Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.168
Filtrar
1.
Food Chem ; 462: 140947, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208736

RESUMEN

Excess nitrites are potentially threatening to human health, so it is urgent to develop accurate and sensitive methods. The development of sensors can provide early warning of possible hazards and alert people to protect public health. This work presents an NiSx@MoS2-composite with excellent electrochemical activity, representing a key finding for highly sensitive NO2- detection and sensor development. With the assistance of NiSx@MoS2, this electrochemical sensor has excellent quantitative detection performance. It has a wide detection range (0.0001-0.0020 mg/mL) and a low detection limit (1.863*10-5 mg/mL) for NO2-. This electrochemical sensor maintains excellent specificity among numerous interferences, and it completes the accurate detection of different real food samples. Pleasingly, the electrochemical sensor has satisfactory repeatability stability, and potential for practical applications. It would demonstrate tremendous potential in scientific dietary guidance, food safety detection and other fields.


Asunto(s)
Disulfuros , Técnicas Electroquímicas , Límite de Detección , Molibdeno , Molibdeno/química , Técnicas Electroquímicas/instrumentación , Disulfuros/química , Nitritos/análisis , Contaminación de Alimentos/análisis
2.
Talanta ; 281: 126809, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39276571

RESUMEN

New voltammetric and flow amperometric methods for the determination of guaifenesin (GFE) using a perspective screen-printed sensor (SPE) with boron-doped diamond electrode (BDDE) were developed. The electrochemical oxidation of GFE was studied on the surface of the oxygen-terminated BDDE of the sensor. The GFE provided two irreversible anodic signals at a potential of 1.0 and 1.1 V (vs. Ag|AgCl|KCl sat.) in Britton-Robinson buffer (pH 2), which was chosen as the supporting electrolyte for all measurements. First, a voltammetric method based on differential pulse voltammetry was developed and a low detection limit (LOD = 41 nmol L-1), a wide linear dynamic range (LDR = 0.1-155 µmol L-1), and a good recovery in the analysis of model and pharmaceutical samples (RSD <3.0 %) were obtained. In addition, this sensor demonstrated excellent sensitivity and reproducibility in the analysis of biological samples (RSD <3.2 %), where the analysis took place in a drop of serum (50 µL) without pretreatment and additional electrolyte. Subsequently, SP/BDDE was incorporated into a flow-through 3D printed electrochemical cell and a flow injection analysis method with electrochemical detection (FIA-ED) was developed, resulting in excellent analytical parameters (LOD = 86 nmol L-1, LDR = 0.1-50 µmol L-1). Moreover, the mechanism of electrochemical oxidation of GFE was proposed based on calculations of HOMO spatial distribution and spectroelectrochemical measurements focused on IR identification of intermediates and products.


Asunto(s)
Boro , Diamante , Técnicas Electroquímicas , Electrodos , Guaifenesina , Boro/química , Guaifenesina/análisis , Guaifenesina/química , Diamante/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Límite de Detección , Humanos , Oxidación-Reducción
3.
Talanta ; 281: 126784, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39245008

RESUMEN

Fenamiphos (FNP) is a pesticide applied for soil pest control, particularly nematodes, and sucking insects, including aphids and thrips. Despite its use being banned in several countries due to its highly toxic nature for living beings, including mammals, because of its acetylcholine-inhibiting action, it is still marketed for use in agriculture. Therefore, a carbon paste electrode modified with residual grape seed biochar (bSU), served as an electrochemical sensor (E-bSU) for the quantification of fenamiphos in grape juice, tap water, and river water samples. The bSU underwent comprehensive characterization employing elemental, morphological, and spectroscopic analysis techniques. The impact of electrode modification and the electrochemical behavior of the FNP were systematically assessed through cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. The biochar manifested a microporous surface adorned with dispersed functional groups, enhancing its affinity for organic compounds, particularly the investigated pesticide. Electrode modification and the optimization of analysis parameters resulted in a notable 6-fold amplification of the electrochemical signal of FNP relative to initial conditions, underscoring the efficacy of the E-bSU. The developed methodology attained limits of detection and quantification of 0.3 and 0.9 nmol L⁻1, respectively. Repeatability and reproducibility assays demonstrated relative standard deviations below 5%, underscoring the reliability of the applied electrode. The sensor showcased recoveries ranging from 99.75% to 109.9% across the analyzed samples, highlighting the utility of this selective, stable, and reproducible sensor for fenamiphos determination.


