Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Sci Rep ; 14(1): 15475, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969689

RESUMEN

The Yangtze River (hereafter referred to as the YZR), the largest river in China, is of paramount importance for ensuring water resource security. The Yangtze River Basin (hereafter referred to as the YRB) is one of the most densely populated areas in China, and complex human activities have a significant impact on the ecological security of water resources. Therefore, this paper employs theories related to ecological population evolution and the Driving Force-Pressure-State-Impact-Response (DPSIR) model to construct an indicator system for the ecological security of water resources in the YRB. The report evaluates the ecological security status of water resources in each province of the YRB from 2010 to 2019, clarifies the development trend of its water resource ecological security, and proposes corresponding strategies for regional ecological security and coordinated economic development. According to the results of the ecological population evolution competition model, the overall indicator of the ecological security of water resources in the YRB continues to improve, with the safety level increasing annually. Maintaining sound management of water resources in the YRB is crucial for sustainable socioeconomic development. To further promote the ecological security of water resources in the YRB and the coordinated development of the regional economy, this paper proposes policy suggestions such as promoting the continuous advancement of sustainable development projects, actively adjusting industrial structure, continuously enhancing public environmental awareness, and actively participating in international ecological construction and seeking cooperation among multiple departments.

2.
Environ Sci Technol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079029

RESUMEN

Wastewater discharge from wastewater treatment plants continuously pumps microplastics into rivers, yet their transport distances within these waterways remain unknown. Herein, we developed a conceptual framework by synthesizing the microplastic data from the Yangtze River Basin to evaluate its transport distances, quantifying a significant spatial dependence between large-scale wastewater discharge and riverine microplastics (p < 0.05). The presence of microplastics at a specific sampling site could be attributed to wastewater discharge within a large-scale range spanning >1000 km upstream, encompassing a substantial portion equivalent to one-third of the Yangtze River Basin. The dominance analysis indicated that the contribution of wastewater discharge in rivers with higher discharge (>100 m3/s) to riverine microplastic pollution exceeded 65% within the Yangtze River Basin. The spatial dependence framework of riverine microplastics on wastewater discharge advances our prior understanding of the prevention and control of riverine microplastics by demonstrating that such pollution is not limited to nearby environmental factors.

3.
Microorganisms ; 12(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930560

RESUMEN

Bacterial diversity and its distribution characteristics in sediments are critical to understanding and revealing biogeochemical cycles in sediments. However, little is known about the relationship between biogeochemistry processes and vertical spatial distribution of bacterial communities in sandy sediments. In this study, we used fluorescence quantitative PCR, high-throughput sequencing technology and statistical analysis to explore the vertical distribution pattern of bacterial community diversity and its influencing factors in sandy sediments of the Yangtze River Basin. The aim is to enrich the understanding of the ecological characteristics and functions of bacteria in river ecosystems. The results showed that both sediment bacterial abundance and diversity showed a gradual decrease from surface to bottom in the vertical distribution. The main environmental factors that influenced the bacterial distribution pattern were pore water dissolved oxygen (DO), total nitrogen (TN) concentration and sediment nitrogen (N) content. The dominant bacterial species, Massilia and Flavobacterium, are suitable for growth and reproduction in high oxygen and nutrient-richer environments, while Limnobacter prefers low oxygen or anaerobic conditions. The vertical distribution pattern of bacteria and its influencing factors in river sandy sediment found in this study differ from the results in mud sediment, which may be related to the larger granular gap between sandy sediment and the lower content of organic matter. The findings of this study further our understanding of the distribution patterns and ecological preferences of microbial communities in river sediments, providing insights into how these communities may adapt to varying environmental conditions.

