic recording and vertical magnetic recording due to their high saturation magnetization and magnetocrystalline anisotropy. In this work, ferromagnetic Co magnetic films were prepared on copper substrate by vacuum evaporation combined with heat treatment (H2 atmosphere), to investigate the impact of film thickness and annealing temperature on microstructure and magnetic properties. The results show that with the increase in annealing temperature, the Co thin film physical phase does not change significantly, the crystallinity increases, and the grain size increases, which is consistent with the results obtained from the SEM morphology map of the sample surface, leading to an increase in coercivity. By annealing experiments (atmospheric atmosphere) on Co magnetic films with and without an Al protective layer, as shown by scanning electron microscopy microscopic characterization results, it was verified that the Al layer can protect the inner Co layer from oxidation. As the film thickness increases from 10 to 300 nm, the magnetic properties of Co films change significantly. The saturation magnetization gradually increases from 0.89 to 5.21 emu/g, and the coercivity increases from 124.3 to 363.8 Oe. The remanence ratio of the 10 nm magnetic film is 0.82, which is much higher than the film remanence ratio of 0.46 at 50 nm. This is because when the thickness of the film is between 10 and 50 nm, the magnetic moments partially deviate from the in-plane direction, and the out-of-plane component reduces the film remanence ratio. This study shows that optimizing annealing temperature and film thickness can effectively control the structure and magnetic properties of Co magnetic films, which is of great significance for the development of the magnetic recording field.
RESUMEN
Organic-inorganic hybrid perovskites exhibit outstanding performances in perovskite solar cells (PSCs). However, the complex solution chemistry of perovskites precursors renders it difficult to prepare large-area devices in a reproducible way, which is a prerequisite for the technology to make an impact beyond lab scale. Vacuum processing, instead, is an established technology for large-scale coating of thin films. However, with respect to the hybrid perovskites it is highly challenging due to the high vapor pressure of the organic ammonium halide. In this work, vacuum evaporation of lead iodide and solution processing of organic ammonium halide is combined to produce large-area homogeneous perovskite films with large grains in a highly reproducible way. The resulting PSCs achieve a power conversion efficiency (PCE) of 24.3% (certified 23.9%) on small area (0.10 cm2 ), 24.0% (certified 23.7%) on large area (1 cm2 ) and 20.0% for minimodule (16 cm2 ), and maintain 90% of its initial efficiency after 1000 h 1-sun operation. The vacuum evaporation prevents advert environmental effects on lead halide formation and guarantees a reproducible fabrication of high-quality large-area perovskite films, which opens a promising way for large-scale fabrication of perovskite optoelectronics.
RESUMEN
The high water content and low nutrient concentration of digestate complicate its storage, transportation, and utilization. Subsequent digestate processing can effectively remove water and influence nutrient partitioning among digestate fractions and final products. The current study was carried out to evaluate the performance of two typical digestate processing chains, solid and liquid ones, respectively, and to give practical recommendations for optimization. Two fully operating biogas plants with advanced heat utilization were considered as data sources. The digestate mass flow balance of dry matter (DM), water, total N (TN), and ammonium-N mass flows was performed and the efficiency of the examined processing units was calculated. It was found that solid-liquid separation of raw digestate shifted 73-87% of TN and 60-93% of NH4-N to the liquid phase. Subsequent drying of separated solid fraction removed about 6% of the initial water and required 84% less thermal energy per kg N recovered than the processing of separated liquid. The final product, pellets, contained 14% of initial TN, but only 2% of initial NH4-N as a result of microbial conversion of inorganic N during drying. Vacuum evaporation of separated liquid fraction removed 34% of the initial water and left a DM-rich concentrate. At the same time, an ammonium sulfate solution (ASS) containing 21% of initial TN and 34% of initial NH4-N was produced. Both evaluated processing chains showed specific advantages and challenges. Solid products were characterized by a high share of recalcitrant organic compounds and could serve as a soil improver. Liquid processing concentrated plant-available N in ASS, which could be used as valuable inorganic fertilizer.
Asunto(s)
Fertilizantes , Nitrógeno , Anaerobiosis , Biocombustibles , Fertilizantes/análisis , Nitrógeno/análisis , Suelo , AguaRESUMEN
The development of confined growth of metal-organic frameworks (MOFs) in a nano-space remains a challenge mainly due to the spatial size randomness and inhomogeneity of host materials and the limitation of MOF species. In this study, we developed a general "stepwise vacuum evaporation" strategy, which allows the nano-confined growth of MOFs in hollow mesoporous silica nanospheres (HMSN) by the vacuum forces and the capillary effect. A series of nanoscale MOFs including ZIF-8, ZIF-90, HKUST-1, MIL-53(Cr) and UiO-66-NH2 were confinely synthesized inside the cavities of HMSN, resulting in hierarchically porous composites with core-shell structures. Further functionalization was studied by anchoring Pd to obtain UiO-66-NH2/Pd@HMSN catalyst, which exhibited excellent activity in the catalytic reduction of 4-nitrophenol to 4-aminophenol under ambient condition.
