RESUMEN
Background/aim: Misfolded proteins are eliminated by a process known as endoplasmic reticulum-associated protein degradation (ERAD). ERAD has an impact on a variety of illnesses, such as diabetes, cystic fibrosis, cancer, and neurological conditions. As one of the many proteins involved in ERAD, this study is focused on p97/valosin-containing protein (VCP) and small VCP-interacting protein (SVIP). The existence and function of SVIP and p97/VCP in various types of pancreatic cancer have not yet been investigated. The study's objectives are to examine the expressions of SVIP and p97/VCP in two pancreatic cancer types and to show whether these proteins aid in the invasion and migration of pancreatic cancer cells. Materials and methods: In this work, MIA PaCa-2 and PANC-1 human cell lines were examined. Immunocytochemistry and immunofluorescence were performed to detect the cellular localization and presence of p97/VCP and SVIP in pancreatic cancer cells. Following p97/VCP siRNA and SVIP siRNA transfection of the cells, protein expressions were assessed using Western blot analysis. The effects of this suppression on cell invasion and migration were determined using the xCELLigence real-time analysis system (RTAC). Results: In the nucleus and cytoplasm of MIA PaCa-2 and PANC-1 cells, p97/VCP and SVIP immunoexpressions were seen. The decrease in protein expressions of p97/VCPsi and SVIPsi was significant in pancreatic cells compared to the controlsi. The p97/VCP siRNA transfection reduced the invasion and migration of MIA PaCa-2 and PANC-1 cells. In addition, the SVIP siRNA suppression resulted in increasing the invasion and migration ability of both cells. This study also demonstrated, for the first time, SVIP expression in MIA PaCa-2 and PANC-1 cells. Conclusion: Overall, the findings show the differential expression and function of p97/VCP and SVIP in pancreas ductal adenocarcinoma cells. The potential of the pancreatic cancer cells to migrate and invade altered when the two cell lines were transfected with p97/VCPsi and SVIPsi.
Asunto(s)
Movimiento Celular , Invasividad Neoplásica , Neoplasias Pancreáticas , Proteína que Contiene Valosina , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Línea Celular Tumoral , ARN Interferente PequeñoRESUMEN
Valosin-containing protein (VCP), also known as p97, plays a crucial role in various cellular processes, including protein degradation, endoplasmic reticulum-associated degradation, and cell cycle regulation. While extensive research has been focused on VCP's involvement in protein homeostasis and its implications in neurodegenerative diseases, emerging evidence suggests a potential link between VCP and cardiovascular health. VCP is a key regulator of mitochondrial function, and its overexpression or mutations lead to pathogenic diseases and cellular stress responses. The present review explores VCP's roles in numerous cardiovascular disorders including myocardial ischemia/reperfusion injury, cardiac hypertrophy, and heart failure. The review dwells on the roles of VCP in modifying mitochondrial activity, promoting S-nitrosylation, regulating mTOR signalling and demonstrating cardioprotective effects. Further research into VCP might lead to novel interventions for cardiovascular disease, particularly those involving ischemia/reperfusion injury and hypertrophy.
RESUMEN
Valosin-containing protein (VCP), an ATPase-associated protein, is emerging as a crucial regulator in cardiac pathologies. However, the pivotal role of VCP in the heart under physiological conditions remains undetermined. In this study, we tested a hypothesis that sufficient VCP expression is required for cardiac development and physiological cardiac function. Thus, we generated a cardiac-specific VCP knockout (KO) mouse model and assessed the consequences of VCP suppression on the heart through physiological and molecular studies at baseline. Our results reveal that homozygous KO mice are embryonically lethal, whereas heterozygous KO mice with a reduction in VCP by ~40% in the heart are viable at birth but progressively develop heart failure and succumb to mortality at the age of 10 to 12 months. The suppression of VCP induced a selective activation of the mammalian target of rapamycin complex 1 (mTORC1) but not mTORC2 at the early age of 12 weeks. The prolonged suppression of VCP increased the expression (by ~2 folds) and nuclear translocation (by >4 folds) of protein phosphatase 1 (PP1), a key mediator of protein dephosphorylation, accompanied by a remarked reduction (~80%) in AKTSer473 phosphorylation in VCP KO mouse hearts at a later age but not the early stage. These temporal molecular alterations were highly associated with the progressive decline in cardiac function. Overall, our findings shed light on the essential role of VCP in the heart under physiological conditions, providing new insights into molecular mechanisms in the development of heart failure.