4.
Huan Jing Ke Xue ; 45(6): 3186-3195, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897742

RESUMEN

This study primarily focused on the regional disparities in both water quality criteria and ecological risks attributed to cadmium presence within the surface waters of the Yangtze River Basin. In the initial phase, the long-term water quality criteria for cadmium were recalibrated in accordance with the guidelines outlined in China's "Water Quality Criteria for Freshwater Aquatic Organisms-Cadmium," accounting for the prevalent hardness distribution within the Yangtze River Basin's surface water. Subsequently, a more refined revision was undertaken considering the specific characteristics of the species residing within the Yangtze River Basin. This undertaking led to a comprehensive interpretation of the regional variations in both the distribution of long-term water quality criteria values and the risk quotient distribution of cadmium throughout the Yangtze River Basin. The incorporation of hardness and species-specific attributes resulted in a revised range of long-term water quality criteria for cadmium across different urban locales within the Yangtze River Basin. Notably, the recalibrated values ranged from 0.08 µg·L-1 as the lowest threshold to 0.75 µg·L-1 as the upper limit, signifying a tenfold differentiation. Correspondingly, the urban average annual risk quotient associated with cadmium exposure demonstrated a variation from 0.035 to 1.12, marking a significant 32-fold discrepancy between the lowest and highest values. It is essential to highlight that regions of paramount importance, such as the confluence area connecting the upper and middle stretches of the Yangtze River Basin and the intricate Dongting Lake system, exhibited noteworthy ecological risks attributed to cadmium presence. Consequently, further in-depth investigations into these critical regions are imperative for a comprehensive understanding of the associated risks.

5.
Sci Total Environ ; 944: 173840, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38866166

RESUMEN

Long-term, high spatiotemporal resolution of surface water area, water level, and storage changes in the Yangtze River Basin (YRB) has great scientific and practical importance for improving the management of water resources. Here, three distinct area estimations were first derived using the water classification enhancement method, automated water extraction method based on random forest, and the modified normalized difference water index. The optimized area data was determined by comparing against Sentinel-2 with the minimum root mean square error. A new area data was constructed with the optimized area as the primary data, while the remaining datasets were employed to fill in gaps. The elevation-area relationship was used to derive monthly water level. Changes in water storage were calculated by applying the pyramidal frustum formula from surface water area and water level data. Finally, a new comprehensive dataset of the monthly area, level, and storage changes in the 119 lakes and 75 reservoirs across the YRB with area larger than 10 km2 from 1990 to 2021 were first reconstructed. The spatiotemporal trends of surface water area/level/storage in lakes and reservoirs over 11 sub-basins of the YRB were quantified from 1990 to 2021, as well as before (1990-2003) and after (2003-2021) the construction of the Three Gorges Dam (TGD). During 1990-2021, there was a marked decrease in surface water area/level/storage in most of the YRB sub-basins, which contain 79 % of the lakes and 30 % of the reservoirs. After TGD was constructed, the surface water in lakes decreased by 10 %, while that of reservoirs remained consistent with the pre-construction. The surface water area/level/storage in the lower sub-basins of YRB exhibited a decline to an upward trend before and after the construction of TGD. This study provides a new comprehensive dataset for understanding the dynamic changes of water resource and climate change.

6.
Sci Total Environ ; 946: 174067, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38908608

RESUMEN

Heavy rainfall and flooding disasters are increasing due to global warming. A clear understanding of the mechanism of heavy rain and floods is the basic premise of disaster risk management. However, most previous studies emphasized more on the single anomalous signal from the average state in the whole season, which may neglect the combined influence of multiple signals in the ocean-atmosphere and differential characteristics of anomalous signals at different periods. Here, our study aimed to reveal the possible influence mechanism of heavy rain and floods in the middle and lower reaches of the Yangtze River Basin (MLRYRB) by systematically analyzing the monthly-scale and daily-scale ocean-atmosphere anomaly patterns in the preceding periods of heavy rainfall and flooding events. The results showed that heavy rainfall and flooding events were highly likely to occur in the region one month after El Niño decayed, with the flooding intensity in June having the negative correlation with the sea ice concentration anomaly in the Arctic with a lag of about 5 months (150 days). Besides, North Atlantic Oscillation, Western Pacific subtropical high, blocking, East Asian subtropical westerly jet, and the water vapor fluxes from the Arabian Sea and western Pacific Ocean could be used as the anomalous signals inducing heavy rain and floods. The daily-scale conceptual model inducing heavy rainfall and flooding events was built based on the patterns of all anomalous signals, which detailed the possible impact mechanism of heavy rain and floods in the region. By making targeted forecasts of anomalous signals and using this information in water resources planning and management based on climate mechanisms, it will have a significant impact on water management in the country.