RESUMEN
This study demonstrates the potential of an innovative anaerobic treatment technology for municipal biosolids (IntensiCarb), which relies on vacuum evaporation to decouple solids and hydraulic retention times (SRT and HRT). We present proof-of-concept experiments using primary sludge and thickened waste activated sludge (50-50 v/v mixture) as feed for fermentation and carbon upgrading with the IntensiCarb unit. IntensiCarb fully decoupled the HRT and SRT in continuously stirred anaerobic reactors (CSAR) to achieve two intensification factors, that is, 1.3 and 2, while keeping the SRT constant at 3 days (including in the control fermenter). The intensified CSARs were compared to a conventional control system to determine the yields of particulate hydrolysis, VFA production, and nitrogen partitioning between fermentate and condensate. The intensified CSAR operating at an intensification factor 2 achieved a 65% improvement in particulate solubilization. Almost 50% of total ammonia was extracted without pH adjustment, while carbon was retained in the fermentate. Based on these results, the IntensiCarb technology allows water resource recovery facilities to achieve a high degree of plant-wide intensification while partitioning nutrients into different streams and thickening solids. PRACTITIONER POINTS: The IntensiCarb reactor can decouple hydraulic (HRT) and solids (SRT) retention times in anaerobic systems while also increasing particulate hydrolysis and overall plant capacity. Using vacuum as driving force of the IntensiCarb technology, the system could achieve thickening, digestion, and partial dewatering in the same unit-thus eliminating the complexity of multi-stage biosolids treatment lines. The ability to partition nutrients between particulate, fermentate, and condensate assigns to the IntensiCarb unit a key role in recovery strategies for value-added products such as nitrogen, phosphorus, and carbon, which can be recovered separately and independently.
RESUMEN
Pentacene is a well-known conjugated organic molecule with high mobility and a sensitive photo response. It is widely used in electronic devices, such as in organic thin-film transistors (OTFTs), organic light-emitting diodes (OLEDs), photodetectors, and smart sensors. With the development of flexible and wearable electronics, the deposition of good-quality pentacene films in large-scale organic electronics at the industrial level has drawn more research attention. Several methods are used to deposit pentacene thin films. The thermal evaporation technique is the most frequently used method for depositing thin films, as it has low contamination rates and a well-controlled deposition rate. Solution-processable methods such as spin coating, dip coating, and inkjet printing have also been widely studied because they enable large-scale deposition and low-cost fabrication of devices. This review summarizes the deposition principles and control parameters of each deposition method for pentacene and its derivatives. Each method is discussed in terms of experimentation and theory. Based on film quality and device performance, the review also provides a comparison of each method to provide recommendations for specific device applications.
RESUMEN
Pekmez is a concentrated syrup-like food conventionally produced by vacuum evaporation process from sugar-rich fruits. In this study, the applicability of grape pekmez production by ohmic heating assisted vacuum evaporation (ΩVE) method was investigated. Conventional vacuum evaporation (CVE) and ΩVE methods were compared in terms of physicochemical properties, HMF (5-hydroxymethylfurfural) contents, rheological properties, and energy consumptions. ΩVE was run at four different voltage gradients (17.5, 20, 22.5, and 25 V/cm). Total process times for grape pekmez production were determined as 57, 28.5, 32, 39, and 50 minutes for CVE, ΩVE (25 V/cm), ΩVE (22.5 V/cm), ΩVE (20 V/cm) and ΩVE (17.5 V/cm), respectively. Energy consumption of CVE method was higher than ΩVE method for all voltage gradients. Energy efficiency increased as the voltage gradient increased. There was no significant difference between CVE and ΩVE methods for HMF contents. The results show that the ΩVE method could be an alternative to the CVE process for grape pekmez production.