Asunto(s)
Insuficiencia Cardíaca , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones Noqueados , Proteína Fosfatasa 1 , Proteína que Contiene Valosina , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Ratones , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Miocardio/metabolismo , Miocardio/patología , Masculino , Modelos Animales de EnfermedadRESUMEN
In this review we examine the functionally diverse ATPase associated with various cellular activities (AAA-ATPase), valosin-containing protein (VCP/p97), its molecular functions, the mutational landscape of VCP and the phenotypic manifestation of VCP disease. VCP is crucial to a multitude of cellular functions including protein quality control, endoplasmic reticulum-associated degradation (ERAD), autophagy, mitophagy, lysophagy, stress granule formation and clearance, DNA replication and mitosis, DNA damage response including nucleotide excision repair, ATM- and ATR-mediated damage response, homologous repair and non-homologous end joining. VCP variants cause multisystem proteinopathy, and pathology can arise in several tissue types such as skeletal muscle, bone, brain, motor neurons, sensory neurons and possibly cardiac muscle, with the disease course being challenging to predict.
Asunto(s)
Fenotipo , Proteína que Contiene Valosina , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Humanos , Animales , Mutación , Autofagia/genética , Reparación del ADNRESUMEN
Dominantly inherited mutation D395G in the gene encoding valosin-containing protein causes vacuolar tauopathy, a type of behavioural-variant frontotemporal dementia, with marked vacuolation and abundant filamentous tau inclusions made of all six brain isoforms. Here we report that tau inclusions were concentrated in layers II/III of the frontotemporal cortex in a case of vacuolar tauopathy. By electron cryomicroscopy, tau filaments had the chronic traumatic encephalopathy (CTE) fold. Tau inclusions of vacuolar tauopathy share this cortical location and the tau fold with CTE, subacute sclerosing panencephalitis and amyotrophic lateral sclerosis/parkinsonism-dementia complex, which are believed to be environmentally induced. Vacuolar tauopathy is the first inherited disease with the CTE tau fold.
Asunto(s)
Encefalopatía Traumática Crónica , Mutación , Tauopatías , Proteína que Contiene Valosina , Proteínas tau , Humanos , Tauopatías/genética , Tauopatías/patología , Encefalopatía Traumática Crónica/patología , Encefalopatía Traumática Crónica/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Proteína que Contiene Valosina/genética , Vacuolas/patología , Vacuolas/ultraestructura , Masculino , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Persona de Mediana Edad , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Encéfalo/patología , FemeninoRESUMEN
The unfolded protein response is an intricate system of sensor proteins in the endoplasmic reticulum (ER) that recognizes misfolded proteins and transmits information via transcription factors to either regain proteostasis or, depending on the severity, to induce apoptosis. The main transmembrane sensor is IRE1α, which contains cytoplasmic kinase and RNase domains relevant for its activation and the mRNA splicing of the transcription factor XBP1. Mast cell leukemia (MCL) is a severe form of systemic mastocytosis. The inhibition of IRE1α in the MCL cell line HMC-1.2 has anti-proliferative and pro-apoptotic effects, motivating us to elucidate the IRE1α interactors/regulators in HMC-1.2 cells. Therefore, the TurboID proximity labeling technique combined with MS analysis was applied. Gene Ontology and pathway enrichment analyses revealed that the majority of the enriched proteins are involved in vesicle-mediated transport, protein stabilization, and ubiquitin-dependent ER-associated protein degradation pathways. In particular, the AAA ATPase VCP and the oncoprotein MTDH as IRE1α-interacting proteins caught our interest for further analyses. The pharmacological inhibition of VCP activity resulted in the increased stability of IRE1α and MTDH as well as the activation of IRE1α. The interaction of VCP with both IRE1α and MTDH was dependent on ubiquitination. Moreover, MTDH stability was reduced in IRE1α-knockout cells. Hence, pharmacological manipulation of IRE1α-MTDH-VCP complex(es) might enable the treatment of MCL.
Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Endorribonucleasas , Leucemia de Mastocitos , Proteínas Serina-Treonina Quinasas , Humanos , Línea Celular Tumoral , Degradación Asociada con el Retículo Endoplásmico/genética , Endorribonucleasas/metabolismo , Leucemia de Mastocitos/metabolismo , Leucemia de Mastocitos/patología , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genéticaRESUMEN
S-nitrosylation (SNO) is an emerging paradigm of redox signaling protecting cells against oxidative stress in the heart. Our previous studies demonstrated that valosin-containing protein (VCP), an ATPase-associated protein, is a vital mediator protecting the heart against cardiac stress and ischemic injury. However, the molecular regulations conferred by VCP in the heart are not fully understood. In this study, we explored the potential role of VCP in cardiac protein SNO using multiple cardiac-specific genetically modified mouse models and various analytical techniques including biotin switch assay, liquid chromatography, mass spectrometry, and western blotting. Our results showed that cardiac-specific overexpression of VCP led to an overall increase in the levels of SNO-modified cardiac proteins in the transgenic (TG) vs. wild-type (WT) mice. Mass spectrometry analysis identified mitochondrial proteins involved in respiration, metabolism, and detoxification as primary targets of SNO modification in VCP-overexpressing mouse hearts. Particularly, we found that VCP itself underwent SNO modification at a specific cysteine residue in its N-domain. Additionally, our study demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, also experienced increased SNO in response to VCP overexpression. While deletion of inducible nitric oxide synthase (iNOS) in VCP TG mice did not affect VCP SNO, it did abolish SNO modification in mitochondrial complex proteins, suggesting a dual mechanism of regulation involving both iNOS-dependent and independent pathways. Overall, our findings shed light on post-translational modification of VCP in the heart, unveiling a previously unrecognized role for VCP in regulating cardiac protein SNO and offering new insights into its function in cardiac protection.
Asunto(s)
Miocardio , Procesamiento Proteico-Postraduccional , Proteína que Contiene Valosina , Animales , Ratones , Ratones Transgénicos , Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Oxidación-Reducción , Estrés Oxidativo , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genéticaRESUMEN
Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive and fatal disease, caused by the degeneration of upper and lower motor neurons within the brain and spinal cord in the ageing human. The dying neurons contain cytoplasmic inclusions linked to the onset and progression of the disease. Here, we use a Drosophila model of ALS8 (VAPP58S) to understand the modulation of these inclusions in the ageing adult brain. The adult VAPP58S fly shows progressive deterioration in motor function till its demise 25 days post-eclosion. The density of VAPP58S-positive brain inclusions is stable for 5-15 days of age. In contrast, adding a single copy of VAPWT to the VAPP58S animal leads to a large decrease in inclusion density with concomitant rescue of motor function and lifespan. ER stress, a contributing factor in disease, shows reduction with ageing for the disease model. Autophagy, rather than the Ubiquitin Proteasome system, is the dominant mechanism for aggregate clearance. We explored the ability of Drosophila Valosin-containing protein (VCP/TER94), the ALS14 locus, which is involved in cellular protein clearance, to regulate age-dependent aggregation. Contrary to expectation, TER94 overexpression increased VAPP58S punctae density, while its knockdown led to enhanced clearance. Expression of a dominant positive allele, TER94R152H, further stabilised VAPP58S puncta, cementing roles for an ALS8-ALS14 axis. Our results are explained by a mechanism where autophagy is modulated by TER94 knockdown. Our study sheds light on the complex regulatory events involved in the neuronal maintenance of ALS8 aggregates, suggesting a context-dependent switch between proteasomal and autophagy-based mechanisms as the larvae develop into an adult. A deeper understanding of the nucleation and clearance of the inclusions, which affect cellular stress and function, is essential for understanding the initiation and progression of ALS.
