Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 849, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256665

RESUMEN

BACKGROUND: The commercial utilization of genetically modified soybeans has yielded substantial economic advantages. Nevertheless, the genetic drift towards wild soybeans is one of the main ecological risks that needs to be addressed. Previous experiments demonstrated the absence of fitness cost or florescence overlap in hybrid offspring resulting from the crossbreeding of transgenic soybean GTS40-3-2 and Zhengzhou wild soybeans. In this study, hybrid progeny was systematically crossed with wild soybeans to establish a backcross progeny system. This system was employed to evaluate the ecological risk associated with the backcross progeny of transgenic and wild soybeans. RESULTS: The findings indicated that the offspring from the backcross exhibited glyphosate tolerance. Furthermore, the expression of foreign proteins in the backcross offspring was notably lower than in the transgenic soybean, and there was no significant difference when compared to the hybrid progeny. Parameters such as germination rate, aboveground biomass, pods per plant, full seeds per plant, and 100-grain weight exhibited no significant differences between the negative and positive lines of the backcross progenies, and no fitness cost was identified in comparison to wild soybeans. These results underscore the potential for foreign genes to propagate within other wild soybeans, which requires continuous attention. CONCLUSIONS: The widespread adoption of genetically modified soybeans has undeniably led to substantial economic gains. However, the research findings emphasize the critical importance of addressing the ecological risks posed by genetic drift towards wild soybeans. The backcross progeny system established in this study indicates that the potential for foreign gene dissemination to wild soybean populations warrants continued attention and mitigation strategies.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa , Glycine max , Glicina , Glifosato , Resistencia a los Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Aptitud Genética , Glicina/análogos & derivados , Glicina/farmacología , Glycine max/genética , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Glifosato/toxicidad , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Herbicidas/toxicidad , Plantas Modificadas Genéticamente/genética
2.
Front Microbiol ; 15: 1433092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296297

RESUMEN

Resource utilization of tail vegetables has raised increasing concerns in the modern agriculture. However, the effect and related mechanisms of flue-cured tobacco leaves on the product quality, phytotoxicity and bacterially-mediated nitrogen (N) transformation process of tail vegetable composting were poorly understood. Amendments of high-dosed (5% and 10% w/w) tobacco leaves into the compost accelerated the heating process, prolonged the time of thermophilic stage, increased the peak temperature, thereby improving maturity and shortening composting duration. The tobacco leaf amendments at the 10% (w/w) increased the N conservation (TN and NH4-N content) of compost, due to the supply of N-containing nutrient and promotion of organic matter degradation by tobacco leaves. Besides, tobacco leaf amendments promoted the seed germination and root development of wild soybean, exhibiting the feasibility of composting product for promoting the growth of salt-tolerant plants, but no dose-dependent effect was found for tobacco leaf amendments. Addition of high dosed (5% and 10% w/w) tobacco leaves shifted the bacterial community towards lignocellulosic and N-fixing bacteria, contributing to increasing the compost maturity and N retention. PICRUSt 2 functional prediction revealed that N-related bacterial metabolism (i.e., hydroxylamine oxidation and denitrifying process) was enhanced in the tobacco leaf treatments, which contributed to N retention and elevated nutrient quality of composting. To the best knowledge, this was the first study to explore the effect of tobacco waste additives on the nutrient transformation and halophyte growth promotion of organic waste composting. These findings will deepen the understanding of microbially-mediated N transformation and composting processes involving flue-cured tobacco leaves.

