Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Beyoglu Eye J ; 9(3): 172-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239625

RESUMEN

We present a case of presumed xeroderma pigmentosum (XP) with concomitant foveal hypoplasia. A 50-year-old male patient with extensive bilateral symblepharon-like pseudopterygia was referred for visual rehabilitation. After dermatology consultation and ophthalmologic examination, presumed XP was diagnosed. Optical coherence tomography revealed grade 2 foveal hypoplasia. The patient was referred for genetic testing because concomitant XP and foveal hypoplasia are rare. The genetic test results revealed mutations in some genes, including the hemochromatosis genes HFE, COL1A2, Lysosome Trafficking Regulator (LYST), NF1, and HMBS. The LYST gene is known to be associated with foveal hypoplasia. Since the association of foveal hypoplasia and XP has been reported in another case in the literature, we present our case to share this rare association.

2.
J Maxillofac Oral Surg ; 23(4): 990-993, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118905

RESUMEN

Xeroderma pigmentosum is a rare autosomal recessive genetic disorder, affecting nucleotide excision repair against ultraviolet radiation. This genodermatosis (a hereditary skin disorder) is distinguished by photosensitivity, alterations in cutaneous pigmentation, premature aging of the skin, and the typically observed onset of cutaneous and internal malignancies towards the conclusion of the first decade of life. In this article, we present a case involving a 4-year-old girl from North India who was born to non-consanguineous parents and developed an extensive fungating growth on her face. Subsequent diagnosis revealed the presence of squamous cell carcinoma, resulting in significant facial disfigurement. While xeroderma pigmentosum is a recognized condition, its occurrence in India, particularly in the northern region, is relatively rare. This report also underscores a noteworthy observation-the emergence of a cutaneous malignancy at such a tender age.

3.
Indian J Dermatol ; 69(3): 221-225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119308

RESUMEN

Background: Xeroderma pigmentosum (XP) is a rare inherited disorder with a high incidence of malignant tumours. Literature data on dermoscopic and in vivo reflectance confocal microscopy (RCM) findings in patients with XP are very limited. Methods: Dermoscopic findings in 32 biopsy-proven BCCs and RCM findings in 10 biopsy-proven BCCs developed in seven XP patients were reviewed. Results: Of 32 BCCs, 28 were pigmented. On dermoscopy, BCCs exhibited multiple grey-blue globules/dots (81, 3%), short-fine telangiectasias/fine arborising vessels (65, 6%), multiple grey-blue ovoid nests (53, 1%), white structures (white-red structureless areas/shiny white areas/lines/strands) (56, 3%), arborising vessels (37, 5%), brown nests/globules/dots (28, 1%), spoke-wheel structures (9, 4%), leaf-like areas (9, 4%), ulceration (28, 1%), peripheral network (21, 9%), and multiple aggregated yellow-white globules (3, 1%). In 10 lesions in which further imaging with RCM was performed, RCM findings differentiated BCC from other tumours, including primary melanoma. Conclusions: Although the dominancy of pigmented structures may imitate melanoma clinically, dermoscopy is a valuable tool in the early diagnosis of BCCs in patients with XP. For suspicious lesions, RCM can help in differentiating pigmented BCC from primary melanoma.

4.
Front Endocrinol (Lausanne) ; 15: 1418254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129919

RESUMEN

Xeroderma pigmentosum is a rare autosomal recessive genodermatoses characterized by a deficiency in nucleotide excision repair. Erythropoietic protoporphyria is a rare inherited metabolic disease caused by the perturbation of heme. Xeroderma pigmentosum-erythropoietic protoporphyria is exceedingly rare. Hereby, we firstly report a young Chinese patient of xeroderma pigmentosum Group A with erythropoietic protoporphyria carrying an XPA Met214AsnfsTer7 frameshift mutation and a homozygous splicing mutation, c.315-48T>C, in the proband's intron3 of FECH.