Asunto(s)
Envejecimiento , Esclerosis Amiotrófica Lateral , Encéfalo , Proteínas de Drosophila , Cuerpos de Inclusión , Animales , Envejecimiento/metabolismo , Envejecimiento/patología , Envejecimiento/fisiología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Animales Modificados Genéticamente , Autofagia/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Neuronas/metabolismo , Neuronas/patología , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genéticaRESUMEN
The MYBL1 gene is a strong transcriptional activator involved in events associated with cancer progression. Previous data show MYBL1 overexpressed in triple-negative breast cancer (TNBC). There are two parts to this study related to further characterizing the MYBL1 gene. We start by characterizing MYBL1 reference sequence variants and isoforms. The results of this study will help in future experiments in the event there is a need to characterize functional variants and isoforms of the gene. In part two, we identify and validate expression and gene-related alterations of MYBL1, VCIP1, MYC and BOP1 genes in TNBC cell lines and patient samples selected from the Breast Invasive Carcinoma TCGA 2015 dataset available at cBioPortal.org. The four genes are located at chromosomal regions 8q13.1 to 8q.24.3 loci, regions previously identified as demonstrating a high percentage of alterations in breast cancer. We identify alterations, including changes in expression, deletions, amplifications and fusions in MYBL1, VCPIP1, BOP1 and MYC genes in many of the same patients, suggesting the panel of genes is involved in coordinated activity in patients. We propose that MYBL1, VCPIP1, MYC and BOP1 collectively be considered as genes associated with the chromosome 8q loci that potentially play a role in TNBC pathogenesis.
Asunto(s)
Carcinoma , Neoplasias de la Mama Triple Negativas , Humanos , Mama , Cromosomas , Isoformas de Proteínas , Proteínas Proto-Oncogénicas , Transactivadores , Proteínas de Unión al ARNRESUMEN
Many genes with distinct molecular functions have been linked to genetically heterogeneous amyotrophic lateral sclerosis (ALS), including SuperOxide Dismutase 1 (SOD1) and Valosin-Containing Protein (VCP). SOD1 converts superoxide to oxygen and hydrogen peroxide. VCP acts as a chaperon to regulate protein degradation and synthesis and various other cellular responses. Although the functions of these two genes differ, in the current report we show that overexpression of wild-type VCP in mice enhances lifespan and maintains the size of neuromuscular junctions (NMJs) of both male and female SOD1G93A mice, a well-known ALS mouse model. Although VCP exerts multiple functions, its regulation of ER formation and consequent protein synthesis has been shown to play the most important role in controlling dendritic spine formation and social and memory behaviors. Given that SOD1 mutation results in protein accumulation and aggregation, it may direct VCP to the protein degradation pathway, thereby impairing protein synthesis. Since we previously showed that the protein synthesis defects caused by Vcp deficiency can be improved by leucine supplementation, to confirm the role of the VCP-protein synthesis pathway in SOD1-linked ALS, we applied leucine supplementation to SOD1G93A mice and, similar to Vcp overexpression, we found that it extends SOD1G93A mouse lifespan. In addition, the phenotypes of reduced muscle strength and fewer NMJs of SOD1G93A mice are also improved by leucine supplementation. These results support the existence of crosstalk between SOD1 and VCP and suggest a critical role for protein synthesis in ASL. Our study also implies a potential therapeutic treatment for ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Leucina , Longevidad , Ratones Transgénicos , Unión Neuromuscular , Fenotipo , Superóxido Dismutasa-1 , Proteína que Contiene Valosina , Animales , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Ratones , Unión Neuromuscular/metabolismo , Femenino , Masculino , Longevidad/genética , Leucina/farmacología , Leucina/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismoRESUMEN
We describe a 66-year-old woman with Parkinson's disease, carrying a known pathogenic missense variant in the Valosin-containing-protein (VCP) gene. She responded excellently to L-dopa, had no cognitive or motoneuronal dysfunction. Laboratory analyses and MRI were unremarkable. Genetic testing revealed a heterozygous variant in VCP(NM_007126.5), chr9 (GRCh3 7):g.35060820C > T, c.1460G > A p.Arg487His (p.R487H).