3.
Ann Bot ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39081208

RESUMEN

BACKGROUND AND AIMS: Soil salinization adversely threatens plant survival and food production globally. The mobilization of storage reserves in cotyledons and establishment of the hypocotyl/root axis (HRA) structure and function are crucial to the growth of dicotyledonous plants during the post-germination growth period. Here, we report the adaptive mechanisms of wild and cultivated soybeans in response to alkali stress in soil during the post-germination growth period. METHODS: Diferences in physiological parameters, microstructure, and the types, amounts and metabolic pathways of small molecule metabolites and gene expression were compared and multi-omics integration analysis was performed between wild and cultivated soybean under sufcient and artifcially simulated alkali stress during the post-germination growth period in this study. KEY RESULTS: Structural analysis showed that the cell wall thickness of wild soybean under alkali stress increased, whereas cultivated soybeans were severely damaged. A comprehensive analysis of small molecule metabolites and gene expression revealed that protein breakdown in wild soybean cotyledons under alkali stress was enhanced, and transport of amino acids and sucrose increased. Additionally, lignin and cellulose synthesis in wild soybean HRA under alkali stress were enhanced. CONCLUSIONS: verall, protein decomposition and transport of amino acids and sucrose increased in wild soybean cotyledons under alkali stress, which in turn, promotes HRA growth. Similarly, lignin and cellulose synthesis in wild soybean HRA enhanced, which subsequently, enhanced cell wall synthesis, thereby maintaining the stability and functionality of HRA under alkali stress. This study presents important practical implications for the utilization of wild plant resources and sustainable development of agriculture.

4.
Plants (Basel) ; 13(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065421

RESUMEN

Drought stress, which is becoming more prevalent due to climate change, is a significant abiotic factor that adversely impacts crop production and yield stability. Cultivated soybean (Glycine max), a versatile crop for humans and animals, exhibits sensitivity to drought, resulting in reduced growth and development under drought conditions. However, few genetic studies have assessed wild soybean's (Glycine soja) response to drought stress. In this work, we conducted a genome-wide association study (GWAS) and analysis of wild soybean accessions to identify loci responsible for drought tolerance at the vegetative (n = 187) and the germination stages (n = 135) using the available resequencing data. The GWAS analysis of the leaf wilting score (LWS) identified eight single-nucleotide polymorphisms (SNPs) on chromosomes 10, 11, and 19. Of these, wild soybeans with both SNPs on chromosomes 10 (adenine) and 11 (thymine) produced lower LWS, indicating that these SNPs have an important role in the genetic effect on LWS for drought tolerance at the vegetative stage. At the germination stage, nine SNPs associated with five phenotypic measurements were identified on chromosomes 6, 9, 10, 13, 16, and 17, and the genomic regions identified at the germination stage were different from those identified for the LWS, supporting our previous finding that there may not be a robust correlation between the genes influencing phenotypes at the germination and vegetative stages. This research will benefit marker-assisted breeding programs aimed at enhancing drought tolerance in soybeans.

5.
Plants (Basel) ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931088

RESUMEN

As a type of cell-wall-relaxing protein that is widely present in plants, expansins have been shown to actively participate in the regulation of plant growth and responses to environmental stress. Wild soybeans have long existed in the wild environment and possess abundant resistance gene resources, which hold significant value for the improvement of cultivated soybean germplasm. In our previous study, we found that the wild soybean expansin gene GsEXLB14 is specifically transcribed in roots, and its transcription level significantly increases under salt and drought stress. To further identify the function of GsEXLB14, in this study, we cloned the CDS sequence of this gene. The transcription pattern of GsEXLB14 in the roots of wild soybean under salt and drought stress was analyzed by qRT-PCR. Using an Agrobacterium rhizogenes-mediated genetic transformation, we obtained soybean hairy roots overexpressing GsEXLB14. Under 150 mM NaCl- and 100 mM mannitol-simulated drought stress, the relative growth values of the number, length, and weight of transgenic soybean hairy roots were significantly higher than those of the control group. We obtained the transcriptomes of transgenic and wild-type soybean hairy roots under normal growth conditions and under salt and drought stress through RNA sequencing. A transcriptomic analysis showed that the transcription of genes encoding expansins (EXPB family), peroxidase, H+-transporting ATPase, and other genes was significantly upregulated in transgenic hairy roots under salt stress. Under drought stress, the transcription of expansin (EXPB/LB family) genes increased in transgenic hairy roots. In addition, the transcription of genes encoding peroxidases, calcium/calmodulin-dependent protein kinases, and dehydration-responsive proteins increased significantly. The results of qRT-PCR also confirmed that the transcription pattern of the above genes was consistent with the transcriptome. The differences in the transcript levels of the above genes may be the potential reason for the strong tolerance of soybean hairy roots overexpressing the GsEXLB14 gene under salt and drought stress. In conclusion, the expansin GsEXLB14 can be used as a valuable candidate gene for the molecular breeding of soybeans.

