Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.915
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1425104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108984

RESUMEN

Introduction: Vibrio alginolyticus is a Gram-negative, rod-shaped bacterium belonging to the family of Vibrionaceae, a common pathogen in aquaculture animals, However, studies on its impact on Scylla serrata (mud crabs) are limited. In this study, we isolated V. alginolyticus SWS from dead mud crab during a disease outbreak in a Hong Kong aquaculture farm, which caused up to 70% mortality during summer. Methods: Experimental infection and histopathology were used to investigate the pathogenicity of V. alginolyticus SWS in S. serrata and validate Koch's postulates. Comprehensive whole-genome analysis and phylogenetic analysis antimicrobial susceptibility testing, and biochemical characterization were also performed. Results: Our findings showed that V. alginolyticus SWS caused high mortality (75%) in S. serrata with infected individuals exhibiting inactivity, loss of appetite, decolored and darkened hepatopancreas, gills, and opaque muscle in the claw. Histopathological analysis revealed tissue damage and degeneration in the hepatopancreas, gills, and claw muscle suggesting direct and indirect impacts of V. alginolyticus SWS infection. Conclusions: This study provides a comprehensive characterization of V. alginolyticus SWS as an emerging pathogen in S. serrata aquaculture. Our findings underscore the importance of ongoing surveillance, early detection, and the development of targeted disease management strategies to mitigate the economic impact of vibriosis outbreaks in mud crab aquaculture.


Asunto(s)
Acuicultura , Braquiuros , Filogenia , Vibrio alginolyticus , Animales , Vibrio alginolyticus/genética , Vibrio alginolyticus/patogenicidad , Vibrio alginolyticus/aislamiento & purificación , Vibrio alginolyticus/clasificación , Braquiuros/microbiología , Hong Kong/epidemiología , Vibriosis/microbiología , Vibriosis/veterinaria , Branquias/microbiología , Branquias/patología , Virulencia , Secuenciación Completa del Genoma , Genoma Bacteriano/genética , Hepatopáncreas/microbiología , Hepatopáncreas/patología , Brotes de Enfermedades , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
2.
Fish Shellfish Immunol ; : 109828, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134231

RESUMEN

Vibrio parahaemolyticus (VP-AHPND) is regarded as one of the main pathogens that caused acute hepatopancreatic necrosis disease (AHPND) in the Pacific white shrimp Litopenaeus vannamei. PirAvp and PirBvp toxin proteins are the main pathogenic proteins of AHPND in shrimp. Knowledge about the mechanism of shrimp response to PirAvp or PirBvp toxin is very helpful for developing new prevention and control strategy of AHPND in shrimp. In this study, the pathological sections showed that after 4 h treatment, significant pathological changes were observed in the PirBvp treated group, and no obvious pathological changes was found in PirAvp treated group. In order to learn the mechanism of shrimp response to PirAvp and PirBvp, comparative transcriptome was applied to analyze the different expressions of genes in the hepatopancreas of shrimp after treatment with PirAvp or PirBvp. A total of 9978 differentially expressed genes (DEGs) were identified between PirAvp or PirBvp-treated and PBS control shrimp, including 6616 DEGs in the PirAvp treated group and 3362 DEGs in the PirBvp treated group. There were 2263 DEGs that were commonly expressed, 4353 DEGs were only expressed in PirAvp VS PBS group and 1099 DEGs were uniquely expressed in PirBvp VS PBS group. Among these DEGs, the anti-apoptosis related pathways and immune response related genes significantly expressed in the commonly expressed DEGs of PirAvp VS PBS group and PirBvp VS PBS group, and small GTPase-mediated signaling and DNA metabolic process might relate to the host special reaction towards PirAvp and PirBvp exposure. The data suggested that the differential expression of these immune and metabolic-related genes in hepatopancreas might contribute to the pathogenicity variations of shrimp to VP-AHPND. The identified genes in this study will be useful for clarifying the response mechanism of shrimp toward different toxins of VP-AHPND and will further provide molecular basis for understanding the pathogenic mechanism of VP-AHPND.