RESUMEN
Valosin-containing protein (VCP) disease is an autosomal dominant multisystem proteinopathy associated with hereditary inclusion body myopathy, Paget disease of bone, and frontotemporal dementia. Myopathy frequently results in respiratory muscle weakness, leading to early mortality due to respiratory failure. We investigated the effects of a remotely administered inspiratory muscle training program in individuals with VCP disease. Nine adults with VCP mutation-positive familial myopathy without evidence of dementia were recruited for a 40-week remotely administered study. Baseline performance was established during the first 8 weeks, followed by 32 weeks of inspiratory muscle training. The primary outcome was maximum inspiratory pressure (MIP). The secondary and exploratory endpoints included spirometry, grip strength, Inclusion Body Myopathy Functional Rating Scale (IBMFRS), Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS), timed up and go, and six-minute walk test (6MWT). During the treatment phase, MIP increased significantly by a weekly mean of 0.392cm. H2O (p=0.023). In contrast, grip strength and ALSFRS significantly decreased by 0.088 lbs. (p=0.031) and 0.043 points (p=0.004) per week, respectively, as expected from the natural progression of this disease. A remotely administered inspiratory muscle training program is therefore feasible, safe, and well-tolerated in individuals with VCP disease and results in improved inspiratory muscle strength.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Musculares , Entrenamiento de Fuerza , Adulto , Humanos , Proteína que Contiene Valosina/genética , Respiración , Mutación , Proteínas de Ciclo Celular/genéticaRESUMEN
Our understanding of stress granule (SG) biology has deepened considerably in recent years, and with this, increased understanding of links has been made between SGs and numerous neurodegenerative diseases. One of the proposed mechanisms by which SGs and any associated protein aggregates may become pathological is based upon defects in their autophagic clearance, and so the precise processes governing the degradation of SGs are important to understand. Mutations and disease-associated variants implicated in amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease and frontotemporal lobar dementia compromise autophagy, whilst autophagy-inhibiting drugs or knockdown of essential autophagy proteins result in the persistence of SGs. In this review, we will consider the current knowledge regarding the autophagy of SG.
Asunto(s)
Esclerosis Amiotrófica Lateral , Gránulos de Estrés , Humanos , Proteínas , Autofagia , Esclerosis Amiotrófica Lateral/genéticaRESUMEN
One of the hallmarks of intractable psoriasis is neutrophil infiltration in skin lesions. However, detailed molecular mechanisms of neutrophil chemotaxis and activation remain unclear. Here, we demonstrate a significant upregulation of epidermal fatty acid binding protein (E-FABP, FABP5) in the skin of human psoriasis and psoriatic mouse models. Genetic deletion of FABP5 in mice by global knockout and keratinocyte conditional (Krt6a-Cre) knockout, but not myeloid cell conditional (LysM-Cre) knockout, attenuates psoriatic symptoms. Immunophenotypic analysis shows that FABP5 deficiency specifically reduces skin recruitment of Ly6G+ neutrophils. Mechanistically, activated keratinocytes produce chemokines and cytokines that trigger neutrophil chemotaxis and activation in an FABP5-dependent manner. Proteomic analysis further identifies that FABP5 interacts with valosin-containing protein (VCP), a key player in NF-κB signaling activation. Silencing of FABP5, VCP, or both inhibits NF-κB/neutrophil chemotaxis signaling. Collectively, these data demonstrate dysregulated FABP5 as a molecular mechanism promoting NF-κB signaling and neutrophil infiltration in psoriasis pathogenesis.