7.
J Environ Manage ; 360: 120958, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744206

RESUMEN

To safeguard aquatic ecosystems and fishery resources while facilitating cooperative engagement between local governments and fishermen, an evolutionary game model featuring both stakeholders has been constructed in this study. The model examines the degree of compliance with ecological restoration policies linked to fishing bans, as well as the adaptive strategies of different types of fishermen with varied incentives while simulating the ecological restoration policy under diverse scenarios. The findings suggest that: (1) Compliance with the fishing ban policy among fishermen is determined by their economic interests, environmental preferences, and government regulations, while its enforcement by local authorities is influenced by regulatory costs, political performance, and reputation. (2) Variations in the ecological restoration policy of fishing bans result from several factors, including punitive measures and compensation. The higher the penalty, the greater the chance of compliance among fishermen, and the higher the restoration degree of the watershed ecosystem. Conversely, the higher the compensation, the more satisfied the fishermen are with the fishing ban policy, and the smoother the transformation of their livelihoods. (3) To enhance the effectiveness and sustainability of fishing bans, it is essential to consider the interests of multiple stakeholders and adopt a coordination mechanism that facilitates the design of a reasonable and effective incentive-compatible system, thereby increasing the fairness and acceptability of the policy. This study provides a new theoretical framework and methodology applicable to ecological restoration policies for fishery closures on a global scale, accompanied by robust data support and theoretical guidance for developing and implementing fishery closure policies.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Explotaciones Pesqueras , Explotaciones Pesqueras/legislación & jurisprudencia , Ecología , Humanos , Gobierno
8.
J Environ Manage ; 360: 121020, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763116

RESUMEN

Reducing soil erosion (SE) is crucial for achieving harmony between human society and the ecological environment. The cultivated land fragmentation (CLF), directly or indirectly, alters soil structure, diminishes its water-holding capacity, and escalates the risk of SE. Scientific assessment of the effect of CLF on SE can provide new insights into controlling of SE across watersheds in China. However, few studies have quantified the effect of CLF on SE. Therefore, we utilized land use change data in the Yangtze River basin from 2000 to 2020, measuring the levels of CLF and SE using Fragstats and InVEST models. The bivariate spatial autocorrelation model was employed to reveal the spatial relationship between CLF and SE. Additionally, we constructed a spatial Durbin model and introduced the geographically and temporally weighted regression model to analyze the role of CLF on SE. The south bank of the upper and middle reaches of the Yangtze River basin exhibited high CLF and SE. The bivariate spatial autocorrelation results showed a significant positive spatial correlation between CLF and SE. The spatial Durbin model results showed that CLF had a spatial spillover effect and time lag on SE, and the effect of CLF on SE had an inverted "N" curve. The study also confirmed that last SE and neighboring SE areas influenced local SE. Currently, CLF had a negative effect on SE in the Sichuan Basin, Yunnan-Guizhou Plateau, and the middle and lower Yangtze River Plain, and positively in Qinghai, Hunan, and Jiangxi provinces. These findings suggest that the government should enhance cross-regional and cross-sectoral cooperation and monitoring of cultivated land changes to prevent and control SE effectively.