3.
Fish Shellfish Immunol ; : 109827, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134232

RESUMEN

MicroRNAs (miRNAs) are a category of small non-coding RNAs regarded as vital regulatory factors in various biological processes, especially immune regulation. The differently expressed miRNAs in Macrobrachium rosenbergii after the challenge of Vibrio parahaemolyticus were identified using high-throughput sequencing. A total of 18 known as well as 12 novel miRNAs were markedly differently expressed during the bacterial infection. The results of the target gene prediction and enrichment analysis indicated that a total of 230 target genes involved in a large variety of signaling pathways and biological processes were mediated by the miRNAs identified in the current research. Additionally, the effects of novel-miR-56, a representative differentially expressed miRNA identified in the previous infection experiment, on the immune-related gene expression in M. rosenbergii were explored. The expression of the immune-related genes including Spätzle1(Spz1), Spz4, Toll-like receptor 1 (TLR1), TLR2, TLR3, immune deficiency (IMD), myeloid differentiation factor 88 (MyD88), anti-lipopolysaccharide factor 1 (ALF1), crustin1, as well as prophenoloxidase (proPO) was significantly repressed in the novel-miR-56-overexpressed prawns. The expression of these genes tested in the novel-miR-56-overexpressed M. rosenbergii was still signally lower than the control in the subsequent V. parahaemolyticus challenge, despite the gene expression in each treatment increased significantly after the infection. Additionally, the cumulative mortality of the agomiR-56-treated prawns was significantly higher than the other treatments post the bacterial challenge. These results suggested that novel-miR-56 might function as a negative regulator of the immune-related gene expression of M. rosenbergii in the innate immune defense against V. parahaemolyticus.

4.
Arch Microbiol ; 206(9): 376, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141167

RESUMEN

Vibrio parahaemolyticus, an important food-borne pathogens found to be associated with seafoods and marine environs. It has been a topic of debate for many decades that most pathogens are known to enter a viable but nonculturable (VBNC) state under cold temperature and nutrient limited conditions. The present study examined the time required for the induction of VBNC state and the revival strategies of both the endemic O3:K6 and O1:K25 sporadic strains of V. parahaemolyticus. The results revealed that V. parahaemolyticus survived even after 55 days of incubation in nutrient starved media such as phosphate buffered saline (PBS) and Coastal Water (CW) and could be recovered by temperature upshift method, and compared the resuscitation using Dulbecco's Modified Eagle Medium (DMEM), sheep blood serum, chitin flakes with live Artemia salina, and the results suggests that chitin plays a significant role in regulating the VBNC state. It was also confirmed by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscope (SEM) analysis that VBNC cells can alter their morphology to coccoid forms in order to survive in most extreme nutrient limited environment. Further data on the promoting factors and the exact mechanism that resuscitate VBNC V. parahaemolyticus in cold natural environments and frozen foods are needed to perform a robust risk assessment.


Asunto(s)
Medios de Cultivo , Viabilidad Microbiana , Vibrio parahaemolyticus , Vibrio parahaemolyticus/crecimiento & desarrollo , Animales , Medios de Cultivo/química , Serogrupo , Frío , Microbiología de Alimentos , Artemia/microbiología , Alimentos Marinos/microbiología
5.
Foods ; 13(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39123565