Asunto(s)
Ferroquelatasa , Protoporfiria Eritropoyética , Xerodermia Pigmentosa , Humanos , Protoporfiria Eritropoyética/genética , Protoporfiria Eritropoyética/complicaciones , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/complicaciones , Ferroquelatasa/genética , Masculino , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Mutación , Pueblo Asiatico/genética , Femenino , China , Mutación del Sistema de Lectura , Pueblos del Este de Asia
5.
Cureus ; 16(6): e61645, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975443

RESUMEN

Xeroderma pigmentosum is a rare autosomal recessive disorder resulting in heightened cutaneous photosensitivity due to aberrant DNA repair mechanisms. Early-life developmental delay and cognitive impairment have been described in xeroderma pigmentosum cases. However, psychiatric symptoms in adulthood as the presenting feature of xeroderma pigmentosum have not been reported. We report a young adult with xeroderma pigmentosum group G presenting with prominent neuropsychiatric manifestations and evidence of neurodegeneration. The clinical, laboratory, and radiological findings, skin biopsy, and the results of the genetic testing of the patient have been described after obtaining written and informed consent. A young adult male with skin photosensitivity since infancy developed hyper-religiosity, delusions, suicidal ideations, speech hypernasality, lower limb spasticity, and cognitive impairment over the past four years. The MRI of the brain showed diffuse cerebral atrophy. The skin biopsy from bilateral cheeks showed evidence of flattening and thinning of rete ridges, pigment incontinence, and perivascular and periappendageal inflammatory infiltrate. The whole exome sequencing in ethylenediaminetetraacetic acid (EDTA) blood revealed a compound heterozygous likely pathogenic mutation in intron 13 (c.2880-2A>G (3' splice site)) and a mutation in exon 15 (c.3146del (p.Asp1049ValfsTer12)) in the ERCC5 gene suggestive of xeroderma pigmentosum group G. This case highlights that prominent neuropsychiatric features in adulthood can occur due to xeroderma pigmentosum. Thus, xeroderma pigmentosum group G should be considered as a possibility among young adults presenting with neuropsychiatric features, evidence of neurodegeneration, and early-life skin photosensitivity.

6.
J Dermatol Sci ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39033075

RESUMEN

BACKGROUND: Xeroderma pigmentosum (XP) is characterized by photosensitivity that causes pigmentary disorder and predisposition to skin cancers on sunlight-exposed areas due to DNA repair deficiency. Patients with XP group A (XP-A) develop freckle-like pigmented maculae and depigmented maculae within a year unless strict sun-protection is enforced. Although it is crucial to study pigment cells (melanocytes: MCs) as disease target cells, establishing MCs in primary cultures is challenging. OBJECTIVE: Elucidation of the disease pathogenesis by comparison between MCs differentiated from XP-A induced pluripotent stem cells (iPSCs) and healthy control iPSCs on the response to UV irradiation. METHODS: iPSCs were established from a XP-A fibroblasts and differentiated into MCs. Differences in gene expression profiles between XP-A-iPSC-derived melanocytes (XP-A-iMCs) and Healthy control iPSC-derived MCs (HC-iMCs) were analyzed 4 and 12 h after irradiation with 30 or 150 J/m2 of UV-B using microarray analysis. RESULTS: XP-A-iMCs expressed SOX10, MITF, and TYR, and showed melanin synthesis. Further, XP-A-iMCs showed reduced DNA repair ability. Gene expression profile between XP-A-iMCs and HC-iMCs revealed that, numerous gene probes that were specifically upregulated or downregulated in XP-A-iMCs after 150-J/m2 of UV-B irradiation did not return to basal levels. Of note that apoptotic pathways were highly upregulated at 150 J/m2 UV exposure in XP-A-iMCs, and cytokine-related pathways were upregulated even at 30 J/m2 UV exposure. CONCLUSION: We revealed for the first time that cytokine-related pathways were upregulated even at low-dose UV exposure in XP-A-iMCs. Disease-specific iPSCs are useful to elucidate the disease pathogenesis and develop treatment strategies of XP.