Asunto(s)
Ríos , Erosión del Suelo , Suelo , China , Suelo/química , Conservación de los Recursos Naturales , Agricultura , Monitoreo del Ambiente
9.
Sci Total Environ ; 929: 172541, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642747

RESUMEN

Volatile methylsiloxanes (VMSs) earned serious concerns due to their detection and toxicities after their release to the environments. They were also detected in rivers around the globe, but their distribution remained to be explored in larger rivers with longer length, higher water volume and wider watershed. In the present study, 8 cyclic VMSs (cVMSs) and 7 linear ones (lVMSs) were investigated in 42 water samples (27 surface water (including 7 drinking source water) and 15 wastewater) from the Yangtze River Basin, China. Results showed that VMSs were detected in all sampling sites. In surface water, the concentrations of total cVMSs ranged from 17.3 to 4.57 × 103 ng/L, while those of lVMSs ranged from 1.72 to 81.6 ng/L. In wastewater, the total concentrations of cVMSs and lVMSs showed ranges of 17.6-1.66 × 103 ng/L and 2.59-252 ng/L, respectively. Apparently, cVMSs showed significantly higher concentrations than lVMSs. The concentrations of cVMSs followed an order of lower > upper > middle reaches, while those of lVMSs did not show clear distribution patterns. Among cVMSs, those with less Si numbers were dominant, while those with more Si numbers were dominant in lVMSs. Notably, the VMSs were also detected in 7 surface waters that served as drinking source waters, which earned them further concerns. In addition, the VMSs in surface water showed positive correlation with those in wastewater, which led to necessity in management on industrial emissions in the future.

10.
Environ Sci Pollut Res Int ; 31(22): 32784-32799, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38662293

RESUMEN

The precise assessment of a water body's eutrophication status is essential for making informed decisions in water environment management. However, conventional approaches frequently fail to consider the randomness, fuzziness, and inherent hidden information of water quality indicators. These would result in an unreliable assessment. An enhanced method was proposed for the eutrophication assessment under uncertainty in this study. The multi-dimension gaussian cloud distribution was introduced to capture the randomness and fuzziness. The Shannon entropy based on various sample size and trophic levels was proposed to maximize valuable information hidden in the datasets. Twenty-seven significant lakes and reservoirs located in the Yangtze River Basin were selected to demonstrate the proposed method. The sensitivity and consistency were used to evaluate the accuracy of the proposed method. Results indicate that the proposed method has the capability to effectively assess the eutrophication status of lakes and reservoirs under uncertainty and that it has a better sensitivity since it can identify more than 33-50% trophic levels compared to the traditional methods. Further scenario experiments analysis revealed that the sample information richness, i.e., sample size and the number of trophic levels is of great significance to the accuracy/robustness of the method. Moreover, a sample size of 60 can offer the most favorable balance between accuracy/robustness and the monitoring expenses. These findings are crucial to optimizing the eutrophication assessment.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Lagos , Monitoreo del Ambiente/métodos , Incertidumbre , Distribución Normal , China , Ríos/química
11.
Environ Sci Ecotechnol ; 20: 100412, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38560759

RESUMEN

Effective management of large basins necessitates pinpointing the spatial and temporal drivers of primary index exceedances and urban risk factors, offering crucial insights for basin administrators. Yet, comprehensive examinations of multiple pollutants within the Yangtze River Basin remain scarce. Here we introduce a pollution inventory for urban clusters surrounding the Yangtze River Basin, analyzing water quality data from 102 cities during 2018-2019. We assessed the exceedance rates for six pivotal indicators: dissolved oxygen (DO), ammonia nitrogen (NH3-N), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphorus (TP), and the permanganate index (CODMn) for each city. Employing random forest regression and SHapley Additive exPlanations (SHAP) analyses, we identified the spatiotemporal factors influencing these key indicators. Our results highlight agricultural activities as the primary contributors to the exceedance of all six indicators, thus pinpointing them as the leading pollution source in the basin. Additionally, forest coverage, livestock farming, chemical and pharmaceutical sectors, along with meteorological elements like precipitation and temperature, significantly impacted various indicators' exceedances. Furthermore, we delineate five core urban risk components through principal component analysis, which are (1) anthropogenic and industrial activities, (2) agricultural practices and forest extent, (3) climatic variables, (4) livestock rearing, and (5) principal polluting sectors. The cities were subsequently evaluated and categorized based on these risk components, incorporating policy interventions and administrative performance within each region. The comprehensive analysis advocates for a customized strategy in addressing the discerned risk factors, especially for cities presenting elevated risk levels.