6.
Plants (Basel) ; 13(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38592877

RESUMEN

Wild soybean (Glycine soja L.), drought-tolerant cultivar Tiefeng 31 (Glycine max L.), and drought-sensitive cultivar Fendou 93 (Glycine max L.) were used as materials to investigate the drought tolerance mechanism after 72 h 2.5 M PEG 8000 (osmotic potential -0.54 MPa)-simulated drought stress at the seedling stage. The results indicated that the leaves of the G. soja did not wilt under drought stress. However, both the drought-tolerant and drought-sensitive cultivated soybean cultivars experienced varying degrees of leaf wilt. Notably, the drought-sensitive cultivated soybean cultivars exhibited severe leaf wilt after the drought stress. Drought stress was determined to have a significant impact on the dry matter of the above-ground part of the drought-sensitive cultivar Fendou 93, followed by the drought-tolerant cultivar Tiefeng 31, with the lowest reduction observed in G. soja. Furthermore, the presence of drought stress resulted in the closure of leaf stomata. G. soja exhibited the highest proportion of stomatal opening per unit area, followed by the drought-tolerant cultivar Tiefeng 31, while the drought-sensitive cultivar Fendou 93 displayed the lowest percentage. Photosynthesis-related indexes, including photosynthetic rate, intercellular CO2, transpiration rate, and stomatal conductance, decreased in Fendou 93 and Tiefeng 31 after drought stress, but increased in G. soja. In terms of the antioxidant scavenging system, lower accumulation of malondialdehyde (MDA) was observed in G. soja and Tiefeng 31, along with higher activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) to counteract excess reactive oxygen species and maintain cell membrane integrity. In contrast, the drought-sensitive cultivar Fendou 93 had higher MDA content and higher activities of ascorbate peroxidase (APX, EC 1.11.1.11) and peroxidase (POD, 1.11.1.7). G. soja and Tiefeng 31 also exhibited less accumulation of osmolytes, including soluble sugar, soluble protein, and free proline content. The activities of δ-OAT, ProDH, and P5CS, key enzymes in proline anabolism, showed an initial increase under drought stress, followed by a decrease, and then an increase again at the end of drought stress in G. soja. Before drought stress, Tiefeng 31 had higher activities of ProDH and P5CS, which decreased with prolonged drought stress. Fendou 93 experienced an increase in the activities of δ-OAT, ProDH, and P5CS under drought stress. The δ-OAT gene expression levels were up-regulated in all three germplasms. The expression levels of the P5CS gene in Fendou 93 and Tiefeng 31 were down-regulated, while G. soja showed no significant change. The expression of the P5CR gene and ProDH gene was down-regulated in Fendou 93 and Tiefeng 31, but up-regulated in G. soja. This indicates that proline content is regulated at both the transcription and translation levels.

7.
Biochem Genet ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411942

RESUMEN

WRKY Transcription factors (TFs) play critical roles in plant defence mechanisms that are activated in response to biotic and abiotic stresses. However, information on the Glycine soja WRKYs (GsoWRKYs) is scarce. Owing to its importance in soybean breeding, here we identified putative WRKY TFs in wild soybean, and compared the results with Glycine max WRKYs (GmaWRKYs) by phylogenetic, conserved motif, and duplication analyses. Moreover, we explored the expression trends of WRKYs in G. max (oomycete, fungi, virus, bacteria, and soybean cyst nematode) and G. soja (soybean cyst nematode), and identified commonly expressed WRKYs and their co-expressed genes. We identified, 181 and 180 putative WRKYs in G. max and G. soja, respectively. Though the number of WRKYs in both studied species is almost the same, they differ in many ways, i.e., the number of WRKYs on corresponding chromosomes, conserved domain structures, WRKYGQK motif variants, and zinc-finger motifs. WRKYs in both species grouped in three major clads, i.e., I-III, where group-II had sub-clads IIa-IIe. We found that GsoWRKYs expanded mostly through segmental duplication. A large number of WRKYs were expressed in response to biotic stresses, i.e., Phakospora pachyrhizi, Phytoplasma, Heterodera glycines, Macrophomina phaseolina, and Soybean mosaic virus; 56 GmaWRKYs were commonly expressed in soybean plants infected with these diseases. Finally, 30 and 63 GmaWRKYs and GsoWRKYs co-expressed with 205 and 123 non-WRKY genes, respectively, indicating that WRKYs play essential roles in biotic stress tolerance in Glycine species.