Asunto(s)
Neutrófilos , Psoriasis , Animales , Humanos , Ratones , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Inflamación/metabolismo , Queratinocitos/metabolismo , Neutrófilos/metabolismo , FN-kappa B/metabolismo , Proteómica , Psoriasis/patología , Proteína que Contiene Valosina/metabolismoRESUMEN
OBJECTIVES: Systemic sclerosis (SSc)-specific autoantibodies allow the diagnosis and predict the prognosis of SSc patients with different clinical characteristics. The aim of this study was to describe new SSc-related autoantibodies by a novel protein immunoprecipitation (IP) assay. METHODS: Serum samples and clinical data were collected from 307 SSc patients. Antinuclear autoantibodies were tested in all patients by indirect immunofluorescence (IIF) on HEp-2 cells. SSc-specific autoantibodies were evaluated with a commercial immunoblot and chemiluminescence immunoassay, and traditional RNA-IP. Patients negative for all these autoantibodies (n = 51) were further tested with a non-radioactive protein IP assay. Protein bands detected on SDS-PAGE were then analysed by mass spectrometry (MS) and confirmed by western blot (WB). Additional 56 patients with nucleolar pattern by IIF were tested by protein IP-WB. RESULTS: Five patients who underwent protein IP testing showed a 110-115kDa molecular weight band on SDS-PAGE and a homogeneous nucleolar pattern by IIF. MS identified the bands as nuclear valosin-containing protein-like (NVL). An additional positive patient was detected by IP-WB. As compared with the remaining 101 negative patients, anti-NVL positive patients showed a greater prevalence of calcinosis (100% vs 18.9%, p< 0.001), and cancer (66.7% vs 8.9%, p= 0.002), with a particular association with synchronous cancer (OR = 16.3; p= 0.024). CONCLUSION: We identified NVL as a new autoantibody target by a novel protein IP assay in SSc patients with a homogeneous nucleolar IIF pattern, testing negative for all known SSc-specific autoantibodies by commercial assays and RNA IP. Anti-NVL identifies a new clinical phenotype, characterized by calcinosis and cancer.
RESUMEN
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Enfermedades Neurodegenerativas/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Mutación , Proteostasis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismoRESUMEN
BACKGROUND: The diagnosis of patients with mutations in the VCP gene can be complicated due to their broad phenotypic spectrum including myopathy, motor neuron disease and peripheral neuropathy. Muscle MRI guides the diagnosis in neuromuscular diseases (NMDs); however, comprehensive muscle MRI features for VCP patients have not been reported so far. METHODS: We collected muscle MRIs of 80 of the 255 patients who participated in the "VCP International Study" and reviewed the T1-weighted (T1w) and short tau inversion recovery (STIR) sequences. We identified a series of potential diagnostic MRI based characteristics useful for the diagnosis of VCP disease and validated them in 1089 MRIs from patients with other genetically confirmed NMDs. RESULTS: Fat replacement of at least one muscle was identified in all symptomatic patients. The most common finding was the existence of patchy areas of fat replacement. Although there was a wide variability of muscles affected, we observed a common pattern characterized by the involvement of periscapular, paraspinal, gluteal and quadriceps muscles. STIR signal was enhanced in 67% of the patients, either in the muscle itself or in the surrounding fascia. We identified 10 diagnostic characteristics based on the pattern identified that allowed us to distinguish VCP disease from other neuromuscular diseases with high accuracy. CONCLUSIONS: Patients with mutations in the VCP gene had common features on muscle MRI that are helpful for diagnosis purposes, including the presence of patchy fat replacement and a prominent involvement of the periscapular, paraspinal, abdominal and thigh muscles.
Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Humanos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Enfermedades Musculares/diagnóstico por imagen , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación/genética , Imagen por Resonancia Magnética/métodos , Proteína que Contiene Valosina/genéticaRESUMEN
OBJECTIVE: Mutations in the valosin-containing protein (VCP) gene cause autosomal dominant multisystem proteinopathy 1 (MSP1), characterized by a variable combination of inclusion body myopathy (IBM), Paget's disease of bone (PDB), and frontotemporal dementia (FTD). Here we report a novel VCP missense mutations in an Italian family with FTD as the prevalent manifestation and compare our results with those described in the literature. METHODS: We described the clinical, molecular, and imaging data of the studied family. We also conducted a systematic literature search with the aim of comparing our findings with previously reported VCP-related phenotypes. RESULTS: A novel heterozygous VCP missense mutation (c 0.473 T > C/p.Met158Thr) was found in all the affected family members. The proband is a 69-year-old man affected by progressive muscle weakness since the age of 49. Muscle MRI showed patchy fatty infiltration in most muscles, and STIR sequences revealed an unusual signal increase in distal leg muscles. At age 65, he presented a cognitive disorder suggestive of behavioral variant FTD. A bone scintigraphy also revealed PDB. The patient's mother, his maternal aunt and her daughter had died following a history of cognitive deterioration consistent with FTD; the mother also had PDB. No relatives had any muscular impairments. Reviewing the literature data, we observed a different sex distribution of VCP-related phenotypes, being FTD prevalence higher among women as compared to men (51.2 % vs 31.2 %) and IBM prevalence higher among men as compared to women (92.1 % vs 72.8 %). DISCUSSION: This study broadened our clinical, genetic, and imaging knowledge of VCP-related disorders.
Asunto(s)
Demencia Frontotemporal , Distrofia Muscular de Cinturas , Masculino , Humanos , Femenino , Anciano , Proteína que Contiene Valosina/genética , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Mutación , FenotipoRESUMEN
Chikungunya virus (CHIKV) is a re-emerging mosquito-transmitted RNA virus causing joint and muscle pain. To better understand how CHIKV rewires the host cell and usurps host cell functions, we generated a systematic CHIKV-human protein-protein interaction map and revealed several novel connections that will inform further mechanistic studies. One of these novel interactions, between the viral protein E1 and STIP1 homology and U-box containing protein 1 (STUB1), was found to mediate ubiquitination of E1 and degrade E1 through the proteasome. Capsid associated with G3BP1, G3BP2 and AAA+ âATPase valosin-containing protein (VCP). Furthermore, VCP inhibitors blocked CHIKV infection, suggesting VCP could serve as a therapeutic target. Further work is required to fully understand the functional consequences of these interactions. Given that CHIKV proteins are conserved across alphaviruses, many virus-host protein-protein interactions identified in this study might also exist in other alphaviruses. Construction of interactome of CHIKV provides the basis for further studying the function of alphavirus biology.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Virus , Animales , Humanos , Virus Chikungunya/genética , ADN Helicasas , Replicación Viral/fisiología , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión a Poli-ADP-Ribosa , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
BACKGROUND AND PURPOSE: Mutations in the gene encoding valosin-containing protein (VCP) are related to myriad medical conditions, including familial amyotrophic lateral sclerosis, inclusion body myopathy, and frontotemporal dementia. There are several reports of a link between these mutations and early onset Parkinson disease (PD). CASE DESCRIPTION: We report a 53-year-old PD patient with VCP mutation who later developed motor complications, thus receiving subthalamic nucleus deep brain stimulation (DBS) at the age of 56 years. However, myopathy emerged 1.5 years after surgery. CONCLUSIONS: With the phenotype variability of VCP, DBS should be carefully evaluated, considering the possible unfavorable long-term outcomes due to other symptoms of this mutation.