Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Cancer Res ; 12(10): 4751-4763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36381331

RESUMEN

Bromodomain Adjacent to Zinc Finger Domain 1B (BAZ1B) is involved in multiple nuclear processes, and its role in tumorigenesis is emerging. However, the function of BAZ1B in colorectal cancer (CRC) remains largely unexplored. High-density tissue microarrays comprising 100 pairs of matched normal colon and treatment-naïve CRC samples were analyzed by immunohistochemistry with an anti-BAZ1B antibody. The HCT116 and SW480 CRC cell lines were used for overexpression and small hairpin RNA-mediated BAZ1B knockdown models, respectively. Both cell lines were xenografted to immunodeficient NU/J mice to assess tumor burden. The molecular consequences of alterations of BAZ1B expression were assessed by RNA-Seq of xenografts and functional analyses using the Reactome database. Immunohistochemical analysis of BAZ1B showed that BAZ1B staining intensity was higher in 93 tumor specimens and significantly correlated with tumor size (P = 0.03), but not with the presence of KRAS mutation. BAZ1B overexpression significantly increased and its knockdown inhibited the proliferation of HCT116 and SW480 cell lines, respectively. These findings were reproduced when both cell lines were grown as xenografts. RNA-Seq of HCT116 and SW480 xenografts identified 2046 and 99 differentially expressed genes (DEGs) (adjusted P ≤ 0.05), respectively. Functional annotation of DEGs identified already established as well as new molecular processes dependent on BAZ1B protein expression. In conclusion, BAZ1B is overexpressed in CRC tissue and contributes to CRC cell proliferation in vitro and in vivo. The data support the emerging oncogenic role of BAZ1B in cancerogenesis including in CRC.

2.
Front Oncol ; 12: 811850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251980

RESUMEN

Triptolide exhibits superior and broad-spectrum antitumor activity. However, the narrow safety window caused by the toxicity of triptolide limits its clinical applications. Although several characterized targets for triptolide are reported, the association between triptolide and its targets in cancer therapy is not fully understood. Here, we show that acute myeloid leukemia (AML) cell lines are sensitive to triptolide by constructing an in vitro cell and in vivo xenograft models. Meanwhile, the triptolide-induced hepatotoxicity increases with increasing dosages within the xenograft models. Additionally, the expression levels of WSTF-RPB1 are strongly associated with the sensitivity to triptolide in hematological cancer cells and can be downregulated in a dose and time-dependent manner. Finally, we show that optimizing dosing regimens can achieve the same pharmaceutical effect and reduce toxicity. In summary, this study aims to search for triptolide-sensitive cell lines as well as the underlying molecular mechanisms in order to broaden the safety window of triptolide; thus, increasing its clinical utility.

3.
Genes (Basel) ; 12(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34680936

RESUMEN

The bromodomain adjacent to the zinc finger domain 1B (BAZ1B) or Williams syndrome transcription factor (WSTF) are just two of the names referring the same protein that is encoded by the WBSCR9 gene and is among the 26-28 genes that are lost from one copy of 7q11.23 in Williams syndrome (WS: OMIM 194050). Patients afflicted by this contiguous gene deletion disorder present with a range of symptoms including cardiovascular complications, developmental defects as well as a characteristic cognitive and behavioral profile. Studies in patients with atypical deletions and mouse models support BAZ1B hemizygosity as a contributing factor to some of the phenotypes. Focused analysis on BAZ1B has revealed this to be a versatile nuclear protein with a central role in chromatin remodeling through two distinct complexes as well as being involved in the replication and repair of DNA, transcriptional processes involving RNA Polymerases I, II, and III as well as possessing kinase activity. Here, we provide a comprehensive review to summarize the many aspects of BAZ1B function including its recent link to cancer.