Asunto(s)
Vitis , Frutas , Jugos de Frutas y Vegetales , Calefacción , VacioRESUMEN
Rare earth (RE) based halide solid electrolytes (HEs) are recently considered as research hotspots in the field of all-solid-state batteries (ASSBs). The RE-based HEs possess high ionic conductivity, credible deformability, and good stability, which can bring excellent electrochemical performances for ASSBs. However, the conventional synthetic methods of RE HEs are a mechanochemical process and co-melting strategy, both approaches require expensive raw materials and sophisticated equipment. Therefore, a lot of research work is required to promote the preparation methods for these promising SSEs in ASSBs. Thus, a vacuum evaporation-assisted synthesis method is developed for the massive synthesis of HEs. The as-prepared Li3 HoBr6 (LHB) has a high lithium-ion conductivity close to the mS cm-1 level and the LHB-based Li-Se ASSBs can be assembled by cold pressing. Theoretical calculations have revealed that the Li migrations are highly preferred in Li3 HoBr6 owing to the low energy cost and high tolerance of stable structure. The tetrahedral and octahedral pathways are responsible for Li migrations in short and long ranges, respectively. The results show that the LHB-based Li-Se battery has good stability and rate performance, indicating that LHB has potential application in the field of ASSBs.
RESUMEN
All mixed hybrid perovskite (MA(Sn, Pb)(Br,I)3) thin film was fabricated by sequential vacuum evaporation method. To optimize the first layer with PbBr2 and SnI2, we performed different annealing treatments. Further, MA(Sn, Pb)(Br, I)3 thin film was synthesized on the optimized first layer by evaporating MAI and post-annealing. The formed hybrid perovskite thin film exhibited absorptions at 1.0 and 1.7 THz with small absorbance (<10%). Moreover, no chemical and structural defect-incorporated absorption was found. In this study, the possibility of changing terahertz absorption frequency through the mixture of metal cations (Sn+ and Pb+) and halogen anions (Br- and I-) was verified.
RESUMEN
Pyrolysis of cajuput (Melaleuca leucadendron) twigs and rice (Oryza sativa) husks to produce liquid smoke and antibacterial activities of the liquid smoke fractions were investigated. The liquid smoke was produced by pyrolysis at 500 °C for 8 h and contained fine chemicals, such as acetic acid, carbonyl, cyclic ketones, and phenolic compounds with pH 2.1-2.9. The liquid smoke was separated by vacuum evaporation under vacuum conditions at low temperatures (40 °C, 50 °C, and 60 °C) to recover three fractions. The composition of each fraction influenced its antibacterial activities. Antibacterial activities of the liquid smoke fractions were tested against Gram-positive bacteria (Listeria monocytogenes, Bacillus subtilis, and Staphylococcus aureus) and Gram-negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa, and Escherichia coli). Whole fractions of the liquid smoke inhibited the six pathogenic bacteria, with the inhibition zone larger or smaller than the positive control. Among the liquid smoke fractions, the liquid recovered at 60 °C for the cajuput twigs and rice husks demonstrated a stronger inhibitory effect on bacterial growth than the other fractions.
RESUMEN
Organic solar cells (OSCs), also known as organic photovoltaics (OPVs), are an emerging solar cell technology composed of carbon-based, organic molecules, which convert energy from the sun into electricity. Key for their performance is the microstructure of the light-absorbing organic bulk heterojunction. To study this, organic solar films composed of both fullerene C60 as electron acceptor and different mole percentages of di-[4-(N,N-di-p-tolyl-amino)-phenyl]-cyclohexane (TAPC) as electron donor were evaporated in vacuum in different mixing ratios (5, 50 and 95 mol%) on an ITO-coated glass substrate held at room temperature and at 110 °C. The microstructure of the C60: TAPC heterojunction was studied by grazing incidence wide angle X-ray scattering to understand the effect of substrate heating. By increasing the substrate temperature from ambient to 110 °C, it was found that no significant change was observed in the crystal size for the C60: TAPC concentrations investigated in this study. In addition to the variation done in the substrate temperature, the variation of the mole percent of the donor (TAPC) was studied to conclude the effect of both the substrate temperature and the donor concentration on the microstructure of the OSC films. Bragg peaks were attributed to C60 in the pure C60 sample and in the blend with low donor mole percentage (5%), but the C60 peaks became nondiscernible when the donor mole percentage was increased to 50% and above, showing that TAPC interrupted the formation of C60 crystals.