Asunto(s)
Carbón Orgánico , Técnicas Electroquímicas , Electrodos , Neonicotinoides , Semillas , Vitis , Vitis/química , Técnicas Electroquímicas/métodos , Carbón Orgánico/química , Semillas/química , Neonicotinoides/análisis , Carbono/química , Límite de Detección , Compuestos Organofosforados/análisis , Contaminantes Químicos del Agua/análisis , Jugos de Frutas y Vegetales/análisis , Insecticidas/análisis
4.
Food Chem ; 463(Pt 4): 141475, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39369605

RESUMEN

In this work, 37 enological tannins of different classes were studied to investigate whether linear sweep voltammetry (LSV) could be a method to determine the family of a sample and its antioxidant capacity. A "wholistic" approach was used, combining LSV data with nuclear magnetic resonance (NMR), polyphenol quantification (Folin-Ciocalteu method and gravimetric analysis), antiradical activity (DPPH assay), and reducing capacity (FRAP assay). Voltammetric data were processed with statistical techniques and the results show the clustering of tannins in three different classes: ellagitannins, gallotannins, and condensed tannins. These findings were confirmed by NMR data treated with the same procedure. Finally, ellagitannins showed a high reducing capacity and gallotannins showed a high antiradical capacity. Importantly, LSV indices were shown to be significantly correlated with DPPH and FRAP parameters. Therefore, the hypothesis of LSV as a potentially useful technique to choose the most suitable tannin for a determined antioxidant purpose was successfully proved.

5.
Mikrochim Acta ; 191(11): 697, 2024 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-39446161

RESUMEN

An innovative methodology is proposed for quantifying Gefitinib (GFT) using an electrochemical sensor constructed from a composite of graphene quantum dots (GQDs) and gold nanoparticles (AuNPs). GQDs were synthesized from graphite, preserving graphene's large surface area and excellent electron transfer capabilities while enhancing dispersibility. The combination of GQDs with AuNPs resulted in an AuNPs@GQDs composite, which was used to construct the sensor. The synthesized nanomaterials were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the electrochemical performance of the sensor was evaluated via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimized conditions, the sensor displayed a linear calibration curve for GFT detection within the range 0.01 to 10.0 µM, with a limit of detection (LOD) of 0.005 µM (S/N = 3). The sensor demonstrated excellent anti-interference properties and stability in tests using pharmaceutical formulations and plasma samples. Compared to chromatographic methods, the sensor exhibited similar accuracy and recovery. Its easy fabrication and high sensitivity make it a promising tool for pharmaceutical analysis and clinical therapeutic drug monitoring.


Asunto(s)
Técnicas Electroquímicas , Gefitinib , Oro , Grafito , Límite de Detección , Nanopartículas del Metal , Puntos Cuánticos , Grafito/química , Puntos Cuánticos/química , Oro/química , Nanopartículas del Metal/química , Gefitinib/sangre , Gefitinib/química , Técnicas Electroquímicas/métodos , Humanos
6.
Mikrochim Acta ; 191(11): 693, 2024 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-39441415

RESUMEN

By preparing Cu@CuO aerogel as a nanozyme which exhibits prominent peroxidase-like (POD) activity, an innovative homogeneous electrochemistry (HEC) coupled with the colorimetry dual-model sensing strategy is proposed to detect perfluorooctane sulfonate (PFOS) for the first time. Cu@CuO aerogel accelerates the oxidation process of colorless o-phenylenediamine to form yellow 2,3-diaminophenazinc (DAP), and meanwhile, DAP as an electroactive substance creates a reduction peak current upon the electrochemical measurements. Interestingly, in the presence of PFOS, the POD activity of Cu@CuO aerogel is inhibited since the specific coordination between PFOS and Cu(II) can cover the active sites, resulting in the color of the sensing system becoming light and the peak current of DAP decreasing. This innovative dual-mode detection method showed excellent electrochemical detection of PFOS in the concentration range 10.0 ~ 1125.0 nM with a limit of detection (LOD) as low as 3.3 nM and a LOD of 20.8 nM in the colorimetric detection in the range 62.3 ~ 875 nM. Furthermore, the sensor was successfully used for the analysis of real samples with an RSD value ≤ 6.5%. The successful application of this two-mode sensing method for the determination of PFOS holds promise for the detection of other contaminants in the future.