Asunto(s)
Factores de Transcripción/genética , Síndrome de Williams/genética , Animales , Ensamble y Desensamble de Cromatina , Reparación del ADN , Humanos , Neurogénesis , Factores de Transcripción/metabolismo , Síndrome de Williams/metabolismo
4.
Epigenetics Chromatin ; 14(1): 37, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330317

RESUMEN

BACKGROUND: Condensation of chromatin prior to enucleation is an essential component of terminal erythroid maturation, and defects in this process are associated with inefficient erythropoiesis and anemia. However, the mechanisms involved in this phenomenon are not well understood. Here, we describe a potential role for the histone variant H2A.X in erythropoiesis. RESULTS: We find in multiple model systems that this histone is essential for normal maturation, and that the loss of H2A.X in erythroid cells results in dysregulation in expression of erythroid-specific genes as well as a nuclear condensation defect. In addition, we demonstrate that erythroid maturation is characterized by phosphorylation at both S139 and Y142 on the C-terminal tail of H2A.X during late-stage erythropoiesis. Knockout of the kinase BAZ1B/WSTF results in loss of Y142 phosphorylation and a defect in nuclear condensation, but does not replicate extensive transcriptional changes to erythroid-specific genes observed in the absence of H2A.X. CONCLUSIONS: We relate these findings to Caspase-Initiated Chromatin Condensation (CICC) in terminal erythroid maturation, where aspects of the apoptotic pathway are invoked while apoptosis is specifically suppressed.


Asunto(s)
Cromatina , Eritropoyesis , Caspasas , Histonas/metabolismo , Fosforilación
5.
J Obstet Gynaecol Res ; 47(7): 2433-2441, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34028125

RESUMEN

OBJECTIVE: This study aimed to investigate the expression of Williams Syndrome transcription factor (WSTF) in cervical cancer (CC) tissues and cells, the effect on the proliferation, migration, invasion, and the molecular mechanism of WSTF in CC cells to find a new biomarker. MATERIALS AND METHODS: The expression of WSTF in tissues was detected by real-time quantitative polymerase chain reaction (RT-qPCR) and/or immunohistochemistry. Human CC cell lines and human normal cervical epithelial cell lines were detected by RT-qPCR. Lentivirus-mediated gene transfected in Siha/CaSki cells. The transfection efficiency of lentivirus was observed by a fluorescence microscope, RT-qPCR, and western blot. After transfection, the proliferation of Siha/CaSki cells was detected by CCK-8 assay and colony formation assay. The migration and invasion of Siha/CaSki cells were detected by transwell assay and wound healing assay. Western blot assay were used to detect the expression of WSTF and PI3K/Akt-related proteins in Siha/CaSki cells. RESULTS: The expression of WSTF in CC tissues was higher than that in adjacent tissues (p < 0.05). The expression of WSTF in CC cells was higher than that in normal cervical epithelial cells (p < 0.01). Downregulation of WSTF expression could inhibit the proliferation, migration, and invasion of CC cells (p < 0.01). WSTF overexpression activates PI3K/Akt signaling pathway (p < 0.01). CONCLUSION: WSTF is highly expressed in CC tissues and cells, and downregulation of WSTF can inhibit the proliferation, invasion, and migration of CC cells by activating the PI3K/Akt signaling pathway. WSTF is a very promising new biomarker for CC.


Asunto(s)
Neoplasias del Cuello Uterino , Síndrome de Williams , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factores de Transcripción , Neoplasias del Cuello Uterino/genética
6.
Hum Cell ; 34(2): 293-299, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33517564