RESUMEN
Mechanical vapor compression and multi-effect evaporation have been widely used in achieving zero discharge of desulfurization wastewater as they are energy-saving and efficient technologies. Solubilized weak ions, such as CO32-, SO32-, and NH4+, in the desulfurization wastewater are partly converted into CO2, SO2, and NH3, respectively, during the vacuum evaporation process, thus affecting the heat exchange and compressor performance. In this study, the migration and coupling mechanism of CO2, SO2, and NH3 desorption in desulfurized wastewater under vacuum evaporation were analyzed. The effects of temperature, pressure, reaction time, and other factors on the migration process were discussed. The hydrolysis and electrolytic equilibrium constants of the related ions were obtained for temperatures between 70 and 90 °C. The results demonstrate the relationship between the desorption capacities of CO2, SO2, and NH3 and the hydrolysis constants of their respective ions. The desorption of CO2 and NH3 increased significantly when CO32- and NH4+ coexisted, whereas the SO2 desorption capacity remained low under the same experimental conditions. The experimental results indicate that the desorption of CO2, SO2, and NH3 is controlled by chemical reactions and can be described by first-order reaction kinetics.
Asunto(s)
Dióxido de Carbono , Aguas Residuales , Gases , Temperatura , VacioRESUMEN
The solution process and vacuum evaporation, both fabrication methods for conventional organic light-emitting diodes (OLEDs), are intrinsically restricted with regard to their ability to enhance pattern resolutions and film stability outcomes. Here, we introduce a novel approach of the solution process followed by intense pulsed light (IPL) evaporation for producing high-resolution line patterns of OLEDs. Through control of the wettability between the banks and microchannels via a mask-free selective surface treatment, we successfully deposited phosphorescent green and red inks only into the microchannels. Then, high-resolution patterns of an emitting layer (EML) layer were uniformly evaporated onto the device substrate using IPL evaporation. Ultimately, we fabricated green and red phosphorescent OLED devices with a high pixel density of a line-patterned EML with a width of 6 µm and a pitch of 13.6 µm. In addition, we demonstrated that the IPL-evaporated films have many advantages compared to those fabricated by the conventional solution process. We also showed that the IPL evaporation process can be less sensitive to problems related to the aggregation of organic molecules during a drying or annealing process. Hence, the device performance and lifetime of the IPL-evaporated OLEDs were enhanced compared to those of the spin-coated OLEDs.
RESUMEN
Electrical and thermal transport controlled by growth mode can be used to optimize thermoelectric properties of ZnO:Al films, which was adjusted by the re-evaporation of Zn and Al via substrate temperatures. The growth modes include equiaxed crystal, columnar crystal and coexistence of both crystals. In the ZnO:Al film, equiaxed crystals improve the carrier mobility and reduce the lattice thermal conductivity. Thus, the carrier mobility and thermal conductivity are tuned by the ratio of equiaxed crystals to columnar crystals. The carrier mobility is dependent on the growth-mode-related defects of oxygen vacancies, zinc interstitials and the substitutional dopant of Al. Improved thermoelectric properties with a power factor of 198.45â µWâ m-1â K-2 at 510â K were achieved. This study presents a film with the structure of an equiaxed-crystal buffer layer to enhance its thermoelectric properties.
RESUMEN
Chemical degradation is a major disadvantage in the development of organic semiconductors. This work proposes the manufacture and characterization of organic semiconductor membranes in order to prevent semiconductor properties decreasing. Semiconductor membranes consisting of Nylon-11 and particles of π-conjugated molecular semiconductors were manufactured by high-vacuum evaporation followed by thermal relaxation. Initially, and with the aim of obtaining semiconductor particles, bulk heterojunction (BHJ) was carried out using green chemistry techniques between the zinc phthalocyanine (ZnPc) and the zinc hexadecafluoro-phthalocyanine (F16ZnPc) as n-type molecular semiconductors with the p-type molecular semiconductor dibenzotetrathiafulvalene (DBTTF). Consequently, the π-conjugated semiconductors particles were embedded in a Nylon-11 matrix and characterized, both structurally and considering their optical and electrical properties. Thin films of these materials were manufactured in order to comparatively study the membranes and precursor semiconductor particles. The membranes presented bandgap (Eg) values that were lower than those obtained in the films, which is an indicator of an improvement in their semiconductor capacity. Finally, the membranes were subjected to accelerated lighting conditions, to determine the stability of the polymer and the operating capacity of the membrane. After fatigue conditions, the electrical behavior of the proposed semiconductor membranes remained practically unaltered; therefore, they could have potential applications in molecular electronics. The chemical stability of membranes, which did not degrade in their polymer compound, nor in the semiconductor, was monitored by IR spectroscopy.