12.
Huan Jing Ke Xue ; 45(3): 1439-1447, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38471859

RESUMEN

The Yangtze River, the largest river in China, has not been comprehensively studied for its basin's microplastic pollution status. Therefore, a comprehensive investigation and assessment system of microplastics was developed at the river basin scale to characterize the spatial distribution and composition of microplastics in the Yangtze River Basin in order to analyze their influencing factors and assess their ecological risks. The results showed that the microplastic abundance in the study area ranged from 21 to 44 080 n·m-3, with an average abundance of 4 483 n·m-3. The spatial distribution of microplastic abundance was higher in the tributaries than in the main streams (except the Ganjiang Basin), with the Chengdu of the Minjiang Basin being the tributary area with the highest abundance of microplastics detected. The size of microplastics in the river basin was concentrated in the 0-1 mm range; the shapes were mainly fiber and fragment; and the colors were mainly colored and transparent. Further, introducing the diversity index of microplastics, it was found that both the Simpson index and the Shannon-Wiener index could quantify the diversity of microplastic characteristic composition in the river basin, but there were certain differences in the changing trends between the two. Regression analysis showed that anthropogenic activities were significantly and positively correlated with microplastic abundance (P<0.05), and among the eight anthropogenic activity factors, civilian vehicle ownership and tourism income were the most strongly correlated with microplastic abundance, indicating that transportation and tourism were the main factors influencing microplastic distribution. From the perspective of the potential ecological risk index of microplastics, microplastics in the Yangtze River Basin posed a certain ecological risk, with 68.97% of the area falling within risk zones III and IV, with the ecological risk of microplastics in Taihu Lake warranting more widespread attention.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ríos , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , China , Medición de Riesgo
13.
J Hazard Mater ; 469: 133936, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38479139

RESUMEN

Water quality in the Yangtze River Basin (YRB) has received considerable attention because it supplies water to 400 million people. However, the trends, sources, and risks associated with heavy metals (HMs) in water of centralized drinking water sources (CDWSs) in the YRB region are not well understood due to the lack of high-frequency, large-scale monitoring data. Moreover, research on the factors affecting the transportation of HMs in natural water are limited, all of which significantly reduce the effectiveness of CDWSs management. Therefore, this study utilized data on 11 HMs and water quality from 114 CDWSs, covering 71 prefecture-level cities (PLC) in 15 provinces (cities), to map unprecedented geospatial distribution of HMs in the YRB region and examine their concentrations in relation to water chemistry parameters. The findings revealed that the frequency of detection (FOD) of 11 HMs ranged from 28.59% (Hg) to 99.64% (Ba). The mean concentrations are ranked as follows: Ba (40.775 µg/L) > B (21.866 µg/L) > Zn (5.133 µg/L) > V (2.668 µg/L) > Cu (2.049 µg/L) > As (1.989 µg/L) > Mo (1.505 µg/L) > Ni (1.108 µg/L) > Sb (0.613 µg/L) > Pb (0.553 µg/L) > Hg (0.002 µg/L). Concentrations of Zn, As, Hg, Pb, Mo, Sb, Ni, and Ba exhibited decreasing trends from 2018 to 2022. Human activities, including industrial and agricultural production, have led to higher pollution levels in the midstream and downstream of the river than in its upstream. Additionally, the high concentrations of Ba and B are influenced by natural geological factors. Anion concentrations and nutrient levels, play a significant role in the transport of HMs in water. Probabilistic health risk assessment indicates that As, Ba, and Sb pose a potential carcinogenic risk. Additionally, non-carcinogenic risk to children under extreme conditions should also be considered.