Asunto(s)
Ácidos Alcanesulfónicos , Colorimetría , Cobre , Técnicas Electroquímicas , Fluorocarburos , Límite de Detección , Cobre/química , Colorimetría/métodos , Ácidos Alcanesulfónicos/análisis , Ácidos Alcanesulfónicos/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Fluorocarburos/química , Geles/química
7.
Mikrochim Acta ; 191(11): 694, 2024 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-39441430

RESUMEN

Public health and environmental well-being have become increasingly threatened by the contamination of pharmaceuticals and heavy metal ions. This study focuses on addressing this critical issue by developing a novel electrochemical sensor for the dual-functional detection of acetaminophen (AP) and Cu2+. Utilizing willow catkins as a biomass template, a hollow tubular NiS@NSC composite was prepared by simple nickel salt impregnation combined with calcination and sulfurization. A highly sensitive dual-functional electrochemical sensor was thus constructed that can detect both acetaminophen (AP) and Cu2+. By examining its electrochemical properties, the sensor achieves an impressive detection limit of 1.33 pM for AP, with a linear range of 4.00 pM ~ 0.15 mM. The sensor can also detect Cu2+, with a detection limit of 1.04 µM, and a linear range of 3.13 µM ~ 0.66 mM. The sensor also exhibits strong resistance to interference, and good repeatability and stability. In addition, the sensor has demonstrated good performance in actual sample analysis, including the detection of AP in serum and Cu2+ in wastewater. This excellent electrochemical sensing performance is mainly attributed to the synergistic effect of its unique tubular structure and highly conductive N, S co-doped carbon. This results in the sensor exhibiting minimal charge transfer resistance, an extensive electrochemically active surface area, and a high density of active sites.


Asunto(s)
Acetaminofén , Cobre , Técnicas Electroquímicas , Límite de Detección , Níquel , Acetaminofén/análisis , Acetaminofén/sangre , Cobre/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Níquel/química , Salix/química , Humanos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Electrodos , Carbono/química
8.
Mikrochim Acta ; 191(11): 683, 2024 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-39432122

RESUMEN

Interleukin-6 (IL6) is a cytokine mainly involved in inflammatory processes associated with various diseases, from rheumatoid arthritis and pathogen-caused infections to cancer, where malignant cells exhibit high proliferation and overexpression of cytokines, including IL6. Furthermore, IL6 plays a fundamental role in detecting and differentiating tumor cells, including colorectal cancer (CRC) cells. Therefore, given its range of biological activities and pathological role, IL6 determination has been claimed for the diagnosis/prognosis of immune-mediated diseases. Herein, a comparative study is presented of labeled and label-free electrochemical immunosensors involving a hierarchical Au@Pt nanoparticle/polymer hybrid material for detecting IL6. The electrochemical immunosensors were independently coupled to the surface of screen-printed carbon electrodes (SPCEs) previously modified with polymeric layers. While in the label-free immunosensor, an anti-IL6 antibody (IL6-Ab) was covalently bound to the modified SPCE surface, in the sandwich-like amperometric immunosensor, an anti-biotinylated-IL6 antibody (B-IL6-Ab) was attached to the electrode through biotin-avidin affinity interactions. The label-free format employed a straightforward detection of IL6 by differential pulse voltammetry (DPV). The resulting electrochemical immunosensors exhibited a linear dynamic range from 50 to 750 pg/mL IL6, with detection limits (LOD) of 14.4 and 6.0 pg/mL for label-free and sandwich-like immunosensors, respectively. This outstanding performance makes them versatile platforms for clinical analysis of a panel of biomarkers for early diagnosis/prognosis of inflammatory processes associated with oncological diseases, among other pathologies.