8.
Plants (Basel) ; 12(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38140455

RESUMEN

Glycine soja is the wild relative species of cultivated soybean. In this study, we investigated the population divergence and genetic basis of the local adaptation of wild soybean in China using genome-wide single-nucleotide polymorphisms (SNPs) of a population of 72 G. soja accessions. Using phylogenetic analysis, we observed that G. soja accessions clustered into three distinct groups, each corresponding to a specific geographic region, the northeastern region (NER), central region (CR), and southern region (SR), consistent with previous studies. Notably, we found a significant positive correlation between genetic and geographic distances. Further population structure analysis revealed each group was associated with an ancestral population and a specific geographic area. By utilizing the genome sequencing data of accessions from 16 different locations, we inferred the population history of these wild soybean groups. Our results indicate that the three groups diverged ~25,000 years ago, coinciding with the time of the last glacial maximum. The effective population size of the SR group expanded first, and subsequently, the NER and CR groups expanded approximately 5000 and 2500 years ago, respectively. Moreover, 83, 104, and 101 significant associated loci (SALs) were identified using genome-wide association analysis for annual mean temperature, annual precipitation, and latitude, respectively. Functional analysis of genes located in SALs highlighted candidate genes related to local adaptation. This study highlights the significant role of geographic isolation and environmental factors in shaping the genetic structure and adaptability of wild soybean populations. Furthermore, it emphasizes the value of wild soybean as a crucial genetic resource for enhancing the adaptability of cultivated soybeans, which have experienced a loss of genetic diversity due to domestication and intensive breeding practices. The insights gained from our research provide valuable information for the protection, conservation, and utilization of this important genetic resource.

9.
Plants (Basel) ; 12(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960027

RESUMEN

The commercial cultivation of herbicide-resistant (HR) transgenic soybeans (Glycine max L. Merr.) raises great concern that transgenes may introgress into wild soybeans (Glycine soja Sieb. et Zucc.) via pollen-mediated gene flow, which could increase the ecological risks of transgenic weed populations and threaten the genetic diversity of wild soybean. To assess the fitness of hybrids derived from transgenic HR soybean and wild soybean, the F2 and F3 descendants of crosses of the HR soybean line T14R1251-70 and two wild soybeans (LNTL and JLBC, which were collected from LiaoNing TieLing and JiLin BaiCheng, respectively), were planted along with their parents in wasteland or farmland soil, with or without weed competition. The fitness of F2 and F3 was significantly increased compared to the wild soybeans under all test conditions, and they also showed a greater competitive ability against weeds. Seeds produced by F2 and F3 were superficially similar to wild soybeans in having a hard seed coat; however, closer morphological examination revealed that the hard-seededness was lower due to the seed coat structure, specifically the presence of thicker hourglass cells in seed coat layers and lower Ca content in palisade epidermis. Hybrid descendants containing the cp4-epsps HR allele were able to complete their life cycle and produce a large number of seeds in the test conditions, which suggests that they would be able to survive in the soil beyond a single growing season, germinate, and grow under suitable conditions. Our findings indicate that the hybrid descendants of HR soybean and wild soybean may pose potential ecological risks in regions of soybean cultivation where wild soybean occurs.

10.
Yi Chuan ; 45(9): 793-800, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37731233

RESUMEN

Flowering represents the transition from vegetative stage to reproductive stage. As a photoperiod- sensitive crop, soybean can perceive changes in photoperiod to regulate flowering and reproductive periods, thereby influencing soybean yield and other agronomic traits, and determining the photoperiodic adaptability. Therefore, understanding the regulatory mechanisms of photoperiod on flowering and reproductive periods in soybean is one of the hotspots in soybean research. In this review, we introduce the molecular mechanisms of early flowering and early maturation during soybean domestication, and the molecular regulatory pathways of cultivated soybean expansion from the origin to high and low latitudes, respectively. At last, we summarize the research progress on photoperiod adaptability in wild soybean. Analyzing the regulatory mechanisms of photoperiod on soybean life history and domestication will provide valuable insights for the breeding of superior soybean varieties.