14.
Sci Total Environ ; 926: 171923, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522523

RESUMEN

The detrimental effects of heavy metal accumulation on both ecosystems and public health have raised widespread concern. Source-specific risk assessment is crucial for developing effective strategies to prevent and control heavy metal contamination in surface water. This study aims to investigate the contamination characteristics of heavy metals in the Yangtze River Basin, identifying the pollution sources, assessing the risk levels, and further evaluating the health risks to humans. The results indicated that the average concentrations of heavy metals were ranked as follows: zinc (Zn) > arsenic (As) > copper (Cu) > chromium (Cr) > cadmium (Cd) > nickel (Ni) > lead (Pb), with average concentrations of 38.02 µg/L, 4.34 µg/L, 2.53 µg/L, 2.10 µg/L, 1.17 µg/L, 0.84 µg/L, and 0.32 µg/L, respectively, all below the WHO 2017 standards for safe drinking water. The distribution trend indicates higher concentrations in the upper and lower reaches and lower concentrations in the mid-reaches of the river. By integrating the Absolute Principal Component Scores-Multiple Linear Regression (APCS-MLR) receptor model and Positive Matrix Factorization (PMF) model, the main sources of heavy metals were identified as industrial activities (APCS-MLR: 41.3 %; PMF: 42.1 %), agricultural activities (APCS-MLR: 30.1 %; PMF: 27.4 %), and unknown mix sources (APCS-MLR: 29.1 %; PMF: 30.4 %). The calculation of the hazard index (HI) for both children and adults was <1, indicating no non-carcinogenic or carcinogenic risks. Based on the source-specific risk assessment, agricultural activities contribute the most to non-carcinogenic risks, while industrial activities pose the greatest contribution to carcinogenic risks. This study offers a reference for monitoring heavy metals and controlling health risks to residents, and provides crucial evidence for the utilization and protection of surface water in the Yangtze River Basin.


Asunto(s)
Agua Potable , Metales Pesados , Adulto , Niño , Humanos , Ríos , Ecosistema , Monitoreo del Ambiente , Metales Pesados/análisis , Cadmio , Medición de Riesgo , China
15.
Water Res ; 254: 121385, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452525

RESUMEN

The Yangtze River is the third longest river in the world with more than 6300 km, covering 0.4 billion people. However, the aquatic ecosystem of the Yangtze River has been seriously damaged in the past decades due to a rapid development of economic and industrialization along the coast. In this study, we first established a dataset of fifty elements, including nine common heavy metals (HMs) and forty-one other elements, in the Yangtze River Basin through the collection of historical data from 2000 to 2020, and then analyzed their spatiotemporal distribution characteristics. The results indicated that the Three Gorges Reservoir (TGR), a region formed by the construction of the Three Gorges Dam (TGD), may act as a sink for these elements from upstream regions. The concentrations of seven elements in surface water and 13 elements in sediment obviously increased from the upstream region of the TGR to the TGR. In addition, ten elements in the surface water and 5 elements in the sediments clearly decreased, possibly because of the interception effects of the TGD. On a timescale, Cr obviously tended to migrate from the water phase to the sediment; Pb tended to migrate from the sediment to the water phase. In the ecological risk assessment, all common HMs in surface water were supposed to have negligible risks as protecting 90 % of aquatic organisms; Cd (210.2), Hg (58.0) and As (43.1) in sediment posed high and moderate ecological risks using the methodology of the potential ecological risk index. Furthermore, Hunan Province is at considerable risk according to the sum of the potential risk index (314.8) due to Cd pollution (66.8 %). These fundamental data and results will support follow-up control strategies for elements and policies related to aquatic ecosystem protection in the Yangtze River Basin.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Humanos , Ecosistema , Ríos , Cadmio/análisis , Estudios Retrospectivos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Metales Pesados/análisis , Medición de Riesgo , Agua/análisis , China
16.
Sci Total Environ ; 921: 171167, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38395164