RESUMEN

Vibrio spp. is a Gram-negative bacteria known for its ability to cause foodborne infection in association with eating raw or undercooked seafood. The majority of these foodborne illnesses are caused by mollusks, especially bivalves. Thus, the prevalence of Vibrio spp. in blood clams (Tegillarca granosa), baby clams (Paphia undulata), and Asian green mussels (Perna viridis) from South Thailand was determined. A total of 649 Vibrio spp. isolates were subjected to pathogenicity analysis on blood agar plates, among which 21 isolates from blood clams (15 isolates), baby clams (2 isolates), and green mussels (4 isolates) showed positive ß-hemolysis. Based on the biofilm formation index (BFI) of ß-hemolysis-positive Vibrio strains, nine isolates exhibited a strong biofilm formation capacity, with a BFI in the range of 1.37 to 10.13. Among the 21 isolates, 6 isolates (BL18, BL82, BL84, BL85, BL90, and BL92) were tlh-positive, while trh and tdh genes were not detected in all strains. Out of 21 strains, 5 strains showed multidrug resistance (MDR) against amoxicillin/clavulanic acid, ampicillin/sulbactam, cefotaxime, cefuroxime, meropenem, and trimethoprim/sulfamethoxazole. A phylogenetic analysis of MDR Vibrio was performed based on 16s rDNA sequences using the neighbor-joining method. The five MDR isolates were identified to be Vibrio neocaledonicus (one isolate), Vibrio fluvialis (one isolate) and, Vibrio cidicii (three isolates). In addition, the antimicrobial activity of chitooligosaccharide-epigallocatechin gallate (COS-EGCG) conjugate against MDR Vibrio strains was determined. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of COS-EGCG conjugate were in the range of 64-128 µg/mL. The antimicrobial activity of the conjugate was advocated by the cell lysis of MDR Vibrio strains, as elucidated by scanning electron microscopic images. Vibrio spp. isolated from blood clams, baby clams, and Asian green mussels were highly pathogenic, exhibiting the ability to produce biofilm and being resistant to antibiotics. However, the COS-EGCG conjugate could be used as a potential antimicrobial agent for controlling Vibrio in mollusks.

6.
mBio ; : e0127024, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136457

RESUMEN

Rhomboid proteases are universally conserved and facilitate the proteolysis of peptide bonds within or adjacent to cell membranes. While eukaryotic rhomboid proteases have been demonstrated to harbor unique cellular roles, prokaryotic members have been far less characterized. For the first time, we demonstrate that Vibrio cholerae expresses two active rhomboid proteases that cleave a shared substrate at distinct sites, resulting in differential localization of the processed protein. The rhomboid protease rhombosortase (RssP) was previously found to process a novel C-terminal domain called GlyGly-CTERM, as demonstrated by its effect on the extracellular serine protease VesB during its transport through the V. cholerae cell envelope. Here, we characterize the substrate specificity of RssP and GlpG, the universally conserved bacterial rhomboid proteases. We show that RssP has distinct cleavage specificity from GlpG, and specific residues within the GlyGly-CTERM of VesB target it to RssP over GlpG, allowing for efficient proteolysis. RssP cleaves VesB within its transmembrane domain, whereas GlpG cleaves outside the membrane in a disordered loop that precedes the GlyGly-CTERM. Cleavage of VesB by RssP initially targets VesB to the bacterial cell surface and, subsequently, to outer membrane vesicles, while GlpG cleavage results in secreted, fully soluble VesB. Collectively, this work builds on the molecular understanding of rhomboid proteolysis and provides the basis for additional rhomboid substrate recognition while also demonstrating a unique role of RssP in the maturation of proteins containing a GlyGly-CTERM. IMPORTANCE: Despite a great deal of insight into the eukaryotic homologs, bacterial rhomboid proteases have been relatively understudied. Our research aims to understand the function of two rhomboid proteases in Vibrio cholerae. This work is significant because it will help us better understand the catalytic mechanism of rhomboid proteases as a whole and assign a specific role to a unique subfamily whose function is to process a subset of effector molecules secreted by V. cholerae and other pathogenic bacteria.

7.
Euro Surveill ; 29(32)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119721

RESUMEN

BackgroundThe Vibrio genus comprises several bacterial species present in the Baltic Sea region (BSR), which are known to cause human infections.AimTo provide a comprehensive retrospective analysis of Vibrio-induced infections in the BSR from 1994 to 2021, focusing on the 'big four' Vibrio species - V. alginolyticus, V. cholerae non-O1/O139, V. parahaemolyticus and V. vulnificus - in eight European countries (Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland and Sweden) bordering the Baltic Sea.MethodsOur analysis includes data on infections, Vibrio species distribution in coastal waters and environmental data received from national health agencies or extracted from scientific literature and online databases. A redundancy analysis was performed to determine the potential impact of several independent variables, such as sea surface temperature, salinity, the number of designated coastal beaches and year, on the Vibrio infection rate.ResultsFor BSR countries conducting surveillance, we observed an exponential increase in total Vibrio infections (n = 1,553) across the region over time. In Sweden and Germany, total numbers of Vibrio spp. and infections caused by V. alginolyticus and V. parahaemolyticus positively correlate with increasing sea surface temperature. Salinity emerged as a critical driver of Vibrio spp. distribution and abundance. Furthermore, our proposed statistical model reveals 12 to 20 unreported cases in Lithuania and Poland, respectively, countries with no surveillance.ConclusionsThere are discrepancies in Vibrio surveillance and monitoring among countries, emphasising the need for comprehensive monitoring programmes of these pathogens to protect human health, particularly in the context of climate change.