Asunto(s)
Glycine max , Fotoperiodo , Glycine max/genética , Fitomejoramiento , Agricultura , Domesticación
11.
PeerJ ; 11: e15486, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397019

RESUMEN

Wild soybean (Glycine soja), the ancestor of cultivated soybean, has evolved into many ecotypes with different adaptations to adversity under the action of divergent evolution. Barren-tolerant wild soybean has developed adaptation to most nutrient-stress environments, especially with respect to low nitrogen (LN) conditions. This study describes the differences in physiological and metabolomic changes between common wild soybean (GS1) and barren-tolerant wild soybean(GS2) under LN stress. Compared with plants grown under the unstressed control (CK) conditions, the young leaves of barren-tolerant wild soybean under LN conditions maintained relatively stable chlorophyll, concentration and rates of photosynthesis and transpiration, as well as increased carotenoid content, whereas the net photosynthetic rate (PN) of GS1 decreased significantly 0.64-fold (p < 0.05) in the young leaves of GS1. The ratio of internal to atmospheric CO2 concentrations increased significantly 0.07-fold (p < 0.05), 0.09-fold (p < 0.05) in the young leaves of GS1 and GS2, respectively, and increased significantly 0.05-fold (p < 0.05) and 0.07-fold (p < 0.05) in the old leaves of GS1 and GS2, respectively, relative to the CK. The concentration of chlorophylls a and b decreased significantly 0.45-fold (p < 0.05), 0.13-fold (p > 0.05) in the young leaves of GS1 and GS2, respectively, and decreased significantly 0.74-fold (p < 0.01) and 0.60-fold (p < 0.01) in the old leaves of GS1 and GS2, respectively. Under LN stress, nitrate concentration in the young leaves of GS1 and GS2 decreased significantly 0.69- and 0.50-fold (p < 0.01), respectively, relative to CK, and decreased significantly 2.10-fold and 1.77-fold (p < 0.01) in the old leaves of GS1 and GS2, respectively. Barren-tolerant wild soybean increased the concentration of beneficial ion pairs. Under LN stress, Zn2+ significantly increased by 1.06- and 1.35-fold (p < 0.01) in the young and old leaves of GS2 (p < 0.01), but there was no significant change in GS1. The metabolism of amino acids and organic acids was high in GS2 young and old leaves, and the metabolites related to the TCA cycle were significantly increased. The 4-aminobutyric acid (GABA) concertation decreased significantly 0.70-fold (p < 0.05) in the young leaves of GS1 but increased 0.21-fold (p < 0.05) significantly in GS2. The relative concentration of proline increased significantly 1.21-fold (p < 0.01) and 2.85-fold (p < 0.01) in the young and old leaves of GS2. Under LN stress, GS2 could maintain photosynthesis rate and enhance the reabsorption of nitrate and magnesium in young leaves, compared to GS1. More importantly, GS2 exhibited increased amino acid and TCA cycle metabolism in young and old leaves. Adequate reabsorption of mineral and organic nutrients is an important strategy for barren-tolerant wild soybeans to survive under LN stress. Our research provides a new perspective on the exploitation and utilization of wild soybean resources.


Asunto(s)
Fabaceae , Glycine max , Glycine max/metabolismo , Ecotipo , Nitrógeno/metabolismo , Nitratos/metabolismo , Fabaceae/metabolismo , Hojas de la Planta/metabolismo
12.
Mol Breed ; 43(5): 36, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37309391

RESUMEN

Soybean (Glycine max) is an economically important crop worldwide, serving as a major source of oil and protein for human consumption and animal feed. Cultivated soybean was domesticated from wild soybean (Glycine soja) which both species are highly sensitive to photoperiod and can grow over a wide geographical range. The extensive ecological adaptation of wild and cultivated soybean has been facilitated by a series of genes represented as quantitative trait loci (QTLs) that control photoperiodic flowering and maturation. Here, we review the molecular and genetic basis underlying the regulation of photoperiodic flowering in soybean. Soybean has experienced both natural and artificial selection during adaptation to different latitudes, resulting in differential molecular and evolutionary mechanisms between wild and cultivated soybean. The in-depth study of natural and artificial selection for the photoperiodic adaptability of wild and cultivated soybean provides an important theoretical and practical basis for enhancing soybean adaptability and yield via molecular breeding. In addition, we discuss the possible origin of wild soybean, current challenges, and future research directions in this important topic.