RESUMEN

Floods are some of the most frequent and severe natural hazards worldwide. In the context of climate change, the risk of extreme floods is expected to increase in the future. While, the trends in flood timing and risk for flood synchronization remain unclear. In this study, the seasonality of flood peaks, annual maximum rainfall, and annual maximum soil moisture in the Yangtze River Basin were examined using observational and reanalysis data from 1949 to 2020. Changes in the timing of extreme events may increase the possibility of concurrent flooding, therefore the risk for synchronous floods were further explored. The results indicate that the seasonality of floods has a strong consistency with that of annual maximum rainfall. In the southern Yangtze River Basin, floods usually occur between early June and early July, with a delayed trend. However, they occur slightly later in the north, generally from late July to early August, with a tendency of advance. Overall, the timing of floods is positively correlated with rainfall and soil moisture peaks, and the correlation is much stronger for annual maximum rainfall. However, for more intense floods or for larger catchments, soil moisture plays an important role in modulating the variations in flood timing. Reverse latitudinal changes in flood timing are expected to result in more synchronous floods. The synchrony frequency exceeded 60 % for most of the stations, and the frequency was increasing for nearly half of the region, especially in the middle reaches, Poyang Lake and south of Dongting Lake. In addition, the flood synchrony scale in the south of the basin showed significant upward trends. These findings would provide important implications for flood risk management and adaptive strategy development.

17.
Environ Res ; 249: 118424, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325775

RESUMEN

Terrestrial silicon (Si) from biogeochemically weathered rocks and soils into oceans must pass through several water bodies, resulting in some Si immobilized. Hence, the knowledge on Si distribution characteristics in different water bodies at a basin scale is helpful to understand Si immobilization. A total of 65 surface sediments and corresponding overlying water samples were sampled from six water bodies (Dianchi Lake, DL; Dadu River, DR; Tuojiang River, TR; Honghu Lake, HL; Donghu Lake, DhL; Taihu Lake, TL) in the Yangtze River Basin of China, total dissolved Si (TDSi) in overlying water and exchangeable Si (Ex-Si), active non-biogenic Si (NBSi), and total acid dissolved Si (TADSi) in sediments were analyzed. Water chemical parameters (pH, EC, and TDP) and sediment components (LOI, TN, TP, and TADFe) showed that the water environment characteristics of six water bodies differed. TDSi differed among regions and between lakes and rivers, significantly higher in water bodies in the upper reaches and rivers than the middle or lower reaches and lakes (p < 0.05), respectively. Ex-Si in sediments in the upper reaches was significantly higher than in the middle or lower reaches (p < 0.05), except for DhL, whose Ex-Si was the highest. Mean TADSi and active NBSi were significantly higher in lakes than rivers (p < 0.05). Oxidation of sediments significantly increased TDSi in overlying water and active NBSi in sediments (p < 0.01). Si forms in six water bodies significantly depended on components of the sediments (e.g. active Ca2+, Mg2+, Fe, and Al3+) and water chemical parameters (p < 0.05). Our results suggest that immobilization of Si in water bodies in the Yangtze River Basin depends on the types of water bodies and sediments, lakes and Fe-Al dominated sediments have a high potential to immobilize Si, but anthropogenic interference should not be ignored.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Ríos , Silicio , China , Silicio/análisis , Ríos/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Lagos/química
18.
J Fish Biol ; 104(5): 1350-1365, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332499

RESUMEN

Dam construction alters the hydrodynamic conditions, consequently impacting the swimming behavior of fish. To explore the effect of flow hydrodynamics on fish swimming behavior, five endemic fish species in the upper Yangtze River basin were selected. Through high-speed video visualization and computer analysis, these species' swimming patterns under different flow velocities (0.1-1.2 m/s) were investigated. The kinematic and morphological characteristics of the fish were presented. The principal component analysis was used to analyse the main factors influencing the swimming ability of fish and to determine the correlation coefficients among fish behavior indicators. Fish exhibited three different swimming patterns under different flow velocities. Low velocity (0.1-0.3 m/s) corresponds to free motion, middle velocity (0.4-0.7 m/s) corresponds to cruising motion, and high velocity corresponds to stress motion (0.8-1.2 m/s). The fish kinematic index curves were obtained, and four of five fish species showed two extreme points, which means the optimal and adverse swimming strategies can be determined. With the increase in flow velocity, the tail-beat frequency showed an increasing trend, whereas the tail-beat angle and amplitude showed a decreasing trend. Morphological and kinematic parameters were the two main indexes that affect the swimming ability of fish, which accounts for 41.9% and 26.9%, respectively.