Asunto(s)
Vibriosis , Vibrio , Humanos , Estudios Retrospectivos , Vibriosis/epidemiología , Vibriosis/microbiología , Vibrio/aislamiento & purificación , Vibrio/clasificación , Países Bálticos/epidemiología , Agua de Mar/microbiología , Europa (Continente)/epidemiología , Océanos y Mares
8.
J Invertebr Pathol ; 206: 108173, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39121985

RESUMEN

Acute hepatopancreatic necrosis disease (AHPND) is a highly contagious and lethal disease of shrimp caused by Vibrio strains carrying the virulence plasmid (pAHPND) containing the pirAB virulence genes. Through analysis of plasmid sequence similarity, clustering, and phylogeny, a horizontal transfer element similar to IS91 was discovered within the pAHPND plasmid. Additionally, two distinct clades of plasmids related to pAHPND (designated as pAHPND-r1 and pAHPND-r2) were identified, which may serve as potential parental plasmids for pAHPND. The available evidence, including the difference in G+C content between the plasmid and its host, codon usage preference, and plasmid recombination event prediction, suggests that the formation of the pAHPND plasmid in the Vibrio owensii strain was likely due to the synergistic effect of the recombinase RecA and the associated proteins RecBCD on the pAHPND-r1 and pAHPND-r2, resulting in the recombination and formation of the precursor plasmid for pAHPND (pre-pAHPND). The emergence of pAHPND was found to be a result of successive insertions of the horizontal transfer elements of pirAB-Tn903 and IS91-like segment, which led to the deletion of one third of the pre-pAHPND. This plasmid was then able to spread horizontally to other Vibrio strains, contributing to the epidemics of AHPND. These findings shed light on previously unknown mechanisms involved in the emergence of pAHPND and improve our understanding of the disease's spread.

9.
BMC Microbiol ; 24(1): 288, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095694

RESUMEN

BACKGROUND: Coral diseases are significant drivers of global coral reef degradation, with pathogens dominated by Vibrio coralliilyticus playing a prominent role in the development of coral diseases. Coral phenotype, symbiotic microbial communities, and host transcriptional regulation have been well-established as factors involved in determining coral disease resistance, but the underlying mechanisms remain incompletely understood. METHODS: This study employs high-throughput sequencing to analyse the symbiotic microbial and transcriptional response of the hosts in order to evaluate the disease resistance of Acropora valida and Turbinaria peltata exposed to Vibrio coralliilyticus. RESULTS: A. valida exhibited pronounced bleaching and tissue loss within 7 h of pathogen infection, whereas T. peltata showed no signs of disease throughout the experiment. Microbial diversity analyses revealed that T. peltata had a more flexible microbial community and a higher relative abundance of potential beneficial bacteria compared to A. valida. Although Vibrio inoculation resulted in a more significant decrease in the Symbiodiniaceae density of A. valida compared to that of T. peltata, it did not lead to recombination of the coral host and Symbiodiniaceae in either coral species. RNA-seq analysis revealed that the interspecific differences in the transcriptional regulation of hosts after Vibrio inoculation. Differentially expressed genes in A. valida were mainly enriched in the pathways associated with energy supply and immune response, such as G protein-coupled receptor signaling, toll-like receptor signaling, regulation of TOR signaling, while these genes in T. peltata were mainly involved in the pathway related to immune homeostasis and ion transport, such as JAK-STAT signaling pathway and regulation of ion transport. CONCLUSIONS: Pathogenic challenges elicit different microbial and transcriptional shifts across coral species. This study offers novel insights into molecular mechanisms of coral resistance to disease.