7.
DNA Repair (Amst) ; 141: 103728, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029374

RESUMEN

Nucleotide excision repair (NER) clears genomes of DNA adducts formed by UV light, environmental agents, and antitumor drugs. Gene mutations that lead to defects in the core NER reaction cause the skin cancer-prone disease xeroderma pigmentosum. In NER, DNA lesions are excised within an oligonucleotide of 25-30 residues via a complex, multi-step reaction that is regulated by protein-protein interactions. These interactions were first characterized in the 1990s using pull-down, co-IP and yeast two-hybrid assays. More recently, high-resolution structures and detailed functional studies have started to yield detailed pictures of the progression along the NER reaction coordinate. In this review, we highlight how the study of interactions among proteins by structural and/or functional studies have provided insights into the mechanisms by which the NER machinery recognizes and excises DNA lesions. Furthermore, we identify reported, but poorly characterized or unsubstantiated interactions in need of further validation.


Asunto(s)
Reparación por Escisión , Humanos , ADN/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Unión Proteica/genética
8.
Turk J Biol ; 48(2): 91-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39051064

RESUMEN

Background and aim: Cancer cell's innate chemotherapeutic resistance continues to be an obstacle in molecular oncology. This theory is firmly tied to the cancer cells' integral DNA repair mechanisms continuously neutralizing the effects of chemotherapy. Amidst these mechanisms, the nuclear excision repair pathway is crucial in renovating DNA lesions prompted by agents like Cisplatin. The ERCC1/XPF complex stands center-stage as a structure-specific endonuclease in this repair pathway. Targeting the ERCC1/XPF dimerization brings forth a strategy to augment chemotherapy by eschewing the resistance mechanism integral to cancer cells. This study tracks and identifies small anticancer molecules, with ERCC1/XPF inhibiting potential, within extensive small-molecule compound libraries. Materials and methods: A novel hybrid virtual screening algorithm, conjoining ligand- and target-based approaches, was developed. All-atom molecular dynamics (MD) simulations were then run on the obtained hit molecules to reveal their structural and dynamic contributions within the binding site. MD simulations were followed by MM/GBSA calculations to qualify the change in binding free energies of the protein/ligand complexes throughout MD simulations. Results: Conducted analyses highlight new potential inhibitors AN-487/40936989 from the SPECS SC library, K219-1359, and K786-1161 from the ChemDiv Representative Set library as showing better predicted activity than previously discovered ERCC1/XPF inhibitor, CHEMBL3617209. Conclusion: The algorithm implemented in this study expands our comprehension of chemotherapeutic resistance and how to overcome it through identifying ERCC1/XPF inhibitors with the aim of enhancing chemotherapeutic impact giving hope for ameliorated cancer treatment outcomes.

10.
Cell Rep ; 43(6): 114243, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38805398

RESUMEN

Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.


Asunto(s)
Células Madre Pluripotentes Inducidas , Xerodermia Pigmentosa , Xerodermia Pigmentosa/patología , Xerodermia Pigmentosa/metabolismo , Xerodermia Pigmentosa/genética , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo , Estrés del Retículo Endoplásmico , Complejo de la Endopetidasa Proteasomal/metabolismo , Diferenciación Celular , Daño del ADN , Modelos Biológicos , Multiómica
11.
Oncol Lett ; 27(6): 259, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38646492

RESUMEN

Lung cancer is the most common cancer in the world due to its high incidence and recurrence. Genetic instability is one of the main factors leading to its occurrence, development and poor prognosis. Decreased xeroderma pigmentosum group C (XPC) expression notably enhances the stem cell properties of lung cancer cells and increases their proliferation and migration. Additionally, patients with lung cancer and low XPC expression had a poor prognosis. The purpose of the present study was to analyze the effect of XPC and IFN-γ on the clinical prognosis of patients with non-small cell lung cancer (NSCLC). Lung adenocarcinoma specimens were collected from a total of 140 patients with NSCLC. Additionally, from these 140 patients, 48 paracarcinoma tissue specimens were also collected, which were later used to construct tissue microarrays. The expression of XPC and IFN-γ in cancer tissues and in paraneoplastic tissues was detected using immunohistochemistry. The prognosis and overall survival of patients were determined through telephone follow-up. The results showed a positive correlation between expression of XPC and IFN-γ in NSCLC. Additionally, high expression of both markers was associated with a favorable prognosis in patients with NSCLC. The aforementioned findings suggest that the expression of XPC and IFN-γ has prognostic value in clinical practice and is expected to become a marker for clinical application.

