Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37934130

RESUMEN

The zinc-finger protein Zelda (Zld) is a key activator of zygotic transcription in early Drosophila embryos. Here, we study Zld-dependent regulation of the seven-striped pattern of the pair-rule gene even-skipped (eve). Individual stripes are regulated by discrete enhancers that respond to broadly distributed activators; stripe boundaries are formed by localized repressors encoded by the gap genes. The strongest effects of Zld are on stripes 2, 3 and 7, which are regulated by two enhancers in a 3.8 kb genomic fragment that includes the eve basal promoter. We show that Zld facilitates binding of the activator Bicoid and the gap repressors to this fragment, consistent with its proposed role as a pioneer protein. To test whether the effects of Zld are direct, we mutated all canonical Zld sites in the 3.8 kb fragment, which reduced expression but failed to phenocopy the abolishment of stripes caused by removing Zld in trans. We show that Zld also indirectly regulates the eve stripes by establishing specific gap gene expression boundaries, which provides the embryonic spacing required for proper stripe activation.


Asunto(s)
Proteínas de Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
2.
Dev Cell ; 58(19): 1898-1916.e9, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37557175

RESUMEN

Chromatin accessibility is integral to the process by which transcription factors (TFs) read out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive accessibility and those that do not. Deep learning models that learn complex sequence rules provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility data with interpretable deep learning and performed genetic validation experiments. We identify a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, which makes enhancers accessible but not necessarily active, and the second when the correct combination of TFs leads to enhancer activation.

3.
Bull Entomol Res ; 113(5): 587-597, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37476851

RESUMEN

Zinc finger protein (Zelda) of Tribolium castaneum (TcZelda) has been showed to play pivotal roles in embryonic development and metamorphosis. However, the regulatory mechanism of TcZelda associated with these physiology processes is unclear. Herein, the developmental expression profile showed that Zelda of T. castaneum was highly expressed in early eggs. Tissue expression profiling revealed that TcZelda was mainly expressed in the larval head and adult ovary of late adults and late larvae. TcZelda knockdown led to a 95% mortality rate in adults. These results suggested that TcZelda is related to the activation of the zygote genome in early embryonic development. Furthermore, 592 differentially expressed genes were identified from the dsZelda treated group. Compared with the control group, altered disjunction (ALD) and AGAP005368-PA (GAP) in the dsZelda group were significantly down-regulated, while TGF-beta, propeptide (TGF) was significantly up-regulated, suggesting that TcZelda may be involved in insect embryonic development. In addition, the expression of Ubx ultrabithorax (UBX), Cx cephalothorax (CX), En engrailed (EN), and two Endocuticle structural glycoprotein sgabd (ABD) genes were significantly down-regulated, suggesting that they may cooperate with TcZelda to regulate the development of insect wings. Additionally, Elongation (ELO), fatty acid synthase (FAS), and fatty acyl-CoA desaturase (FAD) expression was inhibited in dsZelda insects, which could disturb the lipase signaling pathways, thus, disrupting the insect reproductive system and pheromone synthesis. These results may help reveal the function of TcZelda in insects and the role of certain genes in the gene regulatory network and provide new ideas for the prevention and control of T. castaneum.


Asunto(s)
Tribolium , Femenino , Animales , Tribolium/genética , Perfilación de la Expresión Génica , Metamorfosis Biológica , Transducción de Señal , Larva/genética , Larva/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
4.
Genetics ; 219(2)2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34849887