Asunto(s)
Antozoos , Resistencia a la Enfermedad , Vibrio , Antozoos/microbiología , Antozoos/genética , Antozoos/inmunología , Animales , Vibrio/genética , Resistencia a la Enfermedad/genética , Simbiosis/genética , Microbiota/genética , Arrecifes de Coral , Secuenciación de Nucleótidos de Alto Rendimiento
10.
Fish Physiol Biochem ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102011

RESUMEN

This study focuses in investigating the fatty acid contents of surviving infected hybrid grouper fed with oleic acid immunostimulant. After a 6-week feeding trial, Epinephelus fuscoguttatus × Epinephelus lanceolatus fingerlings were infected with Vibrio vulnificus. One week after bacterial challenge, fish oil was extracted from body tissue of surviving infected fingerlings using the Soxhlet extraction method. The extracted samples were then sent for GC-MS analysis. The raw GC-MS data were analyzed using software programs and databases (i.e., MetaboAnalyst, SIMCA-P, NIST Library, and KEGG). A total of 39 metabolites were putatively identified, with 18 metabolites derived from the fatty acid group. Our further analysis revealed that most metabolites were highly abundant in the oleic acid dietary samples, including oleic acid (4.56%), 5,8,11-eicosatrienoic acid (3.45%), n-hexadecenoic acid (3.34%), cis-erucic acid (2.76%), and 9-octadecenoic acid (2.5%). Worthy of note, we observed a greater abundance of α-linoleic acid (15.57%) in the control diet samples than in the oleic acid diet samples (14.59%) with no significant difference in their results. The results obtained from this study revealed that surviving infected hybrid grouper expressed more immune-related fatty acids due to the effect of oleic acid immunostimulant. Therefore, in this study, we propose oleic acid as a potential immunostimulant in enhancing fish immunity in aquaculture industry.

11.
Fish Shellfish Immunol ; : 109830, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142374

RESUMEN

Cuticle proteins (CPs) are the vital components of the cuticle and chitin lining covering the digestive tract of crustaceans. In this study, four new CP genes (designated as EsCP3, EsCP4, EsCP5, and EsCP8) were initially cloned and identified from the Chinese mitten crab Eriocheir sinensis. EsCP3/4/5/8 included 375, 411, 381, and 570 bp open reading frame encoding 124, 136, 126, and 189 amino acid proteins, respectively. Except for EsCP8, EsCP3/4/5 all contained a Chitin_bind_4 domain. EsCP3/4/5/8 were clustered into different groups in the phylogenetic tree. Quantitative real-time PCR results indicated that four EsCP genes have different patterns of tissue distribution. Changes in the expression levels of these four EsCP genes were observed in the intestine of crabs under Vibrio parahaemolyticus challenge. RNA interference assay showed that the knockdown of EsCPs in the intestine could inhibit the expression of antimicrobial peptides (AMPs), including crustins and anti-lipopolysaccharide factors. In addition, the knockdown of EsRelish in the intestine decreased the expression levels of these four EsCP genes. These results indicated that EsCPs were involved in regulating the expression of AMPs, and EsCPs were regulated by EsRelish.

12.
Front Microbiol ; 15: 1436770, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144210

RESUMEN

Vibrio parahaemolyticus is a gram-negative halophilic bacterium widespread in temperate and tropical coastal waters; it is considered to be the most frequent cause of Vibrio-associated gastroenteritis in many countries. BolA-like proteins, which reportedly affect various growth and metabolic processes including flagellar synthesis in bacteria, are widely conserved from prokaryotes to eukaryotes. However, the effects exerted by BolA-like proteins on V. parahaemolyticus remain unclear, and thus require further investigation. In this study, our purpose was to investigate the role played by BolA-like protein (IbaG) in the pathogenicity of V. parahaemolyticus. We used homologous recombination to obtain the deletion strain ΔibaG and investigated the biological role of BolA family protein IbaG in V. parahaemolyticus. Our results showed that IbaG is a bacterial transcription factor that negatively modulates swimming capacity. Furthermore, overexpressing IbaG enhanced the capabilities of V. parahaemolyticus for swarming and biofilm formation. In addition, inactivation of ibaG in V. parahaemolyticus SH112 impaired its capacity for colonizing the heart, liver, spleen, and kidneys, and reduced visceral tissue damage, thereby leading to diminished virulence, compared with the wild-type strain. Finally, RNA-sequencing revealed 53 upregulated and 71 downregulated genes in the deletion strain ΔibaG. KEGG enrichment analysis showed that the two-component system, quorum sensing, bacterial secretion system, and numerous amino acid metabolism pathways had been altered due to the inactivation of ibaG. The results of this study indicated that IbaG exerts a considerable effect on gene regulation, motility, biofilm formation, and pathogenicity of V. parahaemolyticus. To the best of our knowledge, this is the first systematic study on the role played by IbaG in V. parahaemolyticus infections. Thus, our findings may lead to a better understanding of the metabolic processes involved in bacterial infections and provide a basis for the prevention and control of such infections.