Asunto(s)
Hidrodinámica , Ríos , Natación , Animales , China , Fenómenos Biomecánicos , Peces/fisiología , Peces/anatomía & histología , Análisis de Componente Principal , Grabación en Video
19.
Environ Res ; 243: 117813, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38043893

RESUMEN

Terrestrial gross primary production (GPP) changes due to impervious surfaces significantly impact ecosystem services in watersheds. Understanding the asymmetric response of vegetation GPP to impervious surface expansion is essential for regional development planning and ecosystem management. However, the asymmetric response of vegetation GPP to the impacts of impervious surface expansion is unknown in different watersheds. This paper selected the Yellow River and Yangtze River basins as case studies. We characterized the overall change in GPP based on changes in impervious surface ratio (ISR), determined impervious surface expansion's direct and indirect impacts on GPP in the two watersheds, and further analyzed the asymmetric response of the compensatory effects of indirect influences on the impervious surface expansion in different watersheds. The results showed that: (1) The vegetation GPP decreased with increasing ISR in the Yangtze River Basin, while that in the Yellow River Basin first increased and then reduced. (2) The direct impacts of increased ISR reduced vegetation GPP, while the indirect impacts both had a growth-compensating effect. Growth compensation stabilized at approximately 0.40 and 0.30 in the Yellow and Yangtze River Basins. (3) When the ISR was 0.34-0.56, the growth compensation could offset the reduction of GPP due to direct impact and ensure that the background vegetation GPP was not damaged in the Yellow River Basin. In contrast, the background vegetation GPP was inevitably impaired with increased ISR in the Yangtze River Basin. Therefore, this study suggests that the ISR should be ensured to be between 0.34 and 0.56 to maximize the impervious surface of the Yellow River Basin without compromising the background vegetation GPP. While pursuing impervious surface expansion in the Yangtze River Basin, other programs should be sought to compensate for the loss to GPP.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Ríos , China
20.
Water Res ; 249: 120910, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016223

RESUMEN

Understanding the long-term variations in basins that undergo large-scale hydroelectric projects is crucial for effective dam operation and watershed management. In this study, comprehensive analyses were conducted on a dataset spanning over 20 years (1998-2018) of hydrological regime and physicochemical parameters from the Yangtze River basin to evaluate the potential impacts of the Three Gorges Dam. Water level significantly increased from 128.75±58.18 m in 2002 to 136.78±55.05 m in 2005, and the mean flow velocity significantly decreased from 2004 to 2010. However, no significant change in the flow was observed in the basin. Meanwhile, remarkable fluctuations in physicochemical parameters, including dissolved oxygen, chemical oxygen demand, conductivity, hardness, and alkalinity, were mainly observed during impoundment (2003-2009). After that, the above parameters tended to stabilize, and some even returned to their original levels. The dam's retention effect significantly reduced the suspended solids (SS) in both up- and downstream, to only one-third of the pre-operation level. And total phosphorus and chemical oxygen demand also significantly decreased with the decline of SS. Particularly, ammonium also showed a significant downward trend, with the up- and downstream of the dam falling by 36.8 % and 26.1 %, respectively. However, the increasing total nitrogen (7.5 % and 20.0 % up- and downstream of the dam, respectively) still threatened the water quality of the basin, especially in the estuaries. Additionally, the significant decline in dissolved oxygen downstream (from 8.53±1.08 mg/L to 8.11±1.36 mg/L) also exacerbated the hypoxia in the Yangtze River estuary. The results demonstrated the long-term impact of the construction of the Three Gorges Dam on the environmental elements of the Yangtze River basin, which provides reference data and guidance for the construction of big dams in major rivers in the future.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Ríos , Estuarios , Oxígeno , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...