RESUMEN

Embryonic patterning is critically dependent on zygotic genome activation (ZGA). In Drosophila melanogaster embryos, the pioneer factor Zelda directs ZGA, possibly in conjunction with other factors. Here, we have explored the novel involvement of Chromatin-Linked Adapter for MSL Proteins (CLAMP) during ZGA. CLAMP binds thousands of sites genome-wide throughout early embryogenesis. Interestingly, CLAMP relocates to target promoter sequences across the genome when ZGA is initiated. Although there is a considerable overlap between CLAMP and Zelda binding sites, the proteins display distinct temporal dynamics. To assess whether CLAMP occupancy affects gene expression, we analyzed transcriptomes of embryos zygotically compromised for either clamp or zelda and found that transcript levels of many zygotically activated genes are similarly affected. Importantly, compromising either clamp or zelda disrupted the expression of critical segmentation and sex determination genes bound by CLAMP (and Zelda). Furthermore, clamp knockdown embryos recapitulate other phenotypes observed in Zelda-depleted embryos, including nuclear division defects, centrosome aberrations, and a disorganized actomyosin network. Based on these data, we propose that CLAMP acts in concert with Zelda to regulate early zygotic transcription.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Cigoto/metabolismo , Animales , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Cigoto/crecimiento & desarrollo
5.
Curr Biol ; 31(22): 5102-5110.e5, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34614388

RESUMEN

The early Drosophila embryo provides unique experimental advantages for addressing fundamental questions of gene regulation at multiple levels of organization, from individual gene loci to the entire genome. Using 1.5-h-old Drosophila embryos undergoing the first wave of genome activation,1 we detected ∼110 discrete "speckles" of RNA polymerase II (RNA Pol II) per nucleus, two of which were larger and localized to the histone locus bodies (HLBs).2,3 In the absence of the primary driver of Drosophila genome activation, the pioneer factor Zelda (Zld),1,4,5 70% fewer speckles were present; however, the HLBs tended to be larger than wild-type (WT) HLBs, indicating that RNA Pol II accumulates at the HLBs in the absence of robust early-gene transcription. We observed a uniform distribution of distances between active genes in the nuclei of both WT and zld mutant embryos, indicating that early co-regulated genes do not cluster into nuclear sub-domains. However, in instances whereby transcribing genes did come into close 3D proximity (within 400 nm), they were found to have distinct RNA Pol II speckles. In contrast to the emerging model whereby active genes are clustered to facilitate co-regulation and sharing of transcriptional resources, our data support an "individualist" model of gene control at early genome activation in Drosophila. This model is in contrast to a "collectivist" model, where active genes are spatially clustered and share transcriptional resources, motivating rigorous tests of both models in other experimental systems.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/metabolismo , ARN Polimerasa II/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
6.
Elife ; 102021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34342574

RESUMEN

During the essential and conserved process of zygotic genome activation (ZGA), chromatin accessibility must increase to promote transcription. Drosophila is a well-established model for defining mechanisms that drive ZGA. Zelda (ZLD) is a key pioneer transcription factor (TF) that promotes ZGA in the Drosophila embryo. However, many genomic loci that contain GA-rich motifs become accessible during ZGA independent of ZLD. Therefore, we hypothesized that other early TFs that function with ZLD have not yet been identified, especially those that are capable of binding to GA-rich motifs such as chromatin-linked adaptor for male-specific lethal (MSL) proteins (CLAMP). Here, we demonstrate that Drosophila embryonic development requires maternal CLAMP to (1) activate zygotic transcription; (2) increase chromatin accessibility at promoters of specific genes that often encode other essential TFs; and (3) enhance chromatin accessibility and facilitate ZLD occupancy at a subset of key embryonic promoters. Thus, CLAMP functions as a pioneer factor that plays a targeted yet essential role in ZGA.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma de los Insectos , Proteínas Nucleares/genética , Activación Transcripcional , Animales , Secuencia de Bases , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Cigoto/metabolismo
7.
Elife ; 92020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33074101

RESUMEN

Thermodynamic models of gene regulation can predict transcriptional regulation in bacteria, but in eukaryotes, chromatin accessibility and energy expenditure may call for a different framework. Here, we systematically tested the predictive power of models of DNA accessibility based on the Monod-Wyman-Changeux (MWC) model of allostery, which posits that chromatin fluctuates between accessible and inaccessible states. We dissected the regulatory dynamics of hunchback by the activator Bicoid and the pioneer-like transcription factor Zelda in living Drosophila embryos and showed that no thermodynamic or non-equilibrium MWC model can recapitulate hunchback transcription. Therefore, we explored a model where DNA accessibility is not the result of thermal fluctuations but is catalyzed by Bicoid and Zelda, possibly through histone acetylation, and found that this model can predict hunchback dynamics. Thus, our theory-experiment dialogue uncovered potential molecular mechanisms of transcriptional regulatory dynamics, a key step toward reaching a predictive understanding of developmental decision-making.