13.
Front Microbiol ; 15: 1437660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144225

RESUMEN

Objectives: The purpose of this study was to determine the structural features and transferability of the multidrug-resistance (MDR) plasmid, and resistance phenotypes for the tested antimicrobials in foodborne Vibrio parahaemolyticus. Methods: Plasmids were isolated from a V. parahaemolyticus strain of seafood origin, then sequenced using the Illumina NovaSeq 6000 and PacBio Sequel II sequencing platforms to obtain the complete genome data. Characterization of the MDR plasmid pVP52-1, including determination of antimicrobial resistance genes (ARGs), plasmid incompatibility groups, and transferability, was carried out. Results: V. parahaemolyticus strain NJIFDCVp52 contained two circular chromosomes and two circular plasmids (pVP52-1 and pVP52-2). Plasmid typing indicated that pVP52-1 belonged to the incompatibility group IncA/C2 and the sequence type pST3. pVP52-1 carried 12 different ARGs, an IS110-composite transposon consisting of aac(6')-Ib-cr, qnrVC1, aac(6')-Ib, dfrA14, and the IS26-mphA-IS6100 unit flanked by inverted sequences of IS5075 and IS4321. pVP52-2 carried no ARGs. A plasmid elimination assay showed that only pVP52-1 and its ARGs were lost, the loss of resistance to several antimicrobials, causing a change from the ampicillin-ampicillin/sulbactam-cefazolin-cefoxitin-ceftazidime-cefotaxime-imipenem-trimethoprim/sulfamethoxazole resistance pattern to the ampicillin resistance pattern. In accordance, a conjugation transfer assay showed that only pVP52-1 and its ARGs were horizontally transferred, leading to increased antimicrobial resistance in Escherichia coli strain EC600, causing a change from the ampicillin-nalidixic acid resistance pattern to the ampicillin-ampicillin/sulbactam-cefazolin-cefoxitin-ceftazidime-cefotaxime-imipenem-nalidixic acid-chloramphenicol-tetracycline-trimethoprim/sulfamethoxazole-azithromycin resistance pattern. Further transferability experiments revealed that pVP52-1 could be transferred to other enterobacterial strains of E. coli and Salmonella. Discussion: This study emphasizes the urgent need for continued surveillance of resistance plasmids and changes in antimicrobial resistance profiles among the V. parahaemolyticus population.

14.
Cell Mol Bioeng ; 17(3): 229-241, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39050512

RESUMEN

Purpose: Waterborne pathogens pose a significant threat to public health, emphasizing the continuous necessity for advancing robust detection techniques, particularly in preventing outbreaks associated with these pathogens. This study focuses on cholera, an infectious disease caused by Vibrio cholerae, serogroups O1 and O139, often transmitted through contaminated water and food, raising significant public health concerns in areas with poor sanitation and limited access to clean water. Methods: We developed a colorimetric biosensor using aptamer-functionalized gold nanoparticles to identify Vibrio cholerae O139 and address this issue. The detection mechanism relies on the color change of gold nanoparticles (AuNPs) from red to blue-purple induced by NaCl after the pathogen incubation and aptamer-target binding. Initial steps involved synthesizing and characterizing AuNPs, then exploring the impact of aptamer and NaCl concentrations on AuNP agglomeration. Optimization procedures for aptamer concentration and salt addition identified the optimal conditions for detection as 120 pM aptamers and 1 M NaCl. Results: The aptasensor demonstrated a robust linear relationship, detecting V. cholerae concentrations from 103 to 108 CFU/mL, with a limit of detection (LOD) of 587 CFU/mL. Specificity tests and accurate sample analyses confirmed the efficiency of the AuNPs aptasensor, showcasing its reliability and speed compared to traditional culture examination methods. Moreover, we extended the aptasensor to a paper-based sensing platform with similar detection principles. Conclusion: The change in color upon target binding was captured with a smartphone and analyzed using image processing software. The paper-based device detected the target in less than 2 min, demonstrating its convenience for on-field applications.