RESUMEN

Gout is a common type of acute arthritis that results from elevated serum uric acid (SUA) levels. Recent genome-wide association studies (GWASs) have revealed several novel single nucleotide polymorphism (SNPs) associated with SUA levels. Of these, rs10821905 of A1CF and rs1178977 of BAZ1B showed the greatest and the second greatest significant effect size for increasing SUA level in the Japanese population, but their association with gout is not clear. We examined their association with gout using 1411 clinically-defined Japanese gout patients and 1285 controls, and meta-analyzed our previous gout GWAS data to investigate any association with gout. Replication studies revealed both SNPs to be significantly associated with gout (P = 0.0366, odds ratio [OR] with 95% confidence interval [CI]: 1.30 [1.02-1.68] for rs10821905 of A1CF, P = 6.49 × 10-3, OR with 95% CI: 1.29 [1.07-1.55] for rs1178977 of BAZ1B). Meta-analysis also revealed a significant association with gout in both SNPs (Pmeta = 3.16 × 10-4, OR with 95% CI: 1.39 [1.17-1.66] for rs10821905 of A1CF, Pmeta = 7.28 × 10-5, OR with 95% CI 1.32 [1.15-1.51] for rs1178977 of BAZ1B). This study shows the first known association between SNPs of A1CF, BAZ1B and clinically-defined gout cases in Japanese. Our results also suggest a shared physiological/pathophysiological background between several populations, including Japanese, for both SUA increase and gout susceptibility. Our findings will not only assist the elucidation of the pathophysiology of gout and hyperuricemia, but also suggest new molecular targets.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Genética de Población , Estudio de Asociación del Genoma Completo , Gota/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Pueblo Asiatico/genética , Femenino , Humanos , Masculino
7.
FASEB J ; 34(8): 10818-10834, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32598531

RESUMEN

Regulation of ribosomal transcription is under tight control from environmental stimuli, and this control involves changes in the chromatin structure. The underlying mechanism of how chromatin changes in response to nutrient and energy supply in the cell is still unclear. The chromatin-remodeling complex B-WICH is involved in activating the ribosomal transcription, and we show here that knock down of the B-WICH component WSTF results in cells that do not respond to glucose. The promoter is less accessible, and RNA pol I and its transcription factors SL1/TIF-1B and RRN3/TIF-1A, as well as the proto-oncogene c-MYC and the activating deacetylase SIRT7 do not bind upon glucose stimulation. In contrast, the repressive chromatin state that forms after glucose deprivation is reversible, and RNA pol I factors are recruited. WSTF knock down results in an accumulation of the ATPase CHD4, a component of the NuRD chromatin remodeling complex, which is responsible for establishing a repressive poised state at the promoter. The TTF-1, which binds and affect the binding of the chromatin complexes, is important to control the association of activating chromatin component UBF. We suggest that B-WICH is required to allow for a shift to an active chromatin state upon environmental stimulation, by counteracting the repressive state induced by the NuRD complex.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Glucosa/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Ribosomas/genética , Transcripción Genética/genética , Adenosina Trifosfatasas/genética , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa I/genética , Sirtuinas/genética , Factores de Transcripción/genética
8.
BMC Cancer ; 19(1): 530, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31151422

RESUMEN

BACKGROUND: Histone H2AX phosphorylation at the site of Tyr-142 can participates in multiple biological progressions, which is including DNA repair. Ras pathway is closely involved in human cancers. Our study investigated the effects of Ras pathway via regulating H2AX.Y142ph. METHODS: Gastric cancer cell line SNU-16 and MKN1 cells were transfected with Ras for G12D and T35S site mutation. The phosphorylation of H2A.XY142 and ERK1/2, WSTF and MDM2 was detected by western blot. Cell viability, cell colonies and migration was analyzed by MTT assay, soft-agar colony formation assay, and Transwell assay, respectively. The expression of Ras pathway related downstream factors, EYA3 and WSTF was detected by qRT-PCR. The relationship between Ras and downstream factors were detected by ChIP. The cell cycle progression was measured by flow cytometry. RESULTS: RasG12D/T35V transection decreased the phosphorylation of H2A.XY142 and activated phosphorylation of ERK-1/2. H2A.XY142 inhibited cell viability, colonies and migration. H2A.XY142ph altered the expression of Ras downstream factors. CHIP assay revealed that RasG12D/T35V could bind to the promoters of these Ras pathway downstream factors. Silence of EYA3 increased H2A.XY142ph and inhibited cell viability, migration and percent cells in S stage. Furthermore, silence of EYA3 also changed the downstream factors expression. WSTF and H2A.XY142ph revealed the similar trend and MDM2 on the opposite. CONCLUSION: Ras/ERK signal pathway decreased H2A.XY142ph and promoted cell growth and metastasis. This Ras regulation process was down-regulated by the cascade of MDM2-WSTF-EYA3 to decrease H2A.XY142ph in SNU-16 cells.