Asunto(s)
Técnicas Electroquímicas , Oro , Interleucina-6 , Nanopartículas del Metal , Polímeros , Interleucina-6/análisis , Interleucina-6/inmunología , Oro/química , Humanos , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Polímeros/química , Inmunoensayo/métodos , Platino (Metal)/química , Técnicas Biosensibles/métodos , Límite de Detección , Anticuerpos Inmovilizados/inmunología , Electrodos
9.
Mikrochim Acta ; 191(11): 701, 2024 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-39461925

RESUMEN

A dual-responsive ratio electrochemical-colorimetric method for nitrite (NO2-) is established based on the combination of nanoenzyme (Mn3O4) catalysis with diazotization reactions. The Mn3O4 can oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue TMBox. The NO2- induces the diazotization reaction of TMBox, leading to a decrease of  the signal at 652 nm and the generation of a new signal from diazotized TMBox at 445 nm. Furthermore, the presence of NO2- reduces the electrochemical oxidation signal of TMB and simultaneously provides its electrochemical signal. Compared with traditional single-mode detection, dual-mode detection offers higher sensitivity, lower detection limits, and better interference resistance. The inherent advantages of this method make it feasible to detect NO2- in real samples, offering broad prospects for applications in food safety and environmental monitoring.


Asunto(s)
Bencidinas , Colorimetría , Técnicas Electroquímicas , Límite de Detección , Nitritos , Nitritos/análisis , Colorimetría/métodos , Técnicas Electroquímicas/métodos , Bencidinas/química , Contaminación de Alimentos/análisis , Oxidación-Reducción , Monitoreo del Ambiente/métodos , Análisis de los Alimentos/métodos , Catálisis
10.
Materials (Basel) ; 17(20)2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39459703

RESUMEN

The utilization of lithium-ion batteries (LIBs) is increasing sharply with the increasing use of mobile phones, laptops, tablets, and electric vehicles worldwide. Technologies are required for the recycling and recovery of spent LIBs. In the context of the circular economy, it is urgent to search for new methods to recycle waste graphite that comes from the retired electrode of LIBs. The conversion of waste graphite into other products, such as new electrodes, in the field of energy devices is attractive because it reduces resource waste and processing costs, as well as preventing environmental pollution. In this paper, new electrode materials were prepared using waste anode graphite originating from a spent mobile phone battery with an xBT·0.1C12H22O11·(0.9-x)(NH4)2HPO4 composition, where x = 0-50 weight% BT from the anodic active mass of the spent phone battery (labeled as BT), using the melt quenching method. Analysis of the diffractograms shows the graphite crystalline phase with a hexagonal structure in all prepared samples. The particle sizes decrease by adding a higher BT amount in the composites. The average band gap is 1.32 eV (±0.3 eV). A higher disorder degree in the host network is the main factor responsible for lower band gap values. The prepared composites were tested as electrodes in an LIB or a fuel cell, achieving an excellent electrochemical performance. The voltammetric studies indicate that doping with 50% BT is the most suitable for applications as electrodes in LIBs and fuel cells.

11.
Sensors (Basel) ; 24(20)2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39460225

RESUMEN

In this study, several materials are presented as modifiers of the screen-printed carbon electrodes with the aim of developing new sensing platforms for the voltammetric analysis of drugs. Specifically, Clotiapine and Sulfamethoxazole were selected as models for antipsychotics and antibiotics, respectively. Different nanostructures were studied as modifiers, including both transition metals and carbon-based materials. Moreover, biochar and two metal-organic frameworks (MOFs) were tested as well. The NH2-MIL-125(Ti) MOF showed an 80% improvement in the analytical signal of Sulfamethoxazole, but it partially overlapped with an additional signal associated with the loss of the MOF ligand. For this reason, several immobilization strategies were tested, but none of them met the requirements for the development of a sensor for this analyte. Conversely, carbon nanotubes and the NH2-MIL-101(Fe) MOF were successfully applied for the analysis of Clotiapine in the medicine Etumine®, with RSD below 2% and relative errors that did not exceed 9% in any case, which demonstrates the precision and accuracy achieved with the tested modifications. Despite these promising results, it was not possible to lower the limits of detection and quantification, so in this sense further investigation must be performed to increase the sensitivity of the developed sensors.


Asunto(s)
Electrodos , Estructuras Metalorgánicas , Nanoestructuras , Estructuras Metalorgánicas/química , Nanoestructuras/química , Nanotubos de Carbono/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Transductores
12.
Macromol Rapid Commun ; : e2400786, 2024 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-39462480