15.
Front Microbiol ; 15: 1381457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050630

RESUMEN

Introduction: This study characterized Vibrio alginolyticus isolated from seafood and freshwater products in China (2020). Methods and Results: In total, 122 (95.31%) V. alginolyticus isolates were resistant to at least 1 antibiotic category, and 2 (1.56%) isolates were resistant to at least 3 antibiotic categories and belong to multi-drug resistance (MDR) isolates. A high prevalence rate was observed to be blaCARB (98.04%) encoding beta-lactam resistance, followed by tet (97.06%) encoding tetracycline resistance and fos (4.90%) encoding resistance to fosfomycin. Among the 57 V. alginolyticus isolates, the commonest virulence genes were type III secretion system translocated gene vopD, vopB, and vcrH (54.4%, 31/57), type III secretion system regulated gene tyeA (54.39%), followed by vscI and vscF (50.88%) encoded type III secretion system inner rod protein and needle protein, respectively. Multilocus sequence typing (MLST) showed considerable genetic diversity, with 34 distinct sequence types (STs) identified among 55 isolates. ST421 (n = 5), ST166 (n = 4), ST523 (n = 3), ST516 (n = 3), and ST507 (n = 3) were dominant STs among 55 V. alginolyticus isolates. Discussion: These findings highlight the widespread occurrence of V. alginolyticus in both freshwater and seafood products, underscoring the critical need for vigilant monitoring of these bacteria. Such measures are essential for ensuring effective food safety management and safeguarding public health.

16.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-39054297

RESUMEN

Vibrio parahaemolyticus has two sets of type III secretion systems that are major pathogenic factors: T3SS1 (cytotoxicity) and T3SS2 (enterotoxicity). V. parahaemolyticus mainly colonizes the distal small intestine after oral infection and may be exposed to carbon-limiting stress due to the lack of readily available carbohydrates in this environment. Catabolite activator protein (CAP), a transcription factor involved in carbon-limiting metabolism in many Gram-negative bacteria, is well known to be involved in the regulation of the expression of many virulence factors. In this study, we determined the effects of CAP on the expression of T3SSs in this bacterium. Based on a lactate dehydrogenase-based cytotoxicity assay, CAP was found to have a greater contribution to the expression of T3SS2-dependent cytotoxicity than to that of T3SS1. Reverse transcription quantitative PCR revealed decreased expression of many T3SS2-related genes, including vpa1348, in the cap gene deletion mutant compared to the parent strain. CAP was demonstrated to bind near the T-rich elements within the vpa1348 promoter region in an electrophoretic mobility shift assay and DNase I footprinting. CAP also enhanced the expression of vpa1348 in a ß-galactosidase reporter assay. Collectively, these results suggest that CAP is involved in T3SS2-mediated virulence by regulating the expression of vpa1348 in V. parahaemolyticus.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Humanos , Ensayo de Cambio de Movilidad Electroforética , Eliminación de Gen , Unión Proteica
17.
Biology (Basel) ; 13(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39056680

RESUMEN

Porins are crucial proteins located in the outer membrane that directly influence antimicrobial resistance mechanisms and virulence in bacteria. In this study, a porin gene (Vp-porin) was cloned in V. parahaemolyticus, and the function of Vp-Porin in biological characteristics and virulence was investigated. The results of sequence analysis showed that Vp-Porin is highly conserved in Vibrio spp., and the predicted 3D structure showed it could form a 20-strand transmembrane ß-barrel domian. Membrane permeabilization provides evidence that the membrane integrity of ∆Vp-porin was damaged and the sensitivity to tetracycline, polymyxin B, rifampicin and cephalothin of ∆Vp-porin obviously increased. In addition, loss of Vp-porin damaged motility due to downregulated flagellar synthesis. In addition, ∆Vp-porin exhibited attenuated cytotoxicity to Tetrahymena. The relative survival rate of Tetrahymena infection with ∆Vp-porin was 86%, which is much higher than that with WT (49%). Taken together, the results of this study indicate that Vp-Porin in V. parahaemolyticus plays various roles in biological characteristics in membrane integrity, antimicrobial resistance and motility and contributes to virulence.