Asunto(s)
Histonas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Gástricas/metabolismo , Factores de Transcripción/metabolismo , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Transformación Celular Neoplásica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Gástricas/patología , Factores de Transcripción/genética
9.
Mol Cell Neurosci ; 87: 55-64, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29249292

RESUMEN

The mammalian ISWI (Imitation Switch) genes SMARCA1 and SMARCA5 encode the ATP-dependent chromatin remodeling proteins SNF2L and SNF2H. The ISWI proteins interact with BAZ (bromodomain adjacent to PHD zinc finger) domain containing proteins to generate eight distinct remodeling complexes. ISWI complex-mediated nucleosome positioning within genes and gene regulatory elements is proving important for the transition from a committed progenitor state to a differentiated cell state. Genetic studies have implicated the involvement of many ATP-dependent chromatin remodeling proteins in neurodevelopmental disorders (NDDs), including SMARCA1. Here we review the characterization of mice inactivated for ISWI and their interacting proteins, as it pertains to brain development and disease. A better understanding of chromatin dynamics during neural development is a prerequisite to understanding disease pathologies and the development of therapeutics for these complex disorders.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Encéfalo/crecimiento & desarrollo , Cromatina/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Animales , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina/genética , Humanos , Trastornos del Neurodesarrollo/metabolismo , Factores de Transcripción/genética
10.
Cell Signal ; 28(11): 1673-82, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27449264

RESUMEN

Williams syndrome transcription factor (WSTF), which is encoded by the BAZ1B gene, was first identified as a hemizygously deleted gene in patients with Williams syndrome. WSTF protein has been reported to be involved in transcription, replication, chromatin remodeling and DNA damage response, and also functions as a tyrosine protein kinase. However, the function of WSTF in cancer is not known. Here, we show that WSTF overexpression promotes proliferation, colony formation, migration and invasion of lung cancer A549 and H1299 cells. WSTF overexpression also promotes tumor growth and invasive abilities of lung cancer cells in mouse xenograft models. cDNA microarray and subsequent qRT-PCR validation revealed that WSTF overexpression significantly upregulated the expression of EMT (epithelial to mesenchymal transition) marker fibronectin (FN1) and EMT-inducing genes Fos and CEACAM6. The changes of EMT markers including downregulated E-cadherin and upregulated N-cadherin and FN1 were further confirmed at both mRNA and protein levels upon WSTF overexpression, with typical morphological changes of EMT. Furthermore, WSTF activates both PI3K/Akt and IL-6/STAT3 oncogenic signaling pathways. Treatment with PI3K inhibitor ZSTK474 or STAT3 inhibitor niclosamide reversed the effects of WSTF overexpression by inhibiting cell proliferation, migration and invasion, with decreased level of p-Akt, p-STAT3 and IL-6. ZSTK474 and niclosamide also reversed EMT markers and EMT-inducing proteins including Snail, Slug, Twist and CEACAM6 in WSTF-overexpressing A549 cells. Taken together, these results demonstrate that WSTF may act as an oncoprotein in lung cancer to accelerate tumor aggressiveness by promoting EMT via activation of PI3K/Akt and IL-6/STAT3 pathways.


Asunto(s)
Transición Epitelial-Mesenquimal , Interleucina-6/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Factores de Transcripción/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Masculino , Ratones Desnudos , Invasividad Neoplásica , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Transducción de Señal , Factores de Transcripción/genética , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Oncotarget ; 7(33): 53153-53164, 2016 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-27449290

RESUMEN

It remains unclear how the signals of mutant KRASG12 in the transformed cells spread to the surrounding non-mutated cells and changes the microenvironment to promote tumor formation. We identified that Williams-Beuren syndrome transcription factor (WSTF), a non-secretory protein, was released in complex with secretory protein-neuregulin-3 (NRG3). The KRASG12 mutant activates the transcription of NRG3. The WSTF/NRG3 in extracellular space could activate oncogenic pathways in normal colon cells carrying wild type KRAS and endow them with the ability to express NRG3 and release WSTF/NRG3. Extracellular WSTF/NRG3 promotes the formation of colon tumors. Blockade of extracellular WSTF could restore cetuximab sensitivity of colon cancer cells with mutant KRAS. The appearance of WSTF/NRG3 in serum and urine correlates with a colon tumor carrying a KRASG12 mutant. In summary, our demonstration provides a new pathway to our understanding of the biological development of complex diseases.