RESUMEN

𝜋-Conjugated polymers, including those based on acetylenic repeating units, are an exciting class of materials that offer narrow optical band gaps and tunable frontier orbital energies that lead to their use in organic electronics. This work expands the knowledge of structure-property relationships of acetylenic polymers through the synthesis and characterization of a series of Glaser-Hay-coupled model compounds and random copolymers comprised of BF2 formazanate, fluorene, and/or bis(alkoxy)benzene units. The model compounds and copolymers synthesized exhibit redox activity associated with the reversible reduction of the BF2 formazanate units and the irreversible reduction of the fluorene and bis(alkoxy)benzene units. The copolymers exhibit absorption profiles characteristic or intermediate of their respective models and homopolymers, leading to broad absorption of UV-vis light. The alkyne linkages of the model compounds and copolymers are reacted with [Co2(CO)8] to convert the alkyne functional groups into cobalt carbonyl clusters. This transformation leads to blue-shifted absorption profiles due to a decrease in π-conjugation, demonstrating the ability to tune the properties of these materials through post-polymerization functionalization. The redox activity and broad absorption bands of the polymers reported make them excellent candidates for use in photovoltaics and other light-harvesting applications.

13.
Glob Chall ; 8(10): 2400105, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39398527

RESUMEN

Global energy consumption is increasing yearly, yet the world is trying to move toward carbon neutrality to mitigate global warming. More research is being done on energy storage devices to advance these efforts. One well-known and widely studied technology is Zn-ion batteries (ZIBs). Therefore, this paper demonstrates how laser irradiation at wavelengths of 266 and 1064 nm, in the presence of air or water, can enhance the electrochemical performance of metallic zinc anode in alkaline electrolyte. The obtained samples are characterized using X-ray diffraction analysis, scanning electron microscopy, and Raman spectroscopy. Then, the electrochemical properties are studied by cyclic voltammetry and impedance measurements. Results indicate that the laser processing of the Zn sample increases surface-specific capacity by up to 30% compared to the non-irradiated Zn sample. Furthermore, electrochemical measurements reveal enhanced participation of metallic Zn grains in the oxidation and reduction processes in irradiated samples. In future research, integrating laser treatment into electrode preparation processes can become essential for optimizing anode battery materials.

14.
Food Chem ; 464(Pt 1): 141606, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39418952

RESUMEN

The study presented here describes the characterization and synthesis of a triazine-based covalent organic framework using different analytical procedures such as scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, cyclic voltammetry, Brunauer-Emmett-Teller analysis, and electrochemical impedance spectroscopy. The synthesized COF was then utilized as an electrocatalytic modifier for the selective and sensitive determination of Pb2+ and Cd2+ at nanomolar levels via square wave anodic stripping voltammetry. A Plackett-Burman design was employed to screen operational parameters influencing the sensitivity of the electroanalytical method, followed by optimization of the significant variables using Box-Behnken design. A linear response over 1.0-110.0 nmol L-1 and 5.0-300.0 nmol L-1 range for Pb2+ and Cd2+, with detection limits of 1.1 and 1.8 nmol L-1, respectively. Furthermore, the selectivity of the presented electrode over different species was evaluated with no significant interference found. The sensor was applied effectively to determine of Pb2+ and Cd2+ ions in samples.

15.
Talanta ; 282: 127006, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39418981

RESUMEN

Here, we propose a stripping voltammetric method for Ag+ ion determination in distilled water utilizing screen-printed Au electrodes coated with Nafion (Nafion/Au screen-printed electrodes). The concentration of Ag+ in pure water was determined by linear sweep voltammetry (LSV) after silver deposition on the Nafion/Au electrode. The anodic stripping peak current increased linearly with the concentration of Ag+ ion in the range from 1 ppm to 22 ppm. The LSV oxidative peak current was increased by extending the silver deposition time from 300 s to 500 s. Repetitive LSV measurements revealed satisfactory reproducibility of the Nafion/Au screen-printed electrodes. The detection mechanism was elucidated by recording mass changes of the Nafion/Au electrode with a quartz crystal microbalance (QCM), and by determining changes in the low-frequency capacitance of the Nafion/Au electrode by electrochemical impedance spectroscopy (EIS). The observed changes in mass and capacitance confirmed Ag+ accumulation and release processes at the Nafion/Au electrodes, in good agreement with stripping voltammetry. The combination of stripping voltammetry, QCM and EIS allowed a detailed characterization of the ion transfer, deposition and stripping processes at the Nafion/Au electrodes in presence of Ag+ ions. The Nafion/Au screen-printed electrode enabled voltammetric determination of low Ag+ concentrations in distilled water, without any sample pretreatment nor addition of supporting electrolyte.