18.
Microorganisms ; 12(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39065061

RESUMEN

Vibrio harveyi is a normal flora in natural marine habitats and a significant opportunistic pathogen in marine animals. This bacterium can cause a series of lesions after infecting marine animals, in which muscle necrosis and ulcers are the most common symptoms. This study explored the adaptation mechanisms of V. harveyi from the seawater environment to host fish muscle environment. The comprehensive transcriptome analysis revealed dramatic changes in the transcriptome of V. harveyi during its adaptation to the host fish muscle environment. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, flagellar assembly, oxidative phosphorylation, bacterial chemotaxis, and two-component systems play crucial roles in V. harveyi's adaptation to host fish muscle. A comparison of biological phenotypes revealed that V. harveyi displayed a significant increase in flagellar length, swimming, twitching, chemotaxis, adhesion, and biofilm formation after induction by host fish muscle, and its dominant amino acids, especially bacterial chemotaxis induced by host muscle, Ala and Arg. It could be speculated that the enhancement of bacterial chemotaxis induced by amino acids plays a key role in the adaptation of V. harveyi from seawater to the muscle of the host fish.

19.
Microorganisms ; 12(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39065134

RESUMEN

Legionella pneumophila is the waterborne pathogen primarily responsible for causing both Pontiac Fever and Legionnaire's Disease in humans. L. pneumophila is transmitted via aerosolized water droplets. The purpose of this study was to design and test primers to allow for rapid polymerase chain reaction (PCR) melt detection and identification of this infectious agent in cases of clinical or emergency response detection. New PCR primers were designed for this species of bacteria; the primer set was purchased from IDT and the target bacterial DNA was purchased from ATCC. The L. pneumophila primers targeted the macrophage infectivity potentiator gene (mip), which inhibits macrophage phagocytosis. The primers were tested for specificity, repeatability, and sensitivity using PCR-high-resolution melt (HRM) assays. The primer set was found to be specific to the designated bacteria and did not amplify the other twenty-one species from the panel. The L. pneumophila assay was able to be multiplexed. The duplex assay consists of primers for L. pneumophila and Vibrio parahaemolyticus, which are both waterborne pathogens. The triplex assay consists of primers for L. pneumophila, V. parahaemolyticus, and Campylobacter jejuni. The unique melting temperature for the L. pneumophila primer assay is 82.84 ± 0.19 °C, the C. jejuni assay is 78.10 ± 0.58 °C, and the V. parahaemolyticus assay is 86.74 ± 0.65 °C.

20.
Bioengineering (Basel) ; 11(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39061809

RESUMEN

DNA amplification and reverse transcription enzymes have proven to be invaluable in fast and reliable diagnostics and research applications because of their processivity, specificity, and robustness. Our study focused on the production of mutant Taq DNA polymerase and mutant M-MLV reverse transcriptase in the expression hosts Vibrio natriegens and Escherichia coli under various expression conditions. We also examined nonspecific extracellular production in V. natriegens. Intracellularly, M-MLV was produced in V. natriegens at the level of 11% of the total cell proteins (TCPs) compared with 16% of TCPs in E. coli. We obtained a soluble protein that accounted for 11% of the enzyme produced in V. natriegens and 22% of the enzyme produced in E. coli. Taq pol was produced intracellularly in V. natriegens at the level of 30% of TCPs compared with 26% of TCPs in E. coli. However, Taq pol was almost non-soluble in E. coli, whereas in V. natriegens, we obtained a soluble protein that accounted for 23% of the produced enzyme. We detected substantial extracellular production of Taq pol. Thus, V. natriegens is a suitable alternative host with the potential for production of recombinant proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...