Cells in the brain, liver and skin, as well as many other organs, all contain the same DNA, yet behave in very different ways. This is because before a gene can produce its corresponding protein, it must first be transcribed into messenger RNA. As an organism grows, the transcription of certain genes is switched on or off by regulatory molecules called transcription factors, which guide cells towards a specific 'fate'. These molecules bind to specific locations within the regulatory regions of DNA, and for decades biologist have tried to use the arrangement of these sites to predict which proteins a cell will make. Theoretical models known as thermodynamic models have been able to successfully predict transcription in bacteria. However, this has proved more challenging to do in eukaryotes, such as yeast, fruit flies and humans. One of the key differences is that DNA in eukaryotes is typically tightly wound into bundles called nucleosomes, which must be disentangled in order for transcription factors to access the DNA. Previous thermodynamic models have suggested that DNA in eukaryotes randomly switches between being in a wound and unwound state. The models assume that once unwound, regulatory proteins stabilize the DNA in this form, making it easier for other transcription factors to bind to the DNA. Now, Eck, Liu et al. have tested some of these models by studying the transcription of a gene involved in the development of fruit flies. The experiments showed that no thermodynamic model could accurately mimic how this gene is regulated in the embryos of fruit flies. This led Eck, Liu et al. to identify a model that is better at predicting the activation pattern of this developmental gene. In this model, instead of just 'locking' DNA into an unwound shape, transcription factors can also actively speed up the unwinding of DNA. This improved understanding builds towards the goal of predicting gene regulation, where DNA sequences can be used to tell where and when cell decisions will be made. In the future, this could allow the development of new types of therapies that can regulate transcription in different diseases.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Homeodominio/genética , Modelos Genéticos , Proteínas Nucleares/genética , Transactivadores/genética , Factores de Transcripción/genética , Transcripción Genética , Acetilación , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Larva/genética , Larva/metabolismo , Proteínas Nucleares/metabolismo , Termodinámica , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
8.
Society ; 57(4): 453-470, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32895582

RESUMEN

F. Scott Fitzgerald's The Great Gatsby (1925) is one of the best known and most widely read and taught novels in American literature. It is so familiar that even those who have not read it believe that they have and take for granted that they know about its main character and theme of the American Dream. We need to approach The Great Gatsby as if it were new and really read it, paying close attention to Fitzgerald's literary language. His novel gives us a vivid depiction of and insight into income inequality as it existed in the 1920s and, by extension, as it exists today, when the American Dream is even more limited to the fortunate few, not within reach of the many. When we really read The Great Gatsby, we perceive and understand the American dimension of the novel and appreciate, too, the global range and relevance that in it Fitzgerald has achieved. It is a great American book and a great book of world literature.

9.
Elife ; 92020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32701060

RESUMEN

Pioneer factors such as Zelda (Zld) help initiate zygotic transcription in Drosophila early embryos, but whether other factors support this dynamic process is unclear. Odd-paired (Opa), a zinc-finger transcription factor expressed at cellularization, controls the transition of genes from pair-rule to segmental patterns along the anterior-posterior axis. Finding that Opa also regulates expression through enhancer sog_Distal along the dorso-ventral axis, we hypothesized Opa's role is more general. Chromatin-immunoprecipitation (ChIP-seq) confirmed its in vivo binding to sog_Distal but also identified widespread binding throughout the genome, comparable to Zld. Furthermore, chromatin assays (ATAC-seq) demonstrate that Opa, like Zld, influences chromatin accessibility genome-wide at cellularization, suggesting both are pioneer factors with common as well as distinct targets. Lastly, embryos lacking opa exhibit widespread, late patterning defects spanning both axes. Collectively, these data suggest Opa is a general timing factor and likely late-acting pioneer factor that drives a secondary wave of zygotic gene expression.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Proteínas Nucleares , Factores de Transcripción
10.
Curr Top Dev Biol ; 137: 143-191, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32143742