RESUMEN
When dairy powders are produced, the mineral fraction undergoes strong modifications during the vacuum concentration step, leading to the fouling of falling film evaporators. The objective of this study was to determine the nature of the deposits formed during the vacuum concentration of two fouling and highly mineralized products: hydrochloric acid whey and lactic acid whey. These products mainly differ in terms of their mineral composition: lactic acid whey contains a high level of lactic acid and traces of citrate, whereas hydrochloric acid whey contains citrate and no lactic acid. Concentrates at different concentration factors were produced using a pilot-scale falling film evaporator. The compositions of the fouling deposits as well as the precipitates present in the concentrates were deduced from the analytical determination of the composition of the concentrates and their respective diffusible phases. The behavior of the mineral fraction of both acid wheys during concentration was shown to be very different. In the case of hydrochloric acid whey, experimental results suggested a deposition of calcium and citrate ions in the evaporator as well as their precipitation in the highly concentrated products. On the contrary, neither mineral deposition nor precipitation occurred during the concentration of lactic acid whey. This study underlined the key role of citrate ions in the fouling of evaporators during the concentration of hydrochloric acid wheys.
Asunto(s)
Citrato de Calcio/química , Impulso (Psicología) , Ácido Clorhídrico/química , Suero Lácteo/química , Concentración de Iones de Hidrógeno , Ácido Láctico , Minerales , Nitrógeno/análisis , VacioRESUMEN
Black phosphorus (BP) is a promising electrode material with high energy density for lithium-ion batteries. However, volumetric expansion of BP upon lithiation leads to rapid capacity fading of the electrode. Herein, BP composite electrodes are prepared by mixing microsized BP particles with carbon nanotubes and KetjenBlack as dual conducting agents, which facilitate the construction of stable and conductive networks in the electrodes. An ultrathin TiO2 nanocoating is deposited on the surface of the BP composite electrode by electron-beam evaporation. The TiO2 nanocoating acts as a protective layer to prevent the BP particles from directly contacting the electrolyte by forming a Li xTi yO z passivation coating on the electrode surface. The Li xTi yO z passivation layer suppresses propagation of the formed irreversible solid electrolyte interlayer on the BP particles, resulting in an improved Coulombic efficiency of the BP electrode. Moreover, the Li xTi yO z passivation layer facilitates lithium-ion diffusion and electron transfer and thus superior cycling and rate performance of the BP electrode are achieved.
RESUMEN
Exhaled breath condensate (EBC) is receiving increased attention as a novel, entirely non-invasive technique for collecting biomarker samples. This increased attention is due to the fact that EBC is simple, effort independent, rapid, can be repeated frequently, and can be performed on young children and patients suffering from a variety of diseases. By having a subject breathe tidally through a cooling system for 15-20â¯min, a sufficient amount of condensate is collected for analysis of biomarkers in clinical studies. However, bioanalysis of EBC involves an unavoidable sample preparation step due to the low concentration of its components. Thus, there is a need for a new and more sensitive analytical method of assessing EBC samples. While researchers have considered analyses of single and small quantities of amino acids - for example, those connected with leukemia - no one has previously attempted to simultaneously analyze a panel of 23 amino acids. Moreover, the present study is well-justified, as prior studies focusing on single amino acids and leukemia at the moment of diagnosis and during chemotherapy (33â¯days of treatment) are inconsistent. In the present study, amino acids were separated using an XBridge Amide column (3â¯mmâ¯×â¯100â¯mm, 3.5⯵m). The mobile phase consisted of 10â¯mM of ammonium buffer in water with a pH of 3 (Phase A) and 10â¯mM ammonium buffer in acetonitrile (Phase B) under gradient program elution. The analytes were detected in electrospray positive ionization mode. Under optimal conditions, the proposed method exhibited limits of quantification (LOQ) in the range of 0.05-0.5â¯ng/mL, and good linearity, with the determination coefficient (R2) falling between 0.9904 and 0.9998. The accuracy in human exhaled breath condensate samples ranged between 93.3-113.3% for the 23 studied amino acids, with intra- and inter-day coefficient of variation (CVs) of 0.13-9.92% and 0.17-10.53%, respectively. To demonstrate the liquid chromatography with hydrophilic interaction with electrospray source coupled to tandem mass spectrometry (LC-HILIC-ESI-MS/MS) method's applicability for biomedical investigations, it was verified and applied to determine amino acids in pediatric patients with leukemia. These tests confirmed that glutamine, arginine, homoarginine, asparagine, histidine, methionine, proline, hydroxyproline, threonine, tyrosine, and valine were present in significantly higher levels in pediatric leukemia patients than in the healthy control group. The developed assay is an attractive alternative to standard analytical methods, because it allows for the non-invasive, fast, sensitive, and reliable analysis of amino acids without derivatization in EBC.