13.
Planta ; 257(5): 95, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37036535

RESUMEN

MAIN CONCLUSION: The keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced reutilization of reserves in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. Soil alkalization of farmlands is increasingly serious, adversely restricting crop growth and endangering food security. Here, based on integrated analysis of transcriptomics and metabolomics, we systematically investigated changes in cotyledon weight and young root growth in response to alkali stress in two ecotypes of wild soybean after germination to reveal alkali-resistance mechanisms in barren-tolerant wild soybean. Compared with barren-tolerant wild soybean, the dry weight of common wild soybean cotyledons under alkali stress decreased slowly and the length of young roots shortened. In barren-tolerant wild soybean, nitrogen-transport amino acids asparagine and glutamate decreased in cotyledons but increased in young roots, and nitrogen-compound transporter genes and genes involved in asparagine metabolism were significantly up-regulated in both cotyledons and young roots. Moreover, isocitric, succinic, and L-malic acids involved in the glyoxylate cycle significantly accumulated and the malate synthetase gene was up-regulated in barren-tolerant wild soybean cotyledons. In barren-tolerant wild soybean young roots, glutamate and glycine related to glutathione metabolism increased significantly and the glutathione reductase gene was up-regulated. Pyruvic acid and citric acid involved in pyruvate-citrate metabolism increased distinctly and genes encoding pyruvate decarboxylase and citrate synthetase were up-regulated. Integrated analysis showed that the keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced protein decomposition, amino acid transport, and lipolysis in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. This study provides new ideas for the exploitation and utilization of wild soybean resources.


Asunto(s)
Fabaceae , Glycine max , Glycine max/metabolismo , Germinación , Transcriptoma , Álcalis/metabolismo , Asparagina/genética , Asparagina/metabolismo , Antioxidantes/metabolismo , Fabaceae/genética , Nitrógeno/metabolismo , Citratos/metabolismo , Glutamatos/genética , Glutamatos/metabolismo
14.
Plants (Basel) ; 12(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37111888

RESUMEN

Soybean (Glycine max L.) is a globally important source of plant proteins, oils, and amino acids for both humans and livestock. Wild soybean (Glycine soja Sieb. and Zucc.), the ancestor of cultivated soybean, could be a useful genetic source for increasing these components in soybean crops. In this study, 96,432 single-nucleotide polymorphisms (SNPs) across 203 wild soybean accessions from the 180K Axiom® Soya SNP array were investigated using an association analysis. Protein and oil content exhibited a highly significant negative correlation, while the 17 amino acids exhibited a highly significant positive correlation with each other. A genome-wide association study (GWAS) was conducted on the protein, oil, and amino acid content using the 203 wild soybean accessions. A total of 44 significant SNPs were associated with protein, oil, and amino acid content. Glyma.11g015500 and Glyma.20g050300, which contained SNPs detected from the GWAS, were selected as novel candidate genes for the protein and oil content, respectively. In addition, Glyma.01g053200 and Glyma.03g239700 were selected as novel candidate genes for nine of the amino acids (Ala, Asp, Glu, Gly, Leu, Lys, Pro, Ser, and Thr). The identification of the SNP markers related to protein, oil, and amino acid content reported in the present study is expected to help improve the quality of selective breeding programs for soybeans.

15.
Plants (Basel) ; 12(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986992

RESUMEN

The utilization of wild soybean germplasms in breeding programs increases genetic diversity, and they contain the rare alleles of traits of interest. Understanding the genetic diversity of wild germplasms is essential for determining effective strategies that can improve the economic traits of soybeans. Undesirable traits make it challenging to cultivate wild soybeans. This study aimed to construct a core subset of 1467 wild soybean accessions of the total population and analyze their genetic diversity to understand their genetic variations. Genome-wild association studies were conducted to detect the genetic loci underlying the time to flowering for a core subset collection, and they revealed the allelic variation in E genes for predicting maturity using the available resequencing data of wild soybean. Based on principal component and cluster analyses, 408 wild soybean accessions in the core collection covered the total population and were explained by 3 clusters representing the collection regions, namely, Korea, China, and Japan. Most of the wild soybean collections in this study had the E1e2E3 genotype according to association mapping and a resequencing analysis. Korean wild soybean core collections can provide helpful genetic resources to identify new flowering and maturity genes near the E gene loci and genetic materials for developing new cultivars, facilitating the introgression of genes of interest from wild soybean.