16.
ACS Appl Bio Mater ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394038

RESUMEN

This study demonstrates the synthesis of 1D surface vertically aligned nanorods of ZnO on the fluorine-doped tin oxide-coated glass substrate (ZnO-VANRs/FTOs) synthesized via a chemical route for the targeted electrochemical sensing of aniline. The ZnO-VANRs/FTOs were 1.57 ± 0.03 µm in length with excellent crystallinity and high density (1.52 × 1013 rod no./m2). ZnO-VANRs formation increased surface roughness by 2.4- and 4.7-fold compared to the bare FTOs and seeded FTOs (ZnO-seed/FTOs), respectively. The ZnO-VANRs/FTOs electrodes could increase the effective surface area from 0.154 to 0.384 cm2 with about 86.85% reduction in charge transfer resistance compared to the bare FTOs. The peak current response (at 0.281 V vs Ag/AgCl) of aniline deposition was boosted by 81.52% with the rise in temperature from 15 to 45 °C. The reduction of aniline at ZnO-VANRs/FTOs involved a reversible two-electron diffusion control process with a heterogeneous reaction rate constant (k0) of 1.82 s-1 and a formal potential (E0) of 0.289 V vs Ag/AgCl. The ZnO-VANRs/FTOs electrode showed limits of detection of 0.193 µM (sensitivity 0.198 µA·µM-1·cm-2) and 0.588 µM (sensitivity of 0.065 µA·µM-1·cm-2) between the working ranges of 0-20 and 20-160 µM, respectively. The fabricated sensor was unprecedently selective toward aniline sensing, and p-nitroaniline, chlorobenzene, chlorpyrifos, Cu2+, Pb2+, Ni2+, Cd2+, albumin bovine, Escherichia coli, and ciprofloxacin could not interfere with aniline sensing and its sensitivity. However, the peak current was marginally decayed by 2.63% up to the 6th cycle. Moreover, ZnO-VANRs/FTOs catalyzed the sensing of aniline spiked in the environmental matrices, conforming well to liquid chromatography.

17.
Mikrochim Acta ; 191(10): 639, 2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354107

RESUMEN

A compact organic electrochemical transistors (OECT) sensor enriched with carbon quantum dots (CQDs) was developed to enhance the transconductance of an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film, enabling the precise and selective detection of dopamine (DA). Accurate monitoring of DA levels is critical for diagnosing and managing related conditions. Incorporating CQDs, we have achieved a remarkable up to threefold increase in current at the DA detection peak in differential pulse voltammetry. This enhancement showcases superior selectivity even in the presence of high concentrations of interferents like uric acid and ascorbic acid. This material significantly boosts the sensitivity of OECTs for DA detection, delivering an amperometric response with a detection limit of 55 nM and a broader detection range (1 - 500 µM). Our results underscore the potential of low-dimensional carbonaceous materials in creating cost-effective, high-sensitivity devices for detecting DA and other biomolecules. This breakthrough sets the stage for the development of next-generation biosensors for point-of-care diagnostics.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Carbono , Dopamina , Técnicas Electroquímicas , Límite de Detección , Polímeros , Puntos Cuánticos , Puntos Cuánticos/química , Dopamina/análisis , Dopamina/sangre , Carbono/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Polímeros/química , Transistores Electrónicos , Técnicas Biosensibles/métodos , Humanos
18.
Mikrochim Acta ; 191(11): 662, 2024 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-39387898

RESUMEN

An electrochemical biosensor was created to identify the liver cancer marker alpha-fetoprotein (AFP) by employing nanocomposite materials. A combination of reduced graphene oxide (rGO) and molybdenum disulfide (MoS2) was selected as the substrate material for the sensor to prepare the PtNPs/MoS2@rGO electrochemical immunosensor. Among them, rGO has strong conductivity and MoS2 provides a large surface area for the anchoring of PtNPs for better attachment to the hybridized nanomaterials. Meanwhile, PtNPs exhibit consistent biocompatibility and excellent electrocatalytic activity. PtNPs also attach to hybrid nanomaterials and bind the antibody via the Pt-S bond, thereby furnishing the antibody with multiple binding sites for enhanced antibody adhesion. The immunosensor achieved ultra-sensitive AFP detection by exploiting the specific antigen-antibody binding. The structure and morphology of the PtNPs/MoS2@rGO composites were investigated by transmission electron microscopy (TEM), energy dispersive X-ray (EDS) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy, and the sensor was electrochemically characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, using differential pulse voltammetry the biosensor detected AFP in serum within a linear range of 1 ~ 105 pg/mL, with a correlation coefficient (r2) of 0.9989, and a detection limit of 0.12 pg/mL (S/N = 3). The method offers a new approach for the ultrasensitive detection of serum AFP and is extremely selective, accurate, and precise with a relative standard deviation (RSD) of less than 6%. It has been successfully applied to the analysis of real human blood samples.