RESUMEN

The morphogen gradient of the transcription factor Dorsal in the early Drosophila embryo has become one of the most widely studied tissue patterning systems. Dorsal is a Drosophila homolog of mammalian NF-κB and patterns the dorsal-ventral axis of the blastoderm embryo into several tissue types by spatially regulating upwards of 100 zygotic genes. Recent studies using fluorescence microscopy and live imaging have quantified the Dorsal gradient and its target genes, which has paved the way for mechanistic modeling of the gradient. In this review, we describe the mechanisms behind the initiation of the Dorsal gradient and its regulation of target genes. The main focus of the review is a discussion of quantitative and computational studies of the Dl gradient system, including regulation of the Dl gradient. We conclude with a discussion of potential future directions.


Asunto(s)
Tipificación del Cuerpo , Biología Computacional/métodos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , FN-kappa B/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Transducción de Señal , Factores de Transcripción/genética
11.
Dev Dyn ; 249(3): 369-382, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31925874

RESUMEN

BACKGROUND: A feedforward loop (FFL) is commonly observed in several biological networks. The FFL network motif has been mostly studied with respect to variation of the input signal in time, with only a few studies of FFL activity in a spatially distributed system such as morphogen-mediated tissue patterning. However, most morphogen gradients also evolve in time. RESULTS: We studied the spatiotemporal behavior of a coherent FFL in two contexts: (a) a generic, oscillating morphogen gradient and (b) the dorsal-ventral patterning of the early Drosophila embryo by a gradient of the NF-κB homolog dorsal with its early target Twist. In both models, we found features in the dynamics of the intermediate node-phase difference and noise filtering-that were largely independent of the parameterization of the models, and thus were functions of the structure of the FFL itself. In the dorsal gradient model, we also found that proper target gene expression was not possible without including the effect of maternal pioneer factor Zelda. CONCLUSIONS: An FFL buffers fluctuation to changes in the morphogen signal ensuring stable gene expression boundaries.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Animales , Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , FN-kappa B/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
12.
Curr Biol ; 29(8): 1387-1393.e5, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30982648

RESUMEN

Connecting the developmental patterning of tissues to the mechanistic control of RNA polymerase II remains a long-term goal of developmental biology. Many key elements have been identified in the establishment of spatial-temporal control of transcription in the early Drosophila embryo, a model system for transcriptional regulation. The dorsal-ventral axis of the Drosophila embryo is determined by the graded distribution of Dorsal (Dl), a homolog of the nuclear factor κB (NF-κB) family of transcriptional activators found in humans [1, 2]. A second maternally deposited factor, Zelda (Zld), is uniformly distributed in the embryo and is thought to act as a pioneer factor, increasing enhancer accessibility for transcription factors, such as Dl [3-9]. Here, we utilized the MS2 live imaging system to evaluate the expression of the Dl target gene short gastrulation (sog) to better understand how a pioneer factor affects the kinetic parameters of transcription. Our experiments indicate that Zld modifies probability of activation, the timing of this activation, and the rate at which transcription occurs. Our results further show that this effective rate increase is due to an increased accumulation of Dl at the site of transcription, suggesting that transcription factor "hubs" induced by Zld [10] functionally regulate transcription.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/genética , Transcripción Genética , Activación Transcripcional , Animales , Núcleo Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
13.
FEBS J ; 286(16): 3206-3221, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30993896