16.
Front Microbiol ; 14: 1065302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992926

RESUMEN

Introduction: The microbiome inhabiting plant leaves is critical for plant health and productivity. Wild soybean (Glycine soja), which originated in China, is the progenitor of cultivated soybean (Glycine max). So far, the community structure and assembly mechanism of phyllosphere microbial community on G. soja were poorly understood. Methods: Here, we combined a national-scale survey with high-throughput sequencing and microsatellite data to evaluate the contribution of host genotype vs. climate in explaining the foliar microbiome of G. soja, and the core foliar microbiota of G. soja were identified. Results: Our findings revealed that both the host genotype and environmental factors (i.e., geographic location and climatic conditions) were important factors regulating foliar community assembly of G. soja. Host genotypes explained 0.4% and 3.6% variations of the foliar bacterial and fungal community composition, respectively, while environmental factors explained 25.8% and 19.9% variations, respectively. We further identified a core microbiome thriving on the foliage of all G. soja populations, including bacterial (dominated by Methylobacterium-Methylorubrum, Pantoea, Quadrisphaera, Pseudomonas, and Sphingomonas) and fungal (dominated by Cladosporium, Alternaria, and Penicillium) taxa. Conclusion: Our study revealed the significant role of host genetic distance as a driver of the foliar microbiome of the wild progenitor of soya, as well as the effects of climatic changes on foliar microbiomes. These findings would increase our knowledge of assembly mechanisms in the phyllosphere of wild soybeans and suggest the potential to manage the phyllosphere of soya plantations by plant breeding and selecting specific genotypes under climate change.

17.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902050

RESUMEN

Soybeans (Glycine max) are a key food crop, serving as a valuable source of both oil and plant-derived protein. Pseudomonas syringae pv. glycinea (Psg) is among the most aggressive and prevalent pathogens affecting soybean production, causing a form of bacterial spot disease that impacts soybean leaves and thereby reduces crop yields. In this study, 310 natural soybean varieties were screened for Psg resistance and susceptibility. The identified susceptible and resistant varieties were then used for linkage mapping, BSA-seq, and whole genome sequencing (WGS) analyses aimed at identifying key QTLs associated with Psg responses. Candidate Psg-related genes were further confirmed through WGS and qPCR analyses. Candidate gene haplotype analyses were used to explore the associations between haplotypes and soybean Psg resistance. In addition, landrace and wild soybean plants were found to exhibit a higher degree of Psg resistance as compared to cultivated soybean varieties. In total, 10 QTLs were identified using chromosome segment substitution lines derived from Suinong14 (cultivated soybean) and ZYD00006 (wild soybean). Glyma.10g230200 was found to be induced in response to Psg, with the Glyma.10g230200 haplotype corresponding to soybean disease resistance. The QTLs identified herein can be leveraged to guide the marker-assisted breeding of soybean cultivars that exhibit partial resistance to Psg. Moreover, further functional and molecular studies of Glyma.10g230200 have the potential to offer insight into the mechanistic basis for soybean Psg resistance.


Asunto(s)
Glycine max , Pseudomonas syringae , Glycine max/genética , Pseudomonas syringae/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Glicina/genética
18.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835486

RESUMEN

Soybean seeds consist of approximately 40% protein and 20% oil, making them one of the world's most important cultivated legumes. However, the levels of these compounds are negatively correlated with each other and regulated by quantitative trait loci (QTL) that are controlled by several genes. In this study, a total of 190 F2 and 90 BC1F2 plants derived from a cross of Daepung (Glycine max) with GWS-1887 (G. soja, a source of high protein), were used for the QTL analysis of protein and oil content. In the F2:3 populations, the average protein and oil content was 45.52% and 11.59%, respectively. A QTL associated with protein levels was detected at Gm20_29512680 on chr. 20 with a likelihood of odds (LOD) of 9.57 and an R2 of 17.2%. A QTL associated with oil levels was also detected at Gm15_3621773 on chr. 15 (LOD: 5.80; R2: 12.2%). In the BC1F2:3 populations, the average protein and oil content was 44.25% and 12.14%, respectively. A QTL associated with both protein and oil content was detected at Gm20_27578013 on chr. 20 (LOD: 3.77 and 3.06; R2 15.8% and 10.7%, respectively). The crossover to the protein content of BC1F3:4 population was identified by SNP marker Gm20_32603292. Based on these results, two genes, Glyma.20g088000 (S-adenosyl-l-methionine-dependent methyltransferases) and Glyma.20g088400 (oxidoreductase, 2-oxoglutarate-Fe(II) oxygenase family protein), in which the amino acid sequence had changed and a stop codon was generated due to an InDel in the exon region, were identified.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Proteínas de Plantas/genética , Semillas/metabolismo , Glicina/metabolismo
19.
Curr Biol ; 33(2): 252-262.e4, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36538932

