Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 13(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34683940

RESUMEN

ZW800-1, a representative zwitterionic near-infrared (NIR) fluorophore, can minimize background tissue uptake owing to its balanced surface charges, and therefore, is widely used for improved NIR fluorescence imaging. As ZW800-1 has no tumor targetability, tumor imaging is highly dependent on the ability of the molecules conjugated to the ZW800-1. To enable tumor targeting using ZW800-1 without additional conjugation, we developed a tumor-targetable and renal-clearable ZW800-1 analog (ZW800-AM) based on the structural modification of ZW800-1. Specifically, an amine group on the center linker of the ZW800-1 indocyanine backbone was modified by replacing phenoxypropionic acid with tyramine linkage on the meso-chlorine atom. This modification improved the tumor targeting ability, which is known as the structure-inherent targeting strategy. More importantly, ZW800-AM not only showed sufficient tumor accumulation without nonspecific uptake but also produced a photothermal effect, killing tumor cells under 808 nm NIR laser irradiation. In addition, ZW800-AM exhibited rapid renal elimination from the body within 4 h of injection, similar to ZW800-1. Overall, the discovery of ZW800-AM as a bifunctional phototherapeutic agent may provide an ideal alternative for tumor-targeted imaging and phototherapy.

2.
Biomedicines ; 9(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34572335

RESUMEN

The combination of near-infrared (NIR) fluorophores and photothermal therapy (PTT) provides a new opportunity for safe and effective cancer treatment. However, the precise molecular design of functional NIR fluorophores with desired properties, such as high tumor targetability and low nonspecific uptake, remains challenging. In this study, a renal-clearable NIR fluorophore conjugate with high tumor targetability was developed for efficient photothermal cancer therapy. The isoniazid (INH)-ZW800-1 conjugate (INH-ZW) was synthesized by conjugating an antibiotic drug, INH, with a well-known zwitterionic NIR fluorophore, ZW800-1, to improve in vivo performance and fluorescence-guided cancer phototherapy. INH-ZW not only showed rapid tumor accumulation without nonspecific tissue/organ uptake within 1 h after the injection but also generated thermal energy to induce cancer cell death under NIR laser irradiation. Compared with previously reported ZW800-1 conjugates, INH-ZW preserved the ideal biodistribution of ZW800-1 and facilitated improved tumor targeting and PTT. Together, these results demonstrate that the INH-ZW conjugate has great potential to serve as an effective PTT agent capable of rapid tumor targeting and high renal clearance, with excellent photothermal efficacy.

3.
Artif Cells Nanomed Biotechnol ; 48(1): 1144-1152, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32885672

RESUMEN

Photothermal therapy (PTT) is a promising approach for effective cancer treatment because of its non-invasive procedure, low toxicity to normal tissues, and high tumour ablation efficiency. Developing a PTT agent with precise tumour imaging capabilities is an essential prerequisite for effective PTT. In this study, we developed a bifunctional near-infra-red (NIR) fluorescent conjugate consisting of chitosan oligosaccharide lactate (COL) and the ZW800-1 NIR fluorophore (COL-ZW). We demonstrate that this conjugate is easy to use and that it is an effective theranostic agent for fluorescence-guided photothermal treatment. The temperature of COL-ZW increased by 62.3 °C after NIR laser irradiation (1.1 W/cm2) for 5 min in HT-29 tumour-bearing mice. The HT-29 tumours targeted by COL-ZW showed a remarkable decrease in tumour volume until a week after photothermal treatment. These in vivo results demonstrate that the bifunctional COL-ZW generates strong fluorescence and light-triggered PTT in tumour sites, indicating successful fluorescence-guided PTT. Importantly, no tumour recurrence or treatment-induced toxicity was observed after a single dose of COL-ZW with laser irradiation. Therefore, a combinatorial treatment with COL-ZW and NIR laser irradiation could serve as a promising strategy for photothermal cancer therapy.


Asunto(s)
Quitosano/química , Colorantes Fluorescentes/química , Rayos Infrarrojos , Ácido Láctico/química , Oligosacáridos/química , Imagen Óptica/métodos , Fototerapia/métodos , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Humanos , Ratones
4.
Cancers (Basel) ; 11(9)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480639

RESUMEN

Abstract: Photothermal therapy (PTT) using a near-infrared (NIR) heptamethine cyanine fluorophore has emerged as an alternative strategy for targeted cancer therapy. NIR fluorophores showing a high molar extinction coefficient and low fluorescence quantum yield have considerable potential applications in photothermal cancer therapy. In this study, a bifunctional sorbitol-ZW800 conjugate was used as an advanced concept of photothermal therapeutic agents for in vivo cancer imaging and therapy owing to the high tumor targetability of the sorbitol moiety and excellent photothermal property of NIR heptamethine cyanine fluorophore. The sorbitol-ZW800 showed an excellent photothermal effect increased by 58.7 °C after NIR laser irradiation (1.1 W/cm2) for 5 min. The HT-29 tumors targeted by sorbitol-ZW800 showed a significant decrease in tumor volumes for 7 days after photothermal treatment. Therefore, combining the bifunctional sorbitol-ZW800 conjugate and NIR laser irradiation is an alternative way for targeted cancer therapy, and this approach holds great promise as a safe and highly efficient NIR photothermal agent for future clinical applications.

5.
Int J Med Sci ; 14(13): 1430-1435, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29200957

RESUMEN

Background: Since it is known that serum albumin-bound dyes can cross the blood-brain barrier (BBB) after ischemia, Evans Blue dye is commonly used to assess BBB disruption because of its rapid binding to serum albumin. In addition, indocyanine green (ICG), a clinically available dye, binds to serum proteins that could also be used for assessment of BBB impairment. Unlike these near-infrared (NIR) dyes, zwitterionic NIR fluorophore (ZW800-1) shows no serum binding, ultralow non-specific tissue uptake, and rapid elimination from the body via renal filtration. In this study, we report the use of ZW800-1 as a NIR fluorescence imaging agent for detecting BBB disruption in rat stroke models. Methods: Three types of NIR fluorophores, Evans Blue, ICG, and ZW800-1, were administered intraperitoneally into rat photothrombotic stroke models by using 4% concentration of each NIR dye. The NIR fluorescence signals in the infarcted brain tissue and biodistribution were observed in real-time using the Mini-FLARE® imaging system up to 24 h post-injection. Results: ZW800-1 provided successful visualization of the ischemic injury site in the brain tissue, while the remaining injected dye was clearly excreted from the body within a certain period of time. Although Evans Blue and ICG provided mapping of the infarcted brain lesions, they exhibited high non-specific uptake in most of the tissues and organs and persisted in the body over 24 h post-injection. Conclusion: Our results suggest the promising application of ZW800-1 as a new strategy in BBB experiments and future therapeutic development.


Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Isquemia Encefálica/diagnóstico por imagen , Compuestos de Amonio Cuaternario/administración & dosificación , Accidente Cerebrovascular/diagnóstico por imagen , Ácidos Sulfónicos/administración & dosificación , Animales , Barrera Hematoencefálica/fisiopatología , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatología , Azul de Evans/administración & dosificación , Humanos , Verde de Indocianina/administración & dosificación , Ratas , Espectrometría de Fluorescencia , Espectroscopía Infrarroja Corta , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...