RESUMEN

In the endopterygote Drosophila melanogaster, Zelda is an activator of the zygotic genome during the maternal-to-zygotic transition (MZT). Zelda binds cis-regulatory elements (TAGteam heptamers), making chromatin accessible for gene transcription. Zelda has been studied in other endopterygotes: Apis mellifera and Tribolium castaneum, and the paraneopteran Rhodnius prolixus. We studied Zelda in the cockroach Blattella germanica, a hemimetabolan, short germ-band, and polyneopteran species. B. germanica Zelda has the complete set of functional domains, which is typical of species displaying ancestral features concerning embryogenesis. Interestingly, we found D. melanogaster TAGteam heptamers in the B. germanica genome. The canonical one, CAGGTAG, is present at a similar proportion in the genome of these two species and in the genome of other insects, suggesting that the genome admits as many CAGGTAG motifs as its length allows. Zelda-depleted embryos of B. germanica show defects involving blastoderm formation and abdomen development, and genes contributing to these processes are down-regulated. We conclude that in B. germanica, Zelda strictly activates the zygotic genome, within the MZT, a role conserved in more derived endopterygote insects. In B. germanica, zelda is expressed during MZT, whereas in D. melanogaster and T. castaneum it is expressed beyond this transition. In these species and A. mellifera, Zelda has functions even in postembryonic development. The expansion of zelda expression beyond the MZT in endopterygotes might be related with the evolutionary innovation of holometabolan metamorphosis. DATABASES: The RNA-seq datasets of B. germanica, D. melanogaster, and T. castaneum are accessible at the GEO databases GSE99785, GSE18068, GSE63770, and GSE84253. In addition, the RNA-seq library from T. castaneum adult females is available at SRA: SRX021963. The B. germanica reference genome is available as BioProject PRJNA203136.


Asunto(s)
Cucarachas/genética , Proteínas de Drosophila/genética , Desarrollo Embrionario/genética , Proteínas Nucleares/genética , Cigoto/metabolismo , Abdomen/crecimiento & desarrollo , Animales , Blastodermo/crecimiento & desarrollo , Blastodermo/metabolismo , Tipificación del Cuerpo/genética , Cromatina/genética , Cucarachas/crecimiento & desarrollo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos/genética , Herencia Materna/genética , Motivos de Nucleótidos/genética , Regiones Promotoras Genéticas/genética , RNA-Seq , Activación Transcripcional/genética , Cigoto/crecimiento & desarrollo
14.
Mol Cell ; 74(1): 185-195.e4, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30797686

RESUMEN

Reprogramming cell fate during the first stages of embryogenesis requires that transcriptional activators gain access to the genome and remodel the zygotic transcriptome. Nonetheless, it is not clear whether the continued activity of these pioneering factors is required throughout zygotic genome activation or whether they are only required early to establish cis-regulatory regions. To address this question, we developed an optogenetic strategy to rapidly and reversibly inactivate the master regulator of genome activation in Drosophila, Zelda. Using this strategy, we demonstrate that continued Zelda activity is required throughout genome activation. We show that Zelda binds DNA in the context of nucleosomes and suggest that this allows Zelda to occupy the genome despite the rapid division cycles in the early embryo. These data identify a powerful strategy to inactivate transcription factor function during development and suggest that reprogramming in the embryo may require specific, continuous pioneering functions to activate the genome.


Asunto(s)
Reprogramación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Animales , Animales Modificados Genéticamente , Sitios de Unión , ADN/genética , ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Proteínas Nucleares/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Optogenética , Unión Proteica , Fase S
15.
Elife ; 72018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30589412