RESUMEN

In many plants, flowering time is influenced by daylength as an adaptive response. In soybean (Glycine max) cultivars, however, photoperiodic flowering reduces crop yield and quality in high-latitude regions. Understanding the genetic basis of wild soybean (Glycine soja) adaptation to high latitudes could aid breeding of improved cultivars. Here, we identify the Tof4 (Time of flowering 4) locus, which encodes by an E1-like protein, E1La, that represses flowering and enhances adaptation to high latitudes in wild soybean. Moreover, we found that Tof4 physically associates with the promoters of two important FLOWERING LOCUS T (FT2a and FT5a) and with Tof5 to inhibit their transcription under long photoperiods. The effect of Tof4 on flowering and maturity is mediated by FT2a and FT5a proteins. Intriguingly, Tof4 and the key flowering repressor E1 independently but additively regulate flowering time, maturity, and grain yield in soybean. We determined that weak alleles of Tof4 have undergone natural selection, facilitating adaptation to high latitudes in wild soybean. Notably, over 71.5% of wild soybean accessions harbor the mutated alleles of Tof4 or a previously reported gain-of-function allele Tof5H2, suggesting that these two loci are the genetic basis of wild soybean adaptation to high latitudes. Almost no cultivated soybean carries the mutated tof4 allele. Introgression of the tof4-1 and Tof5H2 alleles into modern soybean or editing E1 family genes thus represents promising avenues to obtain early-maturity soybean, thereby improving productivity in high latitudes.


Asunto(s)
Glycine max , Proteínas de Plantas , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Adaptación Fisiológica/genética , Aclimatación/genética , Fotoperiodo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas
20.
J Plant Physiol ; 280: 153881, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36463657

RESUMEN

Protein kinases play crucial roles in the regulation of plant resistance to various stresses. In this work, we determined that GsSnRK1.1 was actively responsive to saline-alkali, drought, and abscisic acid (ABA) stresses by histochemical staining and qRT-PCR analyses. The wild-type GsSnRK1.1 but not the kinase-dead mutant, GsSnRK1.1(K49M), demonstrated in vitro kinase activity by phosphorylating GsABF2. Intriguingly, we found that GsSnRK1.1 could complement the loss of SNF1 kinase in yeast Msy1193 (-snf1) mutant, rescue growth defects of yeast cells on medium with glycerol as a carbon resource, and promote yeast resistance to NaCl or NaHCO3. To further elucidate GsSnRK1.1 function in planta, we knocked out SnRK1.1 gene from the Arabidopsis genome by the CRISPR/Cas9 approach, and then expressed GsSnRK1.1 and a series of mutants into snrk1.1-null lines. The transgenic Arabidopsis lines were subjected to various abiotic stress treatments. The results showed that GsSnRK1.1(T176E) mutant with enhanced protein kinase activity significantly promoted, but GsSnRK1.1(K49M) and GsSnRK1.1(T176A) mutants with disrupted protein kinase activity abrogated, plant stomatal closure and tolerance to abiotic stresses. In conclusion, this study provides the molecular clues to fully understand the physiological functions of plant SnRK1 protein kinases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fabaceae , Glycine max/fisiología , Proteínas Quinasas/genética , Arabidopsis/metabolismo , Saccharomyces cerevisiae/genética , Plantas Modificadas Genéticamente/metabolismo , Fabaceae/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Glicina/metabolismo , Regulación de la Expresión Génica de las Plantas , Sequías , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...