Asunto(s)
Técnicas Biosensibles , Disulfuros , Técnicas Electroquímicas , Grafito , Límite de Detección , Nanopartículas del Metal , Molibdeno , Platino (Metal) , alfa-Fetoproteínas , Humanos , alfa-Fetoproteínas/análisis , alfa-Fetoproteínas/inmunología , Molibdeno/química , Grafito/química , Platino (Metal)/química , Técnicas Electroquímicas/métodos , Disulfuros/química , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Nanopartículas del Metal/química , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química , Nanocompuestos/química
19.
Mikrochim Acta ; 191(11): 660, 2024 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-39387910

RESUMEN

A simple method for highly selective and sensitive prostate-specific antigen (PSA) detection using a molecularly imprinted electrochemical sensor is presented. The sensor was developed through an epitope imprinted strategy combined with electrochemical measurement techniques. An epitope molecularly imprinted polymer (EMIP) film was constructed on a AuNPs-coated gold electrode surface through electropolymerization, utilizing the C-terminus epitope of PSA (KWIKDTIVANP) as the template molecular and o-phenylenediamine as the functional monomer. The characteristics of EMIP film were investigated by using a scanning electron microscope and electrochemical test methods, including electrochemical impedance spectroscopy and cyclic voltammetry. Key parameters such as electropolymerization cycles, elution and rebinding times, and the molar ratio of template molecular to functional monomer were systematically optimized. The sensor demonstrated a detection limit (LOD) of 0.31 fg/mL and exhibited an excellent linear response towards PSA concentration ranging from 1.0 fg/mL to 0.1 µg/mL. Furthermore, the EMIP sensor showed excellent selectivity against other biological macromolecules, such as bovine serum albumin, human serum albumin, alpha-fetoprotein, and carcinoembryonic antigen. With recoveries between 95.89 and 106.04% for PSA detection in human serums the EMIP/AuNPs/AuE electrochemical sensor showed great potential in real sample analysis.


Asunto(s)
Técnicas Electroquímicas , Epítopos , Oro , Límite de Detección , Nanopartículas del Metal , Antígeno Prostático Específico , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/inmunología , Antígeno Prostático Específico/análisis , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Oro/química , Nanopartículas del Metal/química , Epítopos/química , Epítopos/inmunología , Electrodos , Impresión Molecular , Polímeros Impresos Molecularmente/química , Masculino , Fenilendiaminas/química , Técnicas Biosensibles/métodos
20.
Mikrochim Acta ; 191(11): 671, 2024 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-39404875

RESUMEN

A electrochemical biosensor was designed utilizing a CRISPR Cas9n-driven DNA walker combined with gold-nanosphere-like covalent organic frameworks (COFs-AuNPs) to detect breast cancer markers (PIK3CA E545K ctDNA). The DNA walker probe is activated only in the presence of circulating tumor deoxyribonucleic acid (ctDNA), binding to a support probe to form a double strand that is then specifically cleaved by the Cas9n/sgRNA complex. This cleavage produces numerous DNA fragments for signal amplification. The COF-AuNPs as electrode materials facilitate electronic transfer and provide additional active sites for the immobilization of nucleic acid probes. This setup achieves a detection limit of 1.76 aM, demonstrating high sensitivity. Additionally, Cas9n improves the specificity of the sensor, accurately distinguishing a pair of base-mismatched sequences, and reducing the occurrence of false positives. Overall, the sensor exhibits excellent selectivity, reproducibility, and potential for early diagnosis of breast cancer.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , ADN Tumoral Circulante , Oro , Límite de Detección , Nanopartículas del Metal , Oro/química , Humanos , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Neoplasias de la Mama/sangre , Estructuras Metalorgánicas/química , Técnicas Electroquímicas/métodos , Fosfatidilinositol 3-Quinasa Clase I/genética , Biomarcadores de Tumor/sangre , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...