RESUMEN

The regulation of transcription requires the coordination of numerous activities on DNA, yet how transcription factors mediate these activities remains poorly understood. Here, we use lattice light-sheet microscopy to integrate single-molecule and high-speed 4D imaging in developing Drosophila embryos to study the nuclear organization and interactions of the key transcription factors Zelda and Bicoid. In contrast to previous studies suggesting stable, cooperative binding, we show that both factors interact with DNA with surprisingly high off-rates. We find that both factors form dynamic subnuclear hubs, and that Bicoid binding is enriched within Zelda hubs. Remarkably, these hubs are both short lived and interact only transiently with sites of active Bicoid-dependent transcription. Based on our observations, we hypothesize that, beyond simply forming bridges between DNA and the transcription machinery, transcription factors can organize other proteins into hubs that transiently drive multiple activities at their gene targets. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Transactivadores/genética , Factores de Transcripción/genética , Animales , Sitios de Unión/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/metabolismo , Imagenología Tridimensional , Microscopía Confocal , Proteínas Nucleares , Unión Proteica , Imagen de Lapso de Tiempo/métodos , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
16.
Open Biol ; 8(12): 180183, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30977698

RESUMEN

The onset of metazoan development requires that two terminally differentiated germ cells, a sperm and an oocyte, become reprogrammed to the totipotent embryo, which can subsequently give rise to all the cell types of the adult organism. In nearly all animals, maternal gene products regulate the initial events of embryogenesis while the zygotic genome remains transcriptionally silent. Developmental control is then passed from mother to zygote through a process known as the maternal-to-zygotic transition (MZT). The MZT comprises an intimately connected set of molecular events that mediate degradation of maternally deposited mRNAs and transcriptional activation of the zygotic genome. This essential developmental transition is conserved among metazoans but is perhaps best understood in the fruit fly, Drosophila melanogaster. In this article, we will review our understanding of the events that drive the MZT in Drosophila embryos and highlight parallel mechanisms driving this transition in other animals.


Asunto(s)
Drosophila melanogaster/embriología , ARN Mensajero Almacenado/química , Cigoto/metabolismo , Animales , Drosophila melanogaster/metabolismo , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Estabilidad del ARN , Transcripción Genética , Activación Transcripcional
17.
BMC Syst Biol ; 11(1): 116, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29187214

RESUMEN

BACKGROUND: Models that incorporate specific chemical mechanisms have been successful in describing the activity of Drosophila developmental enhancers as a function of underlying transcription factor binding motifs. Despite this, the minimum set of mechanisms required to reconstruct an enhancer from its constituent parts is not known. Synthetic biology offers the potential to test the sufficiency of known mechanisms to describe the activity of enhancers, as well as to uncover constraints on the number, order, and spacing of motifs. RESULTS: Using a functional model and in silico compensatory evolution, we generated putative synthetic even-skipped stripe 2 enhancers with varying degrees of similarity to the natural enhancer. These elements represent the evolutionary trajectories of the natural stripe 2 enhancer towards two synthetic enhancers designed ab initio. In the first trajectory, spatially regulated expression was maintained, even after more than a third of binding sites were lost. In the second, sequences with high similarity to the natural element did not drive expression, but a highly diverged sequence about half the length of the minimal stripe 2 enhancer drove ten times greater expression. Additionally, homotypic clusters of Zelda or Stat92E motifs, but not Bicoid, drove expression in developing embryos. CONCLUSIONS: Here, we present a functional model of gene regulation to test the degree to which the known transcription factors and their interactions explain the activity of the Drosophila even-skipped stripe 2 enhancer. Initial success in the first trajectory showed that the gene regulation model explains much of the function of the stripe 2 enhancer. Cases where expression deviated from prediction indicates that undescribed factors likely act to modulate expression. We also showed that activation driven Bicoid and Hunchback is highly sensitive to spatial organization of binding motifs. In contrast, Zelda and Stat92E drive expression from simple homotypic clusters, suggesting that activation driven by these factors is less constrained. Collectively, the 40 sequences generated in this work provides a powerful training set for building future models of gene regulation.