Asunto(s)
Mutación Missense , Neurregulinas/genética , Comunicación Paracrina/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción/genética , Células A549 , Animales , Antineoplásicos Inmunológicos/farmacología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Cetuximab/farmacología , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Células Epiteliales/metabolismo , Femenino , Glicina/genética , Células HeLa , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Neurregulinas/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Interferencia de ARN , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Trasplante Heterólogo
13.
Biochem Cell Biol ; 93(1): 94-101, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25495694

RESUMEN

The human ether à go-go 1 potassium channel (hEAG1) is required for cell cycle progression and proliferation of cancer cells. Inhibitors of hEAG1 activity and expression represent potential therapeutic drugs in cancer. Previously, we have shown that hEAG1 expression is downregulated by calcitriol in a variety of cancer cells. Herein, we provided evidence on the regulatory mechanism involved in such repressive effect in cells derived from human cervical cancer. Our results indicate that repression by calcitriol occurs at the transcriptional level and involves a functional negative vitamin D response element (nVDRE) E-box type in the hEAG1 promoter. The described mechanism in this work implies that a protein complex formed by the vitamin D receptor-interacting repressor, the vitamin D receptor, the retinoid X receptor, and the Williams syndrome transcription factor interact with the nVDRE in the hEAG1 promoter in the absence of ligand. Interestingly, all of these transcription factors except the vitamin D receptor-interacting repressor are displaced from hEAG1 promoter in the presence of calcitriol. Our results provide novel mechanistic insights into calcitriol mode of action in repressing hEAG1 gene expression.


Asunto(s)
Calcitriol/farmacología , Canales de Potasio Éter-A-Go-Go/genética , Receptores de Calcitriol/genética , Neoplasias del Cuello Uterino/genética , Elemento de Respuesta a la Vitamina D/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Regulación hacia Abajo , Ensayo de Cambio de Movilidad Electroforética , Femenino , Humanos , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
14.
Cell Cycle ; 13(19): 3016-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486562

RESUMEN

Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family has recently emerged as one of the major ATP-dependent chromatin remodeling complex families that function in the DDR, as it is implicated in at least 3 major DNA repair pathways: homologous recombination, non-homologous end-joining and nucleotide excision repair. In this review, we discuss the various manners through which different ISWI complexes regulate DNA repair and how they are targeted to chromatin containing damaged DNA.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , Reparación del ADN , Adenosina Trifosfatasas/química , Animales , Cromatina/química , Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , Drosophila/metabolismo , Histonas/metabolismo , MicroARNs/metabolismo , Transducción de Señal
15.
FEBS Open Bio ; 2: 313-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23772364

RESUMEN

Under normal conditions histone H2AX is constitutively phosphorylated on tyrosine (Y) 142 by Williams-Beuren syndrome transcription factor kinase (WSTF). Following DNA double strand breaks (DSB), Y142 is de-phosphorylated and serine (S) 139 is phosphorylated. Here we explored DSB-dependent cross talk between H2AX residues S139 and Y142. H2axY142A mutation resulted in increased sensitivity to ionising radiation (IR), compared to H2axS139A. Interestingly, co-mutation of S139A and Y142A rescued IR sensitivity. The DSB response proteins 53Bp1 and Rad51 were recruited to IR-induced foci (IRIF) in H2axS139A, H2axY142A and H2axS139A/Y142A cells. Our results suggest that H2axY142A IR sensitivity is dependent upon the C-terminal residue, S139.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...