12.
Exp Eye Res ; 243: 109901, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641197

RESUMEN

Xeroderma pigmentosum (XP) is a rare genetic disorder characterized by injury to the ocular surface due to exposure to ultraviolet (UV) radiation. UV-induced damage in the cells leads to the formation of cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts that are repaired by the NER (Nucleotide Excision Repair) pathway. Mutations in the genes coding for NER proteins, as reported in XP patients, would lead to sub-optimal damage repair resulting in clinical signs varying from photo-keratitis to cancerous lesions on the ocular surface. Here, we aimed to provide evidence for the accumulation of DNA damage and activation of DNA repair pathway proteins in the corneal cells of patients with XP. Corneal buttons of patients who underwent penetrating keratoplasty were stained to quantify DNA damage and the presence of activated DNA damage response proteins (DDR) using specific antibodies. Positive staining for pH2A.X and thymidine dimers confirmed the presence of DNA damage in the corneal cells. Positive cells were found in both control corneas and XP samples however, unlike normal tissues, positive cells were found in all cell layers of XP samples indicating that these cells were sensitive to very low levels of UV. pH2A.X-positive cells were significantly more in XP corneas (p < 0.05) indicating the presence of double strand breaks in these tissues. A positive expression of phosphorylated-forms of DDR proteins was noted in XP corneas (unlike controls) such as ataxia telangiectasia mutated/Rad-3 related proteins (ATM/ATR), breast cancer-1 and checkpoint kinases-1 and -2. Nuclear localization of XPA was noted in XP samples which co-localized (calculated using Pearson's correlation) with pATM (0.9 ± 0.007) and pATR (0.6 ± 0.053). The increased presence of these in the nucleus confirms that unresolved DNA damage was accumulating in these cells thereby leading to prolonged activation of the damage response proteins. An increase in pp53 and TUNEL positive cells in the XP corneas indicated cell death likely driven by the p53 pathway. For comparison, cultured normal corneal epithelial cells were exposed to UV-radiation and stained for DDR proteins at 3, 6 and 24 h after irradiation to quantify the time taken by cells with intact DDR pathway to repair damage. These cells, when exposed to UV showed nuclear translocation of DDR proteins at 3 and 6 h which reduced significantly by 24 h confirming that the damaged DNA was being actively repaired leading to cell survival. The persistent presence of the DDR proteins in XP corneas indicates that damage is being actively recognized and DNA replication is stalled, thereby causing accumulation of damaged DNA leading to cell death, which would explain the cancer incidence and cell loss reported in these patients.


Asunto(s)
Daño del ADN , Reparación del ADN , Dímeros de Pirimidina , Rayos Ultravioleta , Xerodermia Pigmentosa , Humanos , Rayos Ultravioleta/efectos adversos , Xerodermia Pigmentosa/metabolismo , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/patología , Dímeros de Pirimidina/metabolismo , Queratoplastia Penetrante , Córnea/metabolismo , Córnea/patología , Córnea/efectos de la radiación , Femenino , Adulto , Histonas/metabolismo , Masculino , Persona de Mediana Edad , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Adolescente , Adulto Joven
13.
Cancers (Basel) ; 16(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38672576