Asunto(s)
Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Animales , Sitios de Unión , Simulación por Computador , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Genes Dev ; 31(17): 1784-1794, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28982761

RESUMEN

Morphogen gradients direct the spatial patterning of developing embryos; however, the mechanisms by which these gradients are interpreted remain elusive. Here we used lattice light-sheet microscopy to perform in vivo single-molecule imaging in early Drosophila melanogaster embryos of the transcription factor Bicoid that forms a gradient and initiates patterning along the anteroposterior axis. In contrast to canonical models, we observed that Bicoid binds to DNA with a rapid off rate throughout the embryo such that its average occupancy at target loci is on-rate-dependent. We further observed Bicoid forming transient "hubs" of locally high density that facilitate binding as factor levels drop, including in the posterior, where we observed Bicoid binding despite vanishingly low protein levels. We propose that localized modulation of transcription factor on rates via clustering provides a general mechanism to facilitate binding to low-affinity targets and that this may be a prevalent feature of other developmental transcription factors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Proteínas de Homeodominio/metabolismo , Transactivadores/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestructura , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Proteínas de Homeodominio/química , Proteínas de Homeodominio/ultraestructura , Proteínas Nucleares , Unión Proteica , Imagen Individual de Molécula , Transactivadores/química , Transactivadores/ultraestructura , Factores de Transcripción/metabolismo
19.
Epigenetics Chromatin ; 10(1): 33, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28676122

RESUMEN

BACKGROUND: The protein Zelda was shown to play a key role in early Drosophila development, binding thousands of promoters and enhancers prior to maternal-to-zygotic transition (MZT), and marking them for transcriptional activation. Recently, we showed that Zelda acts through specific chromatin patterns of histone modifications to mark developmental enhancers and active promoters. Intriguingly, some Zelda sites still maintain these chromatin patterns in Drosophila embryos lacking maternal Zelda protein. This suggests that additional Zelda-like pioneer factors may act in early fly embryos. RESULTS: We developed a computational method to analyze and refine the chromatin landscape surrounding early Zelda peaks, using a multichannel spectral clustering. This allowed us to characterize their chromatin patterns through MZT (mitotic cycles 8-14). Specifically, we focused on H3K4me1, H3K4me3, H3K18ac, H3K27ac, and H3K27me3 and identified three different classes of chromatin signatures, matching "promoters," "enhancers" and "transiently bound" Zelda peaks. We then further scanned the genome using these chromatin patterns and identified additional loci-with no Zelda binding-that show similar chromatin patterns, resulting with hundreds of Zelda-independent putative enhancers. These regions were found to be enriched with GAGA factor (GAF, Trl) and are typically located near early developmental zygotic genes. Overall our analysis suggests that GAF, together with Zelda, plays an important role in activating the zygotic genome. CONCLUSIONS: As we show, our computational approach offers an efficient algorithm for characterizing chromatin signatures around some loci of interest and allows a genome-wide identification of additional loci with similar chromatin patterns.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Genes del Desarrollo , Código de Histonas , Factores de Transcripción/metabolismo , Animales , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos , Histonas/genética , Histonas/metabolismo , Proteínas Nucleares , Factores de Transcripción/genética
20.
Cell ; 169(2): 216-228.e19, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388407

RESUMEN

Chromatin architecture is fundamental in regulating gene expression. To investigate when spatial genome organization is first established during development, we examined chromatin conformation during Drosophila embryogenesis and observed the emergence of chromatin architecture within a tight time window that coincides with the onset of transcription activation in the zygote. Prior to zygotic genome activation, the genome is mostly unstructured. Early expressed genes serve as nucleation sites for topologically associating domain (TAD) boundaries. Activation of gene expression coincides with the establishment of TADs throughout the genome and co-localization of housekeeping gene clusters, which remain stable in subsequent stages of development. However, the appearance of TAD boundaries is independent of transcription and requires the transcription factor Zelda for locus-specific TAD boundary insulation. These results offer insight into when spatial organization of the genome emerges and identify a key factor that helps trigger this architecture.


Asunto(s)
Cromatina/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Genoma de los Insectos , Activación Transcripcional , Cigoto/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Genes Esenciales , Proteínas Nucleares , ARN Polimerasa II/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...