RESUMEN

Lung squamous cell carcinoma (LUSC) is the second leading cause of lung cancer. Although characterized by high DNA mutational burdens and genomic complexity, the role of DNA repair in LUSC development is poorly understood. We sought to better understand the role of the DNA repair protein Xeroderma Pigmentosum Group C (XPC) in LUSC development. XPC knock-out (KO), heterozygous, and wild-type (WT) mice were exposed topically to N-nitroso-tris-chloroethylurea (NTCU), and lungs were evaluated for histology and pre-malignant progression in a blinded fashion at various time-points from 8-24 weeks. High-grade dysplasia and LUSC were increased in XPC KO compared with XPC WT NTCU mice (56% vs. 34%), associated with a higher mean LUSC lung involvement (p < 0.05). N-acetylcysteine pre-treatment decreased bronchoalveolar inflammation but did not prevent LUSC development. Proliferation, measured as %Ki67+ cells, increased with NTCU treatment, in high-grade dysplasia and LUSC, and in XPC deficiency (p < 0.01, ANOVA). Finally, pre-LUSC dysplasia developed earlier and progressed to higher histologic classification sooner in XPC KO compared with WT mice. Overall, this supports the protective role of XPC in squamous dysplasia progression to LUSC. Mouse models of early LUSC development are limited; this may provide a valuable model to study mechanisms of LUSC development and progression.

14.
Cureus ; 16(1): e53204, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38425639

RESUMEN

Xeroderma pigmentosum (XP) is a rare, autosomal recessive disorder characterized by defective DNA repair. Patients with this disorder are at increased risk of developing various oculocutaneous malignancies. We report a rare case of a child with XP with bilateral ocular surface squamous neoplasia (OSSN) and left eye (OS) medial canthal basal cell carcinoma (BCC). Ultrasound biomicroscopy and contrast-enhanced computed tomography (CECT) of the orbit showed intraocular extension with no orbital involvement. The patient was started on topical interferon therapy in both eyes for OSSN. Topical 5% imiquimod was started for BCC for eight hours a day and then washed off. During follow-up, there was no recurrence of tumors. Since ocular and cutaneous neoplasms tend to occur at an early age in XP with a high rate of recurrence and they tend to be more aggressive, multimodal therapy with long-term follow-up is more advantageous for these patients. Topical 5% imiquimod can be used as a treatment for periocular BCC as an alternative to excision.

15.
Medicina (Kaunas) ; 60(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38541204

RESUMEN

Background and Objectives: Nucleotide Excision Repair (NER), the most extensively researched DNA repair mechanism, is responsible for repairing a variety of DNA damages, and Xeroderma Pigmentosum (XP) genes participate in NER. Herein, we aimed to update the previous results with a meta-analysis evaluating the association of XPA, XPB/ERCC3, XPF/ERCC4, and XPG/ERCC5 polymorphisms with the susceptibility to HNC. Materials and Methods: PubMed/Medline, Web of Science, Scopus, and Cochrane Library databases were searched without any restrictions until 18 November 2023 to find relevant studies. The Review Manager 5.3 (RevMan 5.3) software was utilized to compute the effect sizes, which were expressed as the odds ratio (OR) with a 95% confidence interval (CI). Results: Nineteen articles were involved in the systematic review and meta-analysis that included thirty-nine studies involving ten polymorphisms. The results reported that the CC genotype of rs17655 polymorphism showed a significantly decreased risk of HNC in the recessive model (OR: 0.89; 95%CI: 0.81, 0.99; p-value is 0.03). In addition, the CT genotype (OR: 0.65; 95%CI: 0.48, 0.89; p-value is 0.008) of the rs751402 polymorphism was associated with a decreased risk, and the T allele (OR: 1.28; 95%CI: 1.05, 1.57; p-value is 0.02), the TT (OR: 1.74; 95%CI: 1.10, 2.74; p-value is 0.02), and the TT + CT (OR: 2.22; 95%CI: 1.04, 4.74; p-value is 0.04) genotypes were associated with an increased risk of HNC. Conclusions: The analysis identified two polymorphisms, rs17655 and rs751402, as being significantly associated with the risk of HNC. The study underscored the influence of various factors, such as the type of cancer, ethnicity, source of control, and sample size on these associations.


Asunto(s)
Carcinoma , Neoplasias de Cabeza y Cuello , Humanos , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Neoplasias de Cabeza y Cuello/genética , Genotipo , Estudios de Casos y Controles , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
16.
DNA Repair (Amst) ; 136: 103633, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422792

RESUMEN

Inherited photosensitivity syndromes are a heterogeneous group of genetic skin disorders with tremendous phenotypic variability, characterized by photosensitivity and defective DNA repair, especially nucleotide excision repair. A cohort of 17 Iranian families with heritable photosensitivity syndromes was evaluated to identify their genetic defect. The patients' DNA was analyzed with either whole-exome sequencing or RNA sequencing (RNA-Seq). The interpretations of the genomic results were guided by genome-wide homozygosity mapping. Haplotype analysis was performed for cases with recurrent mutations. RNA-Seq, in addition to mutation detection, was also utilized to confirm the pathogenicity. Thirteen sequence variants, including six previously unreported pathogenic variants, were disclosed in 17 Iranian families, with XPC as the most common mutated gene in 10 families (59%). In one patient, RNA-Seq, as a first-tier diagnostic approach, revealed a non-canonical homozygous germline variant: XPC:c.413-9 T > A. The Sashimi plot showed skipping of exon 4 with dramatic XPC down-expression. Haplotype analysis of XPC:c.2251-1 G>C and XPC:1243 C>T in four families showed common haplotypes of 1.7 Mb and 2.6 Mb, respectively, denoting a founder effect. Lastly, two extremely rare cases were presented in this report: a homozygous UVSSA:c .1990 C>T was disclosed, and ERCC2-related cerebro-oculo-facio-skeletal (COFS) syndrome with an early childhood death. A direct comparison of our data with the results of previously reported cohorts demonstrates the international mutation landscape of DNA repair-related photosensitivity disorders, although population-specific differences were observed.


Asunto(s)
Trastornos por Fotosensibilidad , Xerodermia Pigmentosa , Humanos , Preescolar , Consanguinidad , Xerodermia Pigmentosa/genética , Familia Extendida , Irán , Proteínas de Unión al ADN/genética , Mutación , Reparación del ADN , Trastornos por Fotosensibilidad/genética , Proteína de la Xerodermia Pigmentosa del Grupo D , Proteínas Portadoras
17.
Methods ; 224: 47-53, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387709

RESUMEN

Nucleotide excision repair (NER) promotes genomic integrity by removing bulky DNA adducts introduced by external factors such as ultraviolet light. Defects in NER enzymes are associated with pathological conditions such as Xeroderma Pigmentosum, trichothiodystrophy, and Cockayne syndrome. A critical step in NER is the binding of the Xeroderma Pigmentosum group A protein (XPA) to the ss/ds DNA junction. To better capture the dynamics of XPA interactions with DNA during NER we have utilized the fluorescence enhancement through non-canonical amino acids (FEncAA) approach. 4-azido-L-phenylalanine (4AZP or pAzF) was incorporated at Arg-158 in human XPA and conjugated to Cy3 using strain-promoted azide-alkyne cycloaddition. The resulting fluorescent XPA protein (XPACy3) shows no loss in DNA binding activity and generates a robust change in fluorescence upon binding to DNA. Here we describe methods to generate XPACy3 and detail in vitro experimental conditions required to stably maintain the protein during biochemical and biophysical studies.


Asunto(s)
Daño del ADN , Reparación del ADN , Humanos , Reparación del ADN/genética , Daño del ADN/genética , Reparación por Escisión , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/química , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , ADN/química , Rayos Ultravioleta , Nucleótidos , Unión Proteica
18.
BMC Oral Health ; 24(1): 163, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302989

RESUMEN

BACKGROUND: Xeroderma pigmentosum (XP) is an extremely rare and severe form of photosensitivity. It is classified into types A-G or V according to the gene responsible for the disease. The progression and severity of symptoms vary depending on the type. Although dysphagia caused by decreased swallowing function and dental malposition due to stenosis of the dentition in the facial and oral regions is common, it has not been reported in detail. We report three cases of type A XP, in which central and peripheral neurological symptoms appeared early on and progressed rapidly. We describe the oral function of these patients, focusing on the swallowing function and dentition malposition. CASE PRESENTATION: Two males (27 and 25 years old) and one female (28 years old) presented with diverse neurological symptoms. We focused on the relationship between the changes in swallowing and oral functions and conditions due to decline in physical function. Some effects were observed by addressing the decline in swallowing and oral functions. In particular, a dental approach to manage the narrowing of the dentition, which was observed in all three patients, improved the swallowing and oral functions and maintained the current status of these functions. CONCLUSIONS: In type A XP, early decline in oral and swallowing functions is caused by the early decline in physical function, and it is necessary to monitor the condition at an early stage.


Asunto(s)
Trastornos de Deglución , Xerodermia Pigmentosa , Masculino , Humanos , Femenino , Adulto , Xerodermia Pigmentosa/complicaciones , Xerodermia Pigmentosa/diagnóstico , Xerodermia Pigmentosa/genética , Deglución , Trastornos de Deglución/etiología
19.
Orphanet J Rare Dis ; 19(1): 64, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351060

RESUMEN

INTRODUCTION: People with Xeroderma Pigmentosum (XP) have a heightened sensitivity to ultraviolet radiation (UVR) and are advised to wear photoprotective clothing including a visor covering the face and neck. Photoprotective visors are homemade and predominately worn by children with decreasing frequency as age increases. To improve upon the current design and efficacy we were tasked with developing a prototype visor to meet patients' needs. METHODS: Adopting a codesign methodology, patients' experiences of wearing a visor and patient and carer views of emerging prototypes were explored during interviews. A thematic analysis was conducted in parallel with data collection and themes were interpreted into design cues; desirable attributes of a visor that would counteract the negative user experiences and meet the requirements described by patients and carers. The design cues guided the iterative development of prototypes by academic engineers. RESULTS: Twenty-four interviews were conducted with patients and carers. Thematic analysis resulted in the following five themes: Being safe from UVR exposure; self-consciousness; temperature effects; acoustic difficulties; and material properties. The following design cues were developed from the themes respectively; materials and design with high UVR protection; ability to customise with own headwear; ventilation to reduce steaming up; acoustic functionality to enable hearing and speech; foldable, portable, and easy to put on and take off. CONCLUSIONS: It is important to understand people's experiences of using medical devices to improve their safety, efficiency and user satisfaction. The user experience themes and design cues, informed the iterative development of low fidelity visor prototypes as part of a codesign process. These design cues and responses to the prototypes are guiding commercial manufacturing and regulatory approval. The visor can then be prescribed to patients, providing an equitable service of care.


Asunto(s)
Rayos Ultravioleta , Xerodermia Pigmentosa , Niño , Humanos , Recolección de Datos , Emociones
20.
Photochem Photobiol ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287748

RESUMEN

Photosensitivity can be due to numerous causes. The photosensitivity associated with deficiency of xeroderma pigmentosum type A (XPA) has been previously shown to be associated with excess levels of the lipid mediator platelet-activating factor (PAF) generated by the keratinocyte. As PAF has been reported to trigger the production of subcellular microvesicle particles (MVP) due to the enzyme acid sphingomyelinase (aSMase), the goal of these studies was to discern if PAF and aSMase could serve as therapeutic targets for the XPA deficiency photosensitivity. HaCaT keratinocytes lacking XPA generated greater levels of MVP in comparison to control cells. Mice deficient in XPA also generated enhanced MVP levels in skin and in plasma in response to UV radiation. Use of a genetic strategy with mice deficient in both XPA and PAF receptors revealed that these mice generated less MVP release as well as decreased skin erythema and cytokine release compared to XPA knockout mice alone. Finally, the aSMase inhibitor imipramine blocked UV-induced MVP release in HaCaT keratinocytes, as well as XPA knockout mice. These studies support the concept that the photosensitivity associated with XPA involves PAF- and aSMase-mediated MVP release and provides a potential pharmacologic target in treating